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Errors if Probability 

in Historical Context 

PRAKASH GORROOCHURN 

1. Introduction 

This article outlines some of the mistakes made in the calculus of prob
ability, especially when the discipline was being developed. Such is the 
character of the doctrine of chances that simple-looking problems can 
deceive even the sharpest minds. In his celebrated Essai Philosophique sur 
les Probabilites (Laplace 1814, p. 273), the eminent French mathemati
cian Pierre-Simon Laplace (1749-1827) said, 

... the theory of probabilities is at bottom only common sense 
reduced to calculus. 

There is no doubt that Laplace was right, but the fact remains that 
blunders and fallacies persist even today in the field of probability, often 
when "common sense" is applied to problems. 

The errors I describe here can be broken down into three main 
categories: (i) use of "reasoning on the mean" (ROTM), (ii) incorrect 
enumeration of sample points, and (iii) confusion regarding the use of 
statistical independence. 

2. Use of "Reasonina on the Mean" (ROTM) 

In the history of probability, the physician and mathematician Gerolamo 
Cardano (1501-1575) was among the first to attempt a systematic study 
of the calculus of probabilities. Like those of his contemporaries, Car
dano's studies were primarily driven by games of chance. Concerning 
his 25 years of gambling, he famously said in his autobiography (Car
dano 1935, p. 146), 
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... and I do not mean to say only from time to time during those 
years, but I am ashamed to say it, everyday. 

Cardano's works on probability were published posthumously in 
the famous 15-page Liber de Ludo Aleae, I consisting of 32 small chapters 
(Cardano 1564). Cardano was undoubtedly a great mathematician of his 
time but stumbled on several questions, and this one in particular: "How 
many throws of a fair die do we need in order to have a fair chance of at 
least one six?" In this case, he thought the number of throws should be 
three. 2 In Chapter 9 of his book, Cardano says of a die: 

One-half of the total number of faces always represents equalitr; 
thus the chances are equal that a given point will turn up in three 
throws ... 

Cardano's mistake stems from a prevalent general confusion be
tween the concepts of probability and expectation. Let us dig deeper 
into Cardano's reasoning. In the De Ludo Aleae, Cardano frequently 
makes use of an erroneous principle, which Ore called a "reasoning on 
the mean" (ROTM) (Ore 1953, p. 150; Williams 2005), to deal with 
various probability problems. According to the ROTM, if an event has 
a probability p in one trial of an experiment, then in n trials the event 
will occur np times on average, which is then wrongly taken to rep
resent the probability that the event will occur in n trials. In our case, 
we have p = 1/6 so that, with n = 3 throws, the event "at least a six" 
is wrongly taken to occur an average np = 3(1/6) = 112 of the time. 
But if X is the number of sixes in three throws, then X - B(3,1/6), the 
probability of one six in three throws is 0.347, and the probability of at 
least one six is 0.421. On the other hand, the expected value of XisO.S. 
Thus, although the expected number of sixes in three throws is 112, 
neither the probability of one six or at least one six is 112. 

We now move to about a century later when the Chevalier de Mere"" 
(1607-1684) used the Old Gambler's Rule, leading to fallacious results. 
As we shall see, the Old Gambler's Rule is an offshoot of ROTM. The 
Chevalier de Mere had been winning consistently by betting even money 
that a six would come up at least once in four rolls with a single die. 
However, he had now been losing on a new bet, when in 1654 he met 
his friend, the amateur mathematician Pierre de Carcavi (1600-1684). 
De Mere had thought that the odds were favorable on betting that he 
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could throw at least one sonnez (i.e., double six) with 24 throws of a pair 
of dice. However, his own experiences indicated that 25 throws were 
required. 5 Unable to resolve the issue, the two men consulted their mu
tual friend, the great mathematician, physicist, and philosopher Blaise 
Pascal (1623-1662).6 Pascal himself had previously been interested in 
the games of chance (Groothuis 2003, p. to). Pascal must have been 
intrigued by this problem and, through the intermediary of Carcavi,1 
contacted the eminent mathematician, Pierre de Fermat (1601-1665),8 
who was a lawyer in Toulouse. In a letter Pascal addressed to Fermat, 
dated July 29, 1654, Pascal says (Smith 1929, p. 552), 

He [De Mere] tells me that he has found an error in the numbers 
for this reason: 

If one undertakes to throw a six with a die, the advantage of 
undertaking to do it in 4 is as 671 is to 625. 

If one undertakes to throw double sixes with two dice the dis
advantage of the undertaking is 24. 

But nonetheless, 24 is to 36 (which is the number of faces of 
two dice) as 4 is to 6 (which is the number of faces of one die). 

This is what was his great scandal which made him say haugh
tily that the theorems were not consistent and that arithmetic 
was demented. But you can easily see the reason by the principles 
which you have. 

De Mere was thus distressed that his observations were in con
tradiction with his mathematical calculations. His erroneous math
ematical reasoning was based on the erroneous Old Gambler's Rule 
(Weaver 1982, p. 47), which uses the concept of the critical value of a 
game. The critical value C of a game is the smallest number of plays 
such that the probability the gambler will win at least one play is 112 
or more. Let us now explain how the Old Gambler's Rule is derived. 
Recall Cardano's "reasoning on the mean" (ROTM): If a gambler has 
a probability p of winning one play of a game, then in n plays the gam
bler will win an average of np times, which is then wrongly equated to 
the probability of winning in n plays. Then, by setting the latter prob
ability to be half, we have 

1 
CXp = 2" 
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Moreover, given a first game with (PI> CI), then a second game which 
has probability of winning P2 in each play must have critical value C2, 
where 

or 
CIPI 

C2 -p; (Old Gambler's Rule) (1) 

That is, the Old Gambler's Rule states that the critical values of two 
games are in inverse proportion as their respective probabilities of win
ning. Using CI = 4, PI = 1/6, and P2 = 1/36, we get C2 = 24. However, 
with 24 throws, the probability of at least one double six is 0.491, which 
is less than 1/2. So C2 = 24 cannot be a critical value (the correct criti
cal value is shown below to be 25), and the Old Gambler's Rule cannot 
be correct. It was thus the belief in the validity of the Old Gambler's 
Rule that made de Mere wrongly think that, with 24 throws, he should 
have had a probability of 1/2 for at least one double six. 

Let us see how the erroneous Old Gambler's Rule should be cor
rected. By definition, CI = [XI]' the smallest integer greater or equal 
to XI> such that (1 - PI)" = 0.5, that is, xI = In(0.5)/ln(1 - PI)' With 
obvious notation, for the second game, C2 = [x2], where X2 = In(0.5)/ 
In(1 - P2)' Thus the true relationship should be 

_ xlln(1 - PI) 
X2 - In(1 - P2) (2) 

We see that Equations (1) and (2) are quite different from each other. 
Even if PI and P2 were very small, so that In(1 - PI) ~ -PI and In(1 - P2) 
~ -P2' we would get X2 = XIP/P2 approximately. This is still different 
from Equation (1) because the latter uses the integers CI and C2 , instead 
of the real numbers XI and X2• 

The Old Gambler's Rule was later investigated by the French math
ematician Abraham de Moivre (1667-1754), who was a close friend to 
Isaac Newton. Thus, in the Doctrine if Chances (de Moivre 1718, p. 14), 
Problem V, we read, 

To find in how many Trials an Event will Probably Happen or how 
many Trials will be required to make it indifferent to lay on its 
Happening or Failing; supposing that a is the number of Chances 
for its Happening in anyone Trial, and b the number of chances 
for its Failing. 
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TABLE I. 

Critical values obtained using the Old Gambling Rule, 
de Moivre's Gambling Rule, and the exact formula for different 

values of P, the probability of the event of interest 

Critical value C 
using the Old Critical value C 

Gambling Rule Critical value C using the 
C= CIP/p using de Moivre's exact formula 

(assuming CI = 4 Gambling Rule C= [-In(2)/ 
Value ofp for PI = 1/6) C = [O.693/p] In(1 - p)] 

1/216 144 150 150 
1/36 24 25 25 
1/6 4 5 4 
1/4 3 3 3 
1/2 2 2 

De Moivre solves (1 - PY = 112 and obtains x = -In(2)/ln(1 - p). 

For small P, 

x::::: 0.~93 (De Moivre's Gambling Rule) (3) 

Let us see if we obtain the correct answer when we apply de Moivre's 
Gambling Rule for the two-dice problem. Using x~0.693/p with 
p = 1136 gives x~ 24.95, and we obtain the correct critical value 
C = 25. The formula works only because p is small enough and is valid 
only for such cases.9 The other formula that could be used, and that 
is valid for all values of p, is x = -In(2)/ln(1 - p). For the two-dice 
problem, this exact formula gives x = -In(2)/ln(35/36) = 24.60, so 
that C = 25. Table 1 compares critical values obtained using the Old 
Gambler's Rule, de Moivre's Gambling Rule, and the exact formula. 

3. Incorrect Enumeration qf Sample Points 

The Problem of PointslO was another problem about which de Mere 
asked Pascal in 1654 and was the question that really launched the 
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theory of probability in the hands of Pascal and Fermat. It goes as fol
lows: "Two players A and B playa fair game such that the player who 
wins a total of 6 rounds first wins a prize. Suppose the game unexpect
edly stops when A has won a total of 5 rounds and B has won a total 
of 3 rounds. How should the prize be divided between A and B?" To 
solve the Problem of Points, we need to determine how likely A and 
B are to win the prize if they had continued the game, based on the 
number of rounds they have already won. The relative probabilities 
of A and B winning thus determine the division of the prize. Player 
A is one round short, and player B three rounds short, of winning 
the prize. The maximum number of hypothetical remaining rounds is 
(1 + 3) - 1 = 3, each of which could be equally won by A or B. The 
sample space for the game is 

(4) 

Here B.A2, for example, denotes the event that B would win the 
first remaining round and A would win the second (and then the game 
would have to stop since A is only one round short). However, the four 
sample points in n are not equally likely. 

For example, event A. occurs if anyone of the following four equally 
likely events occurs: A.A2A3, A.A2B3, A.B2A3, and A.B2B3. In terms of 
equally likely sample points, the sample space is thus 

n = {A.A2A3' A.A2B3, A.B2A3, A.B2B3, B.A2A3, B.A2B3, B.B2A3, B.B2B3} (5) 

There are in all eight equally likely outcomes, only one of which 
(B.B2B3) results in B hypothetically winning the game. Player A thus has 
a probability of 7/8 of winning. The prize should therefore be divided 
between A and B in the ratio 7:1. 

The Problem of Points had already been known hundreds of years 
before the times of these mathematicians.·· It had appeared in Italian 
manuscripts as early as 1380 (Burton 2006, p. 445). However, it first 
came in print in Fra Luca Pacioli's Summa de Arithmetica, Geometrica, 

Proportioni, et Proportionalita (1494).·2 Pacioli's incorrect answer was that 
the prize should be divided in the same ratio as the total number of 
games the players had won. Thus, for our problem, the ratio is 5:3. A 
simple counterexample shows why Pacioli's reasoning cannot be cor
rect. Suppose players A and B need to win 100 rounds to win a game, 
and when they stop Player A has won one round and Player B has won 
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none. Then Pacioli's rule would give the whole prize to A even though 
she is a single round ahead of B and would have needed to win 99 more 
rounds had the game continued!13 

Cardano had also considered the Problem of Points in the Practica 

arithmetice (Cardano 1539). His major insight was that the division of 
stakes should depend on how many rounds each player had yet to win, 

not on how many rounds they had alreac!J won. However, in spite of 
this, Cardano was unable to give the correct division ratio: He con
cluded that, if players A and B are a and b rounds short of winning, re
spectively, then the division ratio between A and B should be b(b + 1): 
a(a + 1). In our case, a = 1, b = 3, giving a division ratio of 6: 1. 

Pascal was at first unsure of his own solution to the problem and 
turned to a friend, the mathematician Gilles Personne de Roberval 
(1602-1675). Roberval was not of much help, and Pascal then asked for 
the opinion of Fermat, who was immediately intrigued by the problem. 
A beautiful account of the ensuing correspondence between Pascal and 
Fermat can be found in a recent book by Keith Devlin, The Urifinished 

Game: Pascal, Fermat and the Seventeenth Century Letter That Made the World 

Modern (2008). An English translation of the extant letters can be found 
in Smith (1929, pp. 546-565). 

Fermat made use of the fact that the solution depended not on how 
many rounds each player had already won but on how many each player must 

still win to win the prize. This is the same observation Cardano had previ
ously made, although he had been unable to solve the problem correctly. 
The solution we provided earlier is based on Fermat's idea of extend
ing the unfinished game. Fermat also enumerated the different sample 
points as in our solution and reached the correct division ratio of 7: 1. 

Pascal seems to have been aware of Fermat's method of enumeration 
(Edwards 1982), at least for two players. However, when he received 
Fermat's method, Pascal made two important observations in his Au
gust 24, 1654, letter. First, he stated that his friend Roberval believed 
that there was a fault in Fermat's reasoning and that he had tried to con
vince Roberval that Fermat's method was indeed correct. Roberval's 
argument was that, in our example, it made no sense to consider three 
hypothetical additional rounds, because in fact the game could end 
in one, two, or perhaps three rounds. The difficulty with Roberval's 
reasoning is that it leads us to write the sample space as in (5). Since 
there are three ways out of four for A to win, a naive application of the 
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classical definition of probability results in the wrong division ratio of 
3: 1 for A and B (instead of the correct 7: 1). The problem here is that the 
sample points in n above are not all equally likely, so that the classical 
definition cannot be applied. It is thus important to consider the maxi

mum number of hypothetical rounds, namely three, for us to be able to 
write the sample space in terms of equally likely sample points, as in 
Equation (5), from which the correct division ratio of7:1 can deduced. 

Pascal's second observation concerns his own belief that Fermat's 
method was not applicable to a game with three players. In a letter 
dated August 24, 1654, Pascal says (Smith 1929, p. 554), 

When there are but two players, your theory which proceeds by 
combinations is very just. But when there are three, I believe I 
have a proof that it is unjust that you should proceed in any other 
manner than the one I have. 

Let us explain how Pascal made a slip when dealing with the Problem 
of Points with three players. Pascal considers the case of three players 
A, B, and C, who were respectively 1, 2, and 2 rounds short of win
ning. In this case, the maximum of further rounds before the game has 
to finish is (1 + 2 + 2) - 2 = 3:4 With three maximum rounds, there 
are 33 = 27 possible combinations in which the three players can win 
each round. Pascal correctly enumerates all the 27 ways but now makes 
a mistake: He counts the number of favorable combinations which lead 
to A winning the game as 19. As can be seen in Table 2, there are 19 
combinations (denoted by check marks and Xs) for which A wins at 
least one round. But out of these, only 17 lead to A winning the game 
(the check marks) because in the remaining two (the Xs), either B or 
C wins the game first. Similarly, Pascal incorrectly counts the number 
of favorable combinations leading to Band C winning as 7 and 7, re
spectively, instead of 5 and S. Pascal thus reaches an incorrect division 
ratio of 19:7:7. 

Now Pascal again reasons incorrectly and argues that out of the 19 
favorable cases for A winning the game, six of these (namely A)B2B3' 
A)C2C3, B)A2B3' B)B2A3' C)A2C3, and C)C2A3) result in either both A and B 
winning the game or both A and C winning the game. So he argues the 
net number of favorable combinations for A should be 13 + (6/2) = 16. 
Likewise, he changes the number of favorable combinations for Band 
C, finally reaching a division ratio of 16: st: st. But he correctly notes 
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TABLE 2. 

The possible combinations when A, B, and Care 1, 2, and 2 rounds short 
of winning the game, respectively. The check marks and XS indicate the 
combinations that Pascal incorrectly chose to correspond to A winning 

the game. However, the XS cannot be winning combinations for A 

because B(B2A3 results in B winning and C(C2A3 results in C winning 

A(A2A3./ B(A2A3./ C(A2A3./ 
A(A2B3./ B(A2B3./ C(A2B3./ 

A(A2C3./ B(A2C3./ C(A2C3./ 

A(B2A3./ B(B2A3X C(B2A3./ 

A(B2B3./ B(B2B3 C(B2B3 

A(B2C3./ B(B2C3 C(B2C3 

A(C2A3./ B(C2A3./ C(C2A3X 
A(C2B3./ B(C2B3 C(C2B3 

A(C2C3./ B(C2C3 C(C2C3 

that the answer cannot be right, for his own recursive method gives the 
correct ratio of 17:5:5. Thus, Pascal at first wrongly believed Fermat's 
method of enumeration was not generalizable to more than two players. 
Fermat was quick to point out the error in Pascal's reasoning. In his let
ter dated September 25, 1654, Fermat explains (Smith 1929, p. 562), 

In taking the example of the three gamblers of whom the first 
lacks one point, and each of the others lack two, which is the case 
in which you oppose, I find here only 17 combinations for the 
first and 5 for each of the others; for when you say that the com
bination ace is good for the first, recollect that everything that is 
done after one of the players has won is worth nothing. But this 
combination having made the first win on the first die, what does 
it matter that the third gains two afterwards, since even when he 
gains thirty all this is superfluous? The consequence, as you have 
well called it "this fiction," of extending the game to a certain 
number of plays serves only to make the rule easy and (accord
ing to my opinion) to make all the chances equal; or better, more 
intelligibly to reduce all the fractions to the same denomination. 
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We next move to the renowned German mathematician and philoso
pher Gottfried Wilhelm Leibniz (1646-1716), who is usually remem
bered as the coinventor of differential calculus, with archrival Isaac 
Newton. However, he was also interested in probability and famously 
made a similar mistake of incorrectly enumerating sample points. When 
confronted with the question "With two dice, is a throw of twelve as 
likely as a throw of eleven?" Leibniz states in the Opera Omnia (Leibniz 
1768, p. 217), 

. . . for example, with two dice, it is equally likely to throw 
twelve points, than to throw eleven; because one or the other can 
be done in only one manner. 

Thus, Leibniz believed the two throws to be equally likely, arguing 
that in each case the throw could be obtained in a single way. Although 
it is true that a throw of 11 can be realized only with a five and a six, 
there are two ways in which it could happen: the first die could be a five 
and the second a six, or vice versa. On the other hand, a throw of 12 
can be realized in only one way: a six on each die. Thus the first prob
ability is twice the second. Commenting on Leibniz's error, Todhunter 
states (Todhunter 1865, p. 48), 

Leibniz however furnishes an example of the liability to error 
which seems peculiarly characteristic of our subject. 

Nonetheless, this should not in any way undermine some of the con
tributions Leibniz made to probability theory. For one thing, he was 
one of the very first to give an explicit definition of classical probability, 
except phrased in terms of an expectation (Leibniz 1969, p. 161), 

If a situation can lead to different advantageous results ruling out 
each other, the estimation of the expectation will be the sum of 
the possible advantages for the set of all these results, divided into 
the total number of results. 

In spite of being conversant with the classical definition, Leibniz 
was interested in establishing a logical theory for different degrees of 
certainty. He may rightly be regarded as a precursor to later devel
opments in the logical foundations of probability by Keynes, Jeffreys, 
Carnap, and others. Since Jacob Bernoulli had similar interests, Leib
niz started a communication with him in 1703. He undoubtedly had 
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some influence in Bernoulli's Ars Conjectandi (Bernoulli 1713). When 
Bernoulli communicated to Leibniz about his law of large numbers, the 
latter reacted critically. As Schneider explains (2005, p. 90), 

Leibniz's main criticisms were that the probability of contingent 
events, which he identified with dependence on infinitely many 
conditions, could Qot be determined by a finite number of ob
servations and that the appearance of new circumstances could 
change the probability of an event. Bernoulli agreed that only a 
finite number of trials can be undertaken; but he differed from 
Leibniz in being convinced by the urn model that a reasonably 
great number of trials yielded estimates of the sought-after prob
abilities that were sufficient for all practical purposes. 

Thus, in spite of Leibniz's criticism, Bernoulli was convinced of the 
authenticity of his theorem. This situation is fortunate because Ber
noulli's law was nothing less than a watershed moment in the history 
of probability. 

A few years after Leibniz's death, Jean Ie Rond d'Alembert (1717-
1783), who was one of the foremost intellectuals of his times, infamously 
considered the following problem: "In two tosses of a fair coin, what is 
the probability that heads will appear at least once?" For this problem, 
d'Alembert denied that 3/4 could be the correct answer. He reasoned as 
follows: once a head occurs, there is no need for a second throw; the pos
sible outcomes are thus H, T H, T T, and the required probability is 2/3. 
Of course, d'Alembert's reasoning is wrong because he failed to realize 
that each of H, T H, T T is not equally likely. The erroneous answer was 
even included in his article Croix ou Pile ls of the Encyclopedie (d'Alembert 
1754, Vol. IV, pp. 512-513). Bertrand (1889, pp. ix-x) did not mince his 
words about d'Alembert's various faux pas in the games of chance: 

When it comes to the calculus of probability, D'Alembert's astute 
mind slips completely. 

Similarly, in his History if Statistics, Karl Pearson writes (Pearson 
1978, p. 535), 

What then did D'Alembert contribute to our subject? I think the 
answer to that question must be that he contributed absolutely 

nothino· 
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In spite of Bertrand's and Pearson's somewhat harsh words, it would 
be misleading for us to think that d' Alembert, a man of immense math
ematical prowess, was so naive that he would have no strong basis for 
his probabilistic reasoning. In the Croix ou Pile article, a sample space of 
{H H, H T, T H, T T} made no sense to d'Alembert because it did not 
correspond to reality. In real life, no person would ever observe H H, 
because once an initial H was observed the game would end. By propos
ing an alternative model for the calculus of probabilities, namely that 
of equiprobability on observable events, d'Alembert was effectively ask
ing why his model could not be right, given the absence of an existing 
theoretical framework for the calculus of probabilities. D'Alembert's 
skepticism was partly responsible for later mathematicians seeking a 
solid theoretical foundation for probability, culminating in its axiomat
ization by Kolmogorov (1933). 

4. Confusion Reoardino the Use 

of Statistical Independence 

D' Alembert also famously considered the following problem: "When a 
fair coin is tossed, given that heads have occurred three times in a row, 
what is the probability that the next toss is a tail?" When presented with 
the problem, d'Alembert insisted that the probability of a tail must "ob
viously" be greater than 112,16 thus rejecting the concept of indepen
dence between the tosses. The claim was made in d'Alembert's Opuscules 

Matbematiques (d'Alembert 1761, pp. 13-14). In his own words, 

Let's look at other examples which I promised in the previous Ar
ticle, which show the lack of exactitude in the ordinary calculus 
ofprobabilities. 

In this calculus, by combining all possible events, we make two 
assumptions which can, it seems to me, be contested. The first of 
these assumptions is that, if an event has occurred several times 
successively, for example, ifin the game of heads and tails, heads 
has occurred three times in a row, it is equally likely that head 
or tail will occur on the fourth time? However I ask if this as
sumption is really true, and if the number of times that heads has 
already successively occurred by the hypothesis, does not make it 
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more likely the occurrence of tails on the fourth time? Because 
after all it is not possible, it is even physically impossible that tails 
never occurs. Therefore the more heads occurs successively, the 
more it is likely tail will occur the next time. If this is the case, as 
it seems to me one will not disagree, the rule of combination of 
possible events is thus still deficient in this respect. 

D'Alembert states that it is physically impossible for tails never to 
occur in a long series of tosses of a coin, and thus used his concepts 
of physical and metaphysical probabilitiesl7 to support his erroneous 
argument. 

D'Alembert's remarks need some clarification because the miscon
ceptions are still widely believed. Consider the following two sequences 
when a fair coin is tossed four times: 

sequence 1 : H H H H 
sequence 2: H H HT 

Many would believe that the first sequence is less likely than the second 
one. After all, it seems highly improbable to obtain four heads in a row. 
However, it is equally unlikely to obtain the second sequence in that 
specific order. Although it is less likely to obtain four heads than to obtain 
a total of three heads and one tail,18 H H H T is as likely as any other of 
the same length, even if it contains all heads or all tails. 

A more subtle "mistake" concerning the issue of independence was 
made by Laplace. Pierre-Simon Laplace (1749-1827) was a real giant 
in mathematics. His works on inverse probability were fundamental in 
bringing the Bayesian paradigm to the forefront of the calculus of prob
ability and of statistical inference. Hogben says (1957, p. 133), 

The fons et irino of inverse probability is Laplace. For good or ill, the 
ideas commonly identified with the name of Bayes are largely his. 

Indeed, the form of Bayes' theorem as it usually appears in textbooks, 
namely 

(6) 

is due to Laplace. In Equation (6), AI' A2 , ••• , An is a sequence ofmutu
ally exclusive and exhaustive events, Pr{Aj}is the prior probability of Ai' 
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and Pr{Aj IB} is the posterior probability of Aj given B. The continuous 
version of Equation (6) can be written as 

f(9IX) = !(x 19)f(9) 

loof(X 19)f(9)d9 

wheref(9) is the prior density of9,f(xI9) is the likelihood of the data 
x, andf(9Ix) is the posterior density of9. 

Before commenting on a specific example of Laplace's work on in
verse probability, let us recall that it is with him that the classical defi
nition of probability is usually associated, for he was the first to have 
given it in its clearest terms. Indeed, Laplace's classical definition of 
probability is the one that is still used today. In his very first paper on 
probability, Memoire sur les suites recurro-recurrentes et sur leurs usa8es dans 
la tbeorie des hasards (Laplace 1774b), Laplace writes, 

... if each case is equally probable, the probability of the event is 
equal to the number of favorable cases divided by the number of 
all possible cases. 

This definition was repeated both in Laplace's Theorie Ana!Jtique and 
Essai Philosophique (1814). 

The rule in Equation (6) was first enunciated by Laplace in his 1774 
Memoire de la Probabilite des Causes par les Evenements (Laplace 1774a). This 
is how Laplace phrases it: 

If an event can be p~oduced by a number n of different causes, the 
probabilities of the existence of these causes, calculated from the 
event, are to each other as the .probabilities of the event, calcu
lated from the causes; and the probability of each cause is equal to 
the probability of the event, calculated from that cause, divided 
by the sum of all the probabilities of the event, calculated from 
each of the causes. 

It is very likely that Laplace was unaware of Bayes' previous work on 
inverse probability (Bayes 1764) when he enunciated the rule in 1774. 
However, the 1778 volume of the Histoire de l'Academie R.oyale des Sciences, 
which appeared in 1781, contains an interesting summary by the Marquis 
de Condorcet19 (1743-1794) of Laplace's article Sur les Probabilites, which 
also appeared in that volume (Laplace 1781). Although Laplace's article 
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itself makes mention of neither Bayes nor Price,20 Condorcet's summary 
explicitly acknowledges the two Englishmen21 (Laplace 1781, p. 43): 

These questions [on inverse probability] about which it seems 
that Messrs. Bernoulli and Moivre had thought, have been since 
then examined by Messrs. Bayes and Price; but they have limited 
themselves to exposing the principles that can be used to solve 
them. M. de Laplace has expanded on them ... 

Coming back to the 1774 paper, after having enunciated his prin
ciple on inverse probability, Laplace is famous for discussing the follow
ing problem: "A box contains a large number of black and white balls. 
We sample n balls with replacement, of which b turn out to be black 
and n - b turn out to be white. What is the conditional probability that 
the next ball drawn will be black?" Laplace's solution to this problem 
essentially boils down to the following, in modern notation. Let Xn be 
the number of black balls out of the sample of size n, and let the prob
ability that a ball is black be p. Also, let B*be the event that the next ball 
is black. From Bayes' theorem, we have 

}( Ix =b) = Pr{Xn = blp}J(p) 
P n Pr{Xn = b} 

_ Pr {Xn = b Ip}J(p) 

- [lpr{Xn=blp}J(p)dp 

Then the required probability is 

Pr{B*IXn= b} = [I Pr{B*lp,Xn= b}f(pIXn= b)dp 

[I p.Pr{Xn = blp}J(p)dp 

= [I Pr {Xn = b I p}f(p)dp 

In the above, it is assumed that Pr{B* I p, Xn = b} = p, that is, each 
ball is drawn independently of the other. Laplace also assumes that p is 
uniform in [0,1], so that 
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In particular, if all of the n balls turn out to be black, then the probabil
ity that the next ball is also black is (n + 1)/(n + 2). The above problem 
has been much discussed in the literature and is known as Laplace's 
rule of succession. 22 Using the rule of succession, Laplace considered 
the following question: "Given that the sun has risen every day for the 
past 5,000 years, what is the probability that it will rise tomorrow?" 
Substituting n = 5,000 X 365.2426 = 1,826,213 in the above formula, 
Laplace obtained the probability 1,826,214/1,826,215 (0.9999994). 
Thus, in his Essai Philosophique sur les Probabilitei3 (1814) English edition, 
p. 19, Laplace says, 

Thus we find that an event having occurred successively any num
ber of times, the probability that it will happen again the next 
time is equal to this number increased by unity divided by the 
same number, increased by two units. Placing the most ancient 
epoch of history at five thousand years ago, or at 1,826,213 days, 
and the sun having risen constantly in the interval at each revolu
tion of 24 hours, it is a bet of 1,826,214 to one that it will rise 
again tomorrow. 

Laplace's calculatio~ was meant to be an answer to Hume's prob
lem if'induction. Fifteen years before the publication of Bayes' Essay, 
the eminent Scottish philosopher David Hume (1711-1776) wrote 
his groundbreaking book An Enquiry Concern inn Human Understandinn 
(Hume 1748). In this work, Hume formulated his famous problem if 
induction, which we now explain. Suppose out of a large number n of 
occurrences of an event A, an event B occurs m times. Based on these 
observations, an inductive inference would lead us to believe that ap
proximately min of all events of type A is also of type B, that is, the 
probability of B given A is approximately min. Hume's problem of in
duction states that such an inference has no rational justification but 
arises only as a consequence of custom and habit. Earlier in his book, 
Hume gave the famous "rise-of-the sun" example, which was meant 
to illustrate the shaky ground on which "matters of fact" or inductive 
reasoning rested (Hume 1748): 

Matters of fact, which are the second objects of human reason, 
are not ascertained in the same manner; nor is our evidence of 
their truth, however great, of a like nature with the foregoing. 
The contrary of every matter of fact is still possible; because it can 
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never imply a contradiction, and is conceived by the mind with 
the same facility and distinctness, as if ever so conformable to 
reality. That the sun will not rise to-morrow is no less intelligible 
a proposition, and implies no more contradiction, than the affir
mation, that it will rise. We should in vain, therefore, attempt to 
demonstrate its falsehood. Were it demonstratively false, it would 
imply a contradiction, and could never be distinctly conceived by 
the mind. 

Laplace thus thought that his calculations provided a possible solu
tion to Hume's problem of induction. However, Laplace, who so often 
has been called France's Newton, was harshly criticized for his calcula
tions. Zabell says (2005, p. 47), 

Laplace has perhaps received more ridicule for this statement than 
for any other. 

Somehow, Laplace must have felt that there was something amiss 
with his calculations. For his very next sentence reads, 

But this number is incomparably greater for him who, recogniz
ing in the totality of phenomena the principal regulator of days 
and seasons, sees that nothing at the present moment can arrest 
the course of it. 

Laplace here seems to warn the reader that his method is correct 
when based only on the information from the sample, but his state
ment is too timid. To understand the criticism leveled against Laplace's 
calculation, consider the following example given by the Austro
British philosopher Karl Popper (1902-1994) (Popper 1957; Gillies 
2000, p. 73): Suppose that the sun rises for 1,826,213 days (5,000 
years), but then suddenly the Earth stops rotating on day 1,826,214. 
Then, for parts of the globe (say Part A), the sun does not rise on that 
day, whereas for other parts (say Part B), the sun will appear fixed 
in the sky. What then is the probability that the sun will rise again 
in Part A of the globe? Applying the generalized form of the rule of 
succession with n = 1,826,214 and B = 1,826,213 gives a probability 
of 0.9999989, which is almost as high as the original probability of 
0.9999994! The answer is preposterous since it does not give enough 
weight to the recent failure. 
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The rule of succession is perfectly valid as long as the assumptions it 
makes are all tenable. Applying the rule of succession to the rising of 
the sun, however, should be viewed with skepticism for several reasons 
(see, e.g., Schay 2007, p. 65). A major criticism lies in the assumption 
of independence. Moreover, it is also dubious that the rising of the sun 
on a given day can be considered a random event at all. Finally, the solu
tion relies on the principle of indifference: The probability of the sun 
rising is equally likely to take any of the values in [0,1] because there is 
no reason to favor any particular value for the probability. To many, this 
is not a reasonable assumption. 

5. Conclusion 

We have outlined some of the more well-known errors that were made 
during the early development of the theory of probability. The solution 
to the problems we considered would seem quite elementary nowa
days. It must be borne in mind, however, that in the times of those 
considered here and even afterwards, notions about probability, sample 
spaces, and sample points were quite abstruse. It took a while before 
the proper notion of a mathematical model was developed, and a proper 
axiomatic model of probability was developed only as late as 1933 by 
Kolmogorov (1933). Perhaps, then, the personalities and their errors 
discussed in this article should not be judged too harshly. 

Notes 

1. The Book on Games tf Chance. An English translation of the book and a thorough analysis 
of Cardano's connections with games of chance can be found in Ore's Cardona: The Gambling 
Scholar (Ore 1953). More bibliographie details can be found in Gliozzi (1980, pp. 64-67) and 
Scardovi (2004, pp. 754-758). 

2. The correct answer is four and can be obtained by solving for the smallest N integer 
such that 1 - (5/6)" = 1/2. 

3. Cardano frequently uses the term "equality" in the Liber to denote half of the total 
number of sample points in the sample space. See Ore (1953, p. 149). 

4. Real name Antoine Gombaud. Leibniz describes the Chevalier de Mere as "a man of 
penetrating mind who was both a player and a philosopher" (Leibniz 1896, p. 539). Pascal 
biographer Tulloch also notes (1878, p. 66): "Among the men whom Pascal evidently met at 
the hotel of the Due de Roannez [Pascal's younger friend], and with whom he formed some
thing of a friendship, was the well-known Chevalier de Mere, whom we know best as a tutor 
of Madame de Maintenon, and whose graceful but flippant letters still survive as a picture 
of the time. He was a gambler and libertine, yet with some tincture of science and professed 
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interest in its progress." Pascal himself was less flattering. In a letter to Fermat, Pascal says 
(Smith 1929, p. 552): " ... he [de Mere) has ability but he is not a geometer (which is, as you 
know, a great defect) and he does not even comprehend that a mathematical line is infinitely 
divisible and he is firmly convinced that it is composed of a finite number of points. I have 
never been able to get him out of it. If you could do so, it would make him perfect." The book 
by Chamaillard (1921) is completely devoted to the Chevalier de Mere. 

5. Ore (1960) believes that the difference in the probabilities for 24 and 25 throws is so 
small that it is unlikely that de Mere could have detected this difference through observations. 

6. Of the several books that have been written on Pascal, the biographies by Groothuis 
(2003) and Hammond (2003) are good introductions to his life and works. 

7. Carcavi had been an old friend of Pascal's father and was very close to Pascal. 
8. Fermat is today mostly remembered for the so-called "Fermat's Last Theorem," which 

he conjectured in 1637 and which was not proved until 1995 by Andrew Wiles (1995). The 
theorem states that no three positive integers a, b, c can satisfy the equation a" + b" = c" for any 
integer n greater than 2. A good introduction to Fermat's Last Theorem can be found in Aczel 
(1996). The book by Mahoney (1994) is an excellent biography of Fermat, whose probability 
work appears on pp. 402-410 of the book. 

9. For example, if we apply de Moivre's Gambling Rule to the one-die problem, we obtain 
x= 0.693/(1/6) = 4.158 so that C = 5. This answer cannot be correct because we showed in 
the solution that we need only four tosses. 

10. The Problem of Points is also discussed by Todhunter (1865, Chap. II), Hald (2003, 
pp. 56-63), Petkovic (2009, pp. 212-214), Paolella (2006, pp. 97- 99), Montucla (1802, 
pp. 383-390), Marques de Sa (2007, pp. 61-62), Kaplan and Kaplan (2006, pp. 25-30), and 
Isaac (1995, p. 55). 

II. For a full discussion of the Problem of Points before Pascal, see Coumet (1965). 
12. Everything about Arithmetic, Geometry, and Proportion. 
13. The correct division ratio for A and B here is approximately 53:47. 
14. The general formula is: Maximum number of remaining rounds = (sum of the num-

ber ofrounds each player is short of winning) - (number of players - I). 
15. Heads or Tails. 
16. The correct answer is, of course, 1/2. 
17. According to d'Alembert, an event is metaphysically possible if its probability is 

greater than zero and is physically possible if it is not so rare that its probability is very close 
to zero. 

18. Remember that the specific sequence H H H Tis one offour possible ways of obtaining 
a total of three heads and one tail. 

19. Condorcet was assistant secretary in the Academie des Sciences and was in charge of 
editing Laplace's papers for the transactions of the academy. 

20. Upon Bayes' death, his friend Richard Price (1723-1791) decided to publish some of 
his papers with the Royal Society. Bayes' Essay (1764) was augmented by an introduction and 
an appendix written by Price. 

21. Laplace's acknowledgment of Bayes appears in his Essai Philosophique (Laplace 1814) 
English edition, p. 189. 

22. Laplace's rule of succession is also discussed by Pitman (1993, p. 421), Sarkar and Pfeifer 
(2006, p. 47), Pearson (1900, pp. 140-150), Zabell (2005,Chap. 2), Jackman (2009, p. 57), 
Keynes (1921, p. 376), Chatterjee (2003, pp. 216-218), Good (1983, p. 67), Gelman et al. (2003, 
p. 36), Blom et al. (1994, p. 58), Isaac (1995, p. 36), and Chung and AitSahlia (2003, p. 129). 

23. Philosophical Essay on Probabilities. 
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