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In one of his “Monday Chats” in 1850, Charles-
Augustin Sainte-Beuve wrote, “The idea of a classic
contains in itself something that has a consequence
and consistency, that produces cohesion and
tradition, that forms itself, that transmits itself
and that endures.” While it is perhaps too soon
to say whether each of the problems Gorroochurn
discusses could be described as a monumentum
ære perennius, there is no doubt that some of the
older ones have displayed the desired quality of
endurance, and a number have led to later ones
and may even be seen as precursors of modern
research topics.

This book, the author notes, “is targeted primar-
ily to readers who have had at least a basic course
in probability. Readers in the history of probability
might also find it useful” (p. ix).1 Gorroochurn
urges the reader not to focus on the problems and
their solutions to the neglect of the discussions,
and indeed I, for one, found these discussions
the most useful and absorbing parts of the text.
Some problems certainly require a more advanced
knowledge than that to be gained in a basic
course in probability for their full understanding
and development (e.g., Borel’s paradox and Jacob
Bernoulli’s Law of Large Numbers), but this in no
way detracts from one’s enjoyment of the text as a
whole.
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Many of the problems discussed here are well
known, and the student of probability either will
have been or certainly should be exposed to them.
They are arranged in time order, ranging from one
in Cardano’s Liber de ludo aleæ (1539/1663) to
Parrondo’s game-theoretic paradox of 1996. We
find here well-known curiosities (and sometimes
perplexities) such as the de Méré paradoxes,
Buffon’s needle problem, Bertrand’s chords, and
birthday coincidences, and also those less well
known in general, such as Montmort’s matches
problem, a question posed by Samuel Pepys to
Isaac Newton, Newcomb’s problem, and Simpson’s
paradox.

Some of the problems discussed here are
described as “paradoxes”. The more one thinks
about this word, however, the less clear one
becomes about its meaning. What exactly is a
paradox? Székely [16, p. xii] says “It is important
to distinguish paradoxes from fallacies. The first
one is a true though surprising theorem while
the second one is a false result obtained by
reasoning that seems correct.” Quoting one Phillips
(probably Sir Richard Phillips, 1767–1840), de
Morgan [5, vol. I, p. 3] finds added to the notion
of strangeness the notion of absurdity, and he
points out that a paradox is “contrary to common
opinion.” And if the touch of absurdity is to
be preserved, then we must be grateful to the
Oxford English Dictionary for advising us that, in
the early nineteenth century, “paradox” was an
alternative name for Ornithorhynchus anatinus,
the duck-billed platypus.

De Morgan [5, vol. I, p. 31] can perhaps be seen
as having anticipated Székely by writing:

The counterpart of paradox, the isolated
opinion of one or of few, is the general
opinion held by all the rest; and the coun-
terpart of false and absurd paradox is what
is called the “vulgar error”, the pseudodox.

The masterpiece on this last-mentioned topic
is, of course, Sir Thomas Browne’s Pseudodoxia
Epidemica, first published in 1646.
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Crudely speaking, one may classify the solutions
of the problems discussed by Gorroochurn as the
orthodox, the heterodox, and the paradox (using
the latter word here as an obsolete adjective), for
we have problems such as Cardano’s (a simple one
involving dice tossing and indisputable reasoning),
d’Alembert’s coin tossing problem (whose solution
hinges heavily, I believe, on the acceptance of
an appropriate, if unusual, sample space), and
Simpson’s paradox (in which, for example, a
positive association between treatment and survival
among men and among women may, somewhat
surprisingly, be reversed or disappear altogether
when the populations are combined).

Let’s look at a few of Gorroochurn’s problems.
De Méré’s (first) problem is stated by Gor-

roochurn (p. 13) as follows:

When a die is thrown four times, the
probability of obtaining at least one six
is a little more than 1/2. However, when
two dice are thrown 24 times, the prob-
ability of getting at least one double-six
is a little less than 1/2. Why are the
two probabilities not the same, given the
fact that Pr[double-six for a pair of dice] =
1/36 = 1/6 · Pr[a six for a single die], and
you compensate for the factor of 1/6 by
throwing 6 · 4 = 24 times when using two
dice?

The phrase “at least one” is used by many English
authors who discuss this problem (e.g., Feller [8]).
However, the original version, given in David [4,
p. 137], runs as follows (my translation):

If one undertakes to throw a six with one
die, there is an advantage in undertaking
to do it in 4 throws, as 671 to 625. If one
undertakes to throw double-six with two
dice there is a disadvantage in undertaking
to do it in 24 throws.

The problem was later discussed by Christiaan
Huygens in Propositions X and XI of his De
ratiociniis in ludo aleæ of 1657 (an annotated
reprint of this book was given by Jacob Bernoulli in
his Ars Conjectandi of 1713). These propositions
are translated by Arbuthnot [1, vol. II, pp. 273–274]
as follows:

To find at how many Times one may
undertake to throw 6 with one Die …To find
out how many Times one may undertake to
throw 12 with two Dice.

Note that Arbuthnot gives, in the case of both four
and five throws, the odds on a six as 671 against
625.

The question is then whether the original
should be interpreted in the sense of “at least one”.
Independent of the formulation of the question,
however, in all cases the solution to the second

part of this problem is that he who undertakes to
do it in 24 throws lacks an even chance of winning,
while he who undertakes to do it in 25 throws has
a better than even chance of winning.

In November 1693 Samuel Pepys asked Newton
for help with the following problem:

A—has 6 dyes in a box with which he is to
fling a 6
B—has in another box 12 dyes with which
he is to fling 2 sixes
C—has in another box 18 dyes with which
he is to fling 3 sixes.
Q—Whether B and C have not as easy a
taske as A at even luck?

Chaundy and Bullard [3] note that Pepys had
been asked to solve this problem by John Smith,
writing master of Christ’s Hospital in London,
an institution of which Pepys was a governor.
It has been suggested that Smith’s interest was
perhaps not altogether academic, since he was
later dismissed from his post on being found to
have charged the boys for the use of pens and
paper.

Gorroochurn takes care to note that, while Pepys
originally posed the problem in terms of an exact
number of sixes, Newton pointed out that “in
reading the Question it seemed to me at first to be
ill stated,” and he therefore changed it to “at least
one six.” It is interesting to note that a variation
on this old problem has recently been applied
to size-estimation problems (see Varagnolo et al.
[17]).

In Bertrand [2, p. 2] we find the following problem
(stated slightly differently by Gorroochurn):

Three chests, identical in appearance, each
have two drawers, each drawer containing
one coin [médaille]. The coins in the first
chest are gold, those in the second are
silver, while the third chest has one gold
and one silver. One chest is chosen. What
is the probability that it contains one gold
coin and one silver coin in its drawers?

Note that Bertrand does not say, as Gorroochurn
does, that the chest is chosen at random, though
that this is so emerges from the subsequent
discussion (the answer is clearly 1/3). Then a
drawer in the selected chest is chosen (again, it
transpires, at random) and opened. It might be
argued, suggests Bertrand, that no matter what
coin is revealed, there are only two possible cases:
the closed drawer contains either a coin of the
same metal as the one displayed or a different one.
Of these two cases only one is favorable to the
event that the chest has different coins, and thus
the probability that one has chosen the chest with
different coins is 1/2.
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Such an argument, Bertrand notes, although it
may appear correct, is in fact false: the two possible
cases after the chosen drawer has been opened
are not equally probable. Using Bayes’s Theorem
(Problem 14 in Gorroochurn), any first-year student
should be able to solve this problem. What is
interesting, though, as Gorroochurn notes, is its
connection to the Prisoner’s Problem and the now
notorious Monty Hall problem.

Simpson’s paradox, Senn [15] has noted, is
closely connected with the Will Rogers phenome-
non. (Will Rogers was an American humorist who
suggested during the depression of the 1930s
that “When the Okies left Oklahoma and went to
California, they raised the average intelligence level
of both states.”) This was perhaps first described
in the 1980s by Feinstein et al. who found survival
improvement stage by stage in different groups
of cancer patients but no evidence of overall
improvement.

A basic principle of rational behavior is the
sure-thing principle, stated by Savage [14, p. 21]
as follows:

If the person would not prefer f to g,
either knowing that the event B obtained, or
knowing that the event ∼B obtained, then
he does not prefer f to g

(here f and g are possible acts). Put otherwise, the
sure-thing principle says that one’s preferences
should not be affected by outcomes that occur
regardless of which actions are taken (i.e., that are
“sure-things”) or that elements common to any pair
of outcomes may be ignored. Simpson’s paradox,
like the intransitivity of some preference orderings
in matters of social choice, violates this principle.

Finally, let us have a look at Parrondo’s paradox,
the solution of which requires some knowledge
of game theory and Markov chains. The idea here
is that two losing games can produce a winning
expectation when they are played in an alternating
sequence. Harmer and Abbott [9] have suggested
that such games may have important applications
in sociology, physics, genetics, and biology. Com-
menting on the counterintuitive nature of this
paradox, Gorroochurn writes (p. 273), “by ran-
domly playing two losing games, the player comes
out a winner!” But before one gets too excited
about this, one must remember that the idea of a
“fair game” is known to be correctly formulated in
terms of a martingale, where the “impossibility of
gambling systems” holds (see Feller [8]).

It must be almost impossible to write a book
with the wealth of detail that Gorroochurn has
provided without a few slips. I mention two here:
the first is in connection with the photograph of
Adrien-Marie Legendre on page 98. This is now
known to be of the French politician Louis Legendre,

not the mathematician [6]. The second and more
serious problem is on page 133. Here the myth is
perpetuated that the person depicted is Thomas
Bayes. The attribution apparently first occurred in
Terence O’Donnell’s book [12]; for remarks casting
grave doubt on O’Donnell’s attribution, see [10].

For those readers who already have copies of
the books by Mosteller [11], Székely [16], and
Whitworth [18] (any one of the many editions)
on their shelves, this book will form a useful
adjunct, perhaps particularly for the excellence of
its coverage of modern references. Those who do
not have easy access to these works will benefit
enormously from Classic Problems of Probability.
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