
Hypothesis/Commentary

Perils in the Use of Linkage Disequilibrium for Fine Gene
Mapping: Simple Insights from Population Genetics

Prakash Gorroochurn

Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York

Abstract

It is generally believed that genome-wide association
(GWA) studies stand a good chance for finding
susceptibility genes for common complex diseases.
Although the results thus far have been somewhat
promising, there are still many inherent difficulties
and many initial associations do not get replicated.
The common strategy in GWA studies has been that
of selecting the most statistically significant single
nucleotide polymorphisms with the hope that these
will be very physically close to causal variants
because of strong linkage disequilibrium (LD). Using
simple ideas from population genetics, this commen-

tary explains why this strategy can be misleading. It
argues that there is an intrinsic problem in the way
LD is currently used for fine-mapping. This is
because most of the metrics that are currently used
to measure LD are inadequate, as they do not take
into account evolutionary variables that shape the LD
structure of the human genome. Recent research on
another metric, based on Malécot’s model for isola-
tion by distance, holds considerable promise for
GWA studies and merits more serious consideration
by geneticists. (Cancer Epidemiol Biomarkers Prev
2008;17(12):3292–7)

Introduction

Genome-wide association (GWA) studies are well under
way and, in their first couple of years, have identified
variants for several complex diseases, including at least
four types of cancer (1). This seems promising, although
it remains to be seen how many of these will be
consistently replicated in the future. Once a GWA study
is done, there are usually two types of subsequent
association studies (2): those aimed at replicating
the original significant markers (the so-called ‘‘exact’’
approach) and those aimed at fine-mapping other loci
in the surrounding region in addition to the original
significant loci (the so-called ‘‘local’’ approach). Both the
original GWA and any follow-up association study
depend crucially on the concept of linkage disequili-
brium (LD; also known as gametic disequilibrium, allelic
association, or two-locus Hardy-Weinberg disequili-
brium). It is unsurprising therefore that, well before
GWA studies were under way, a vital task was to
elucidate the LD structure of the human genome. This
structure could shed considerable light on the prospects
and limitations of LD mapping, especially for GWA.

The indiscriminate use of LD can, however, lead to
inaccurate results, especially when doing fine-mapping.
Association studies are usually criticized on design and
methodologic grounds (3-6) while underestimating the

difficulties inherent in the conventional use of LD. By
using simple population genetics ideas, this commentary
aims to enumerate specific instances where the results of
LD fine-mapping can be misinterpreted.

Of the several theoretical studies on LD, an important
simulation-based work is that of Kruglyak (7). Kruglyak
argued that LD between the common variant and other
markers was essentially short-ranged and was unlikely
to extend beyond a genetic distance of 3 kb. A more
recent study (8) found that LD could extend to genetic
distances of 1 Mb. Empirical studies have shown that LD
is highly ‘‘patchy’’ in nature and does not decrease
monotonically with physical distance. Chromosomes
tend to contain blocks of long-range LD (which is
different from Kruglyak’s predictions) separated by
small region of recombination hotspots (9-11). LD is
high within blocks but low between blocks.

Insights from Population Genetics

Insight 1: Population History Is a Key Determinant
of LD in Small DNA Regions and There Is Usually No
Correlation between LD and Physical Distance when
Doing Fine-Mapping. The cystic fibrosis gene was found
by climbing up a gradient until a peak was reached.
However, when the same principles are applied to the
Huntington’s disease (HD) gene, something unexpected
happens (see Fig. 1).

The HD gene shows weak LD to some physically close
markers (e.g., D4S180) but strong LD to a more
physically distant marker (D4S98). Thus, if both markers
were tested for association with disease, one (D4S98)
would show strong association through LD with the HD
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gene, whereas the other (D4S180) would show weak
association. This could mislead many to believe that the
HD gene was physically much closer to the D4S98 locus
than to the D4S180 locus when in fact the opposite is true.

Is such erratic LD behavior surprising? Not when
looked from a population genetics perspective. Indeed,
the noncorrelation between LD and physical distance is
the norm rather than the exception when dealing with
small DNA regions (e.g., <100 kb; ref. 12). To understand
why, consider the simple equation for LD:

Dt ¼ D0ð1� �Þt; ð1Þ
where Dt is the LD after t generations, D0 is the initial
LD, and u is the recombination fraction. (Dt is actually
the deviation at generation t from random association of
two-locus haplotype frequencies.) When u is small (e.g.,
u < 10�3), Dt � D0, the value of LD is primarily
determined by its initial value (which is a function of
haplotype and allele frequencies) and does not decay
with either physical distance or time. Different markers
at various short distances from a given markers will have
different values of D0 depending on the evolutionary
history of the population.

For example, consider three biallelic loci A, B, and C
across a small DNA region (e.g., <100 kb), with B closer
than C to A (see Fig. 2). Suppose A has both A and a
alleles, but B and C have homozygotes B/B and C/C ,
respectively. We shall consider the normalized LD
measure D ¶ (which equals D divided by its theoretical
maximum value), because it is more indicative of the
relative strength of LD. Because there is no allelic
variation at B and C, D ¶ = 0 for alleles at A and B and
for alleles at A and C. Suppose now an initial LD is
created between alleles A and B through gene flow from
several founders carrying copies of b . At about the same
time in the past, an initial LD is created between alleles A
and C through a single mutation of a C allele to c . Now,
several copies of b are introduced with some on the same
chromosome as A and others on the same chromosome
as a , whereas the single copy of c will always be
associated with A (or a depending on which chromo-
some the mutation occurred). Therefore, the initial LD
D0¶ will be larger in magnitude for AC than for AB ,
although locus C is further away from A than B is. Thus,
in general, Dt ¶ is no indicator of the relative proximity of
a locus. When doing fine-mapping in small DNA
regions, there is usually no correlation between the
magnitude of LD and physical distance (or recombina-
tion fraction): the fact that a particular marker has a very
high disease association does not guarantee it must be
physically close to the causative locus. Strachan and
Read (ref. 13, p. 448) provide an accurate description of
the issue at hand: ‘‘. . .the patchy nature of LD, with some
long-range correlations coexisting with short-range lack
of correlation means that despite the theoretical high
resolution of association studies, in reality one can
seldom be confident that one is looking in exactly the
right place for the susceptibility determinant.’’

Even for moderate to large DNA regions (f1-10 Mb),
the use of Dt (or Dt ¶) can still be problematic. In that
case, the value of u in Eq. (1) is no longer inconsequen-
tial, and both D0 and (1 - u)t influence the value of Dt . A
locus L relatively far from a given locus could give a

large value of Dt (or Dt ¶) if mutant alleles at L originated
very recently back in time or if L is located in a
recombination cold spot (14). Another locus could be
relatively close to the given locus and result in small
values of Dt (or Dt ¶).

Insight 2: Genetic Drift Generates LD between
Disease and Marker Alleles in a Random Fashion, so
a Particular Disease-Marker Association Found in One
Population Need Not Exist in Another Population or
Might Even Be in the Opposite Direction. Templeton
(12) provides an example for two linked loci. Both the
human populations living in southern Italy west of the
Apennine mountain range and on the nearby island of
Sardinia were formed from a founder effect. In the Italian
population, all Med1 G6PD-deficient males had red/
green color blindness, whereas in the Sardinian popula-
tion almost none of the Med1 G6PD-deficient males had
red/green color blindness. Thus, in both cases, Med1
G6PD-deficient males are strongly associated with red/
green color blindness but in complete opposite direc-
tions. Furthermore, if we had selected cases with red/
green color blindness by sampling from both Italian and
Sardinian populations, it is very likely that no association
whatsoever would be found.

All of this makes sense because populations with small
effective sizes undergo extensive amounts of genetic drift.
Genetic drift is the random fluctuation of allele frequen-
cies across generations because of finite population size.
Let the mutant allele at the G6PD locus be denoted by a
and the allele for color blindness by b , with both alleles
having relatively small frequencies. Let the wild-type
alleles at each locus be A and B , respectively. Now, for
these two loci, we have four haplotypes, with frequencies
even smaller than those of the corresponding alleles. The
combination of small effective population size and rare
haplotypes means that each one is subject to considerable
random fluctuation, so that any one of them could
increase in frequency. In our example, the frequency of
the ab haplotype increased in the Italian population,
whereas the frequency of the Ab haplotype increased in
the Sardinian population. Therefore, because genetic drift
is a stochastic phenomenon, it can create an association
between the alleles at a disease locus and a marker locus
in a completely random fashion. This explains the
completely opposite associations in the two cases.
Furthermore, when the two populations are pooled, the
LD between the alleles at the loci is destroyed because
now, in the total population, the b allele can occur on the
same chromosome as either an a or an A allele.

The haphazard effect of genetic drift on LD raises
questions on the legitimacy of replicating a significant
association found in one population in a different
population. Emphasis has often been placed on replicat-
ing initial disease-marker associations. However, if we
are willing to accept that LD is generally population-
specific, then failure to replicate using different popula-
tions should be no reason for alarm. Thus, if an initial
association is found in one population but no association
in a different population, then it is not necessary for the
first association to be a false-positive. Both results can be
equally valid because they are specific for the popula-
tions in which they were done. Whereas this point
about the specificity of LD has been well taken by some
(3, 15-17), it is perhaps not universally appreciated.
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Insight 3: The Act of Combining Two or More
Genetically Distinct Subpopulations Creates LD
between Any Two Alleles (at Different Loci) with
Different Allele Frequencies Even when the Loci Are
Unlinked. A well-known example is reported in
Knowler et al. (18), whereby a strong negative association
was found between non-insulin-dependent diabetes and
a haplotype at the IgG locus in the Pima and Papago
tribes. When the study was repeated by stratifying on
reported ancestry, the initial association vanished.

This a classic case of confounding by population
stratification, which arises when cases and controls are
sampled from genetically distinct subpopulations or
when they are sampled from a single population made
up of genetically distinct subgroups (19). In fact, genetic
drift is one of the major evolutionary forces that can
create differentiation among subpopulations. There have
been several recent methods to combat PS in association
studies (20-23), with the principal components method of
Price et al. (22) being especially suited for GWA studies.
PS gives rise to a spurious disease-marker association
even if a true causal gene never existed (even if the
disease was nongenetic). In the example above, the
association is an artifact of the controls having a higher
proportion of European ancestry than the cases. In
Gorroochurn et al. (24), we gave the necessary and
sufficient condition for such false disease-marker asso-
ciations (due to PS) to arise.

XK

i¼1

�idiri �
XK

i¼1

�idi
XK

i¼1

�iri ¼ 0; ð2Þ

where pi, di , and ri are, respectively, the relative
subpopulation size, the disease prevalence, and the allele
frequency (for any allele) in subpopulation i, and K is the
number of discrete subpopulations. From Eq. (2), consid-
er for example two subpopulations of the same size. PS
would cause the null hypothesis of no disease-marker
association to be always false, for any marker allele as
long its frequency is different in the two subpopulations,
and the disease prevalences are also different. There is no
necessity for a true causal gene to exist.

We can also consider the situation when a true causal
marker exists. Let M be any marker allele at a locus and
N be an unassociated disease allele at a different locus in

each of, say, two genetically distinct subpopulations. Let
the frequency of M in subpopulation i(i = 1,2) be ri and
that of N be Si , where r1 6¼ r2 and s1 6¼ s2. Then, when the
subpopulations are combined, LD is created between the
two alleles with variable (12)

Dcomb ¼ �ð1� �Þðr1 � r2Þðs1 � s2Þ; ð3Þ
where p is the size of subpopulation 1 relative to
subpopulation 2. Because of this (negative) disequili-
brium in our example, the cases will be overrepresented
in terms of the N allele, with the reverse being true in
the controls, thus implying a disease-marker association.
However, such an association provides no indication as
to the physical proximity of the true causal locus, which
could potentially be f100 Mb away or even on different
chromosomes.

The LD in Eq. (3) is an example of spurious LD,
because the disequilibrium created is not the result of
linkage (and physical proximity), but other population
artifacts, in this case gene flow between two genetically
distinct subpopulations. Indeed, when any of the con-
ditions (random mating, infinite population size, no
selection, no mutation, and no gene flow) necessary for
one-locus HWE to hold are violated, two-locus HWE is
also distorted and spurious LD can be created (unless the
LD is due to close physical proximity).

Insight 4: When Two or More Genetically Distinct
Subpopulations Are Admixed, Assortative Mating
Helps Maintain Spurious LD in the Total Population.
A typical example is the U.S. population. Early coloni-
zation of North America resulted in the admixture of
European and sub-Saharan African populations that had
allele frequency differences at numerous loci. Along with
admixture between these two subpopulations for centu-
ries, there also exists strong assortative mating based on
skin color (12). A key observation here is that, in spite of
the long history of admixture between these two
subpopulations, significant allele frequency differences
are maintained at several loci both for loci influencing
skin color and for other loci having no effect on skin
color.

This is because when genetically distinct populations
are combined, assortative mating ensures that initial
allelic differences are maintained for genes influencing
the genetic trait. Suppose allele A at locus L1 influences a
trait on which assortative mating occurs and suppose
allele B at locus L2 has no such influence. If alleles A and
B each initially had different frequencies in the African
and European subpopulations, Eq. (3) predicts that LD is
created between A and B . Because of this LD, assortative
mating on the trait influenced by A causes the differences
in B to be also maintained, although B has no effect on
the trait whatsoever. For example, the African and

Figure 1. HD locus (total DNA stretch is 2,500 kb). Adapted
from Krawczak and Schmidtke (47).

Figure 2. At locus A, alleles are both of the A and a types. At
locus B, all alleles are of the B type and several b alleles are
introduced by gene flow. At locus C, all alleles are of the C type
and a single C allele mutates to c .
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European populations are characterized by differences at
several blood group loci, although there is no tendency
for nonrandom mating to occur based on blood group.
The differences are due to initial differences being
maintained because of LD between blood group genes
and genes for skin color. The LD created between alleles
A and B above has little chance of being broken due to
assortative mating. This explains the potential for
extensive amounts of LD to be maintained in such a
population.

The interaction of admixture with assortative mating
adds further wrinkles to LD fine-mapping. The sustained
allele frequency differences at several loci, in spite of
generations of admixture, implies that a case-control
association study done from the total population could
be considerably prone to PS, thus leading to many false-
positives. Moreover, the extensive LD created because of
allele frequency differences is again a case of spurious
LD. We also note that, even for homogenous populations,
Redden and Allison (25) have shown that assortative
mating can lead to spurious associations.

LD Mapping Using Population Genetics Theory:
The Malécot’s Model

Various evolutionary forces can create strong LD
between alleles at loci that can be physically far away
from each other, and the use of such LD for fine gene
mapping can be misleading. Selecting a candidate
marker that is highly associated with a disease usually
implies that the disease marker is in strong LD with the
candidate marker, but this fact in itself gives no
indication as to the physical whereabouts of the disease
locus and even as to the latter’s very existence!

The problem arises because of our conceptualization of
the association (or LD) between alleles at two loci, that is,
as the correlation r between the alleles or a function of
the correlation. Almost all pairwise metrics (such as D,
D ¶, and r2) that are conventionally used to measure LD

are functions of r and vanish when r = 0. These metrics
do not explicitly take into account the various evolution-
ary forces that shape the current LD structure. Instead,
they are functions of only the current haplotype and
allele frequencies. Because they ignore population
history, these LD metrics are unable to capture the
extensive variations of the actual LD across the human
genome, making them prone to the very problems we
have outlined in Insights from Population Genetics. The
following concluding remarks from Lewontin (26) are
quite sobering: ‘‘. . .we may be able to find a measure of
association that is preserved under particular conditions,
but the search for a ‘pure’ measure of gametic disequili-
brium is doomed to failure.’’

However, Collins, Morton, and others (27-34) have
recently put forward a LD metric (known as the
association probability, qx) based on population genetics
theory, more specifically on Malécot’s model for isolation
by distance (35, 36):

�x ¼ ð1� LÞMe��x þ L ð4Þ

In the above, the variable L is spurious LD (any LD
that is not due to linkage), e (>0) is a constant for each
interval between two loci, x is the physical distance
between the two loci, andM is the association probability
at x = 0. Morton et al. (28) have shown that qx is the most
efficient for modeling LD as a function of distance
compared with other commonly used metrics. The
Malécot’s model has a major advantage in that it
incorporates the various evolutionary forces that shape
the LD structure in a particular population. More
specifically, the variable M depends on whether the
susceptibility gene has a monophyletic or polyphyletic
origin; it is equal to 1 if there is a unique susceptibility
gene (as in Mendelian diseases) and it is <1 otherwise
(as in complex diseases). The variable e is a function of
the number of generations for the equilibrium probabil-
ity in Eq. (4) to be achieved and of various evolutionary
forces such as mutation, selection, and recombination
(27). By using composite likelihoods (37), the Malécot’s
model is fitted to each marker of interest in a particular
DNA region. Each marker has its own e estimate, but
there are single values of L and M for the given region
(38). A LD map is then built with additive distances in
terms of LD units (LDU). One LDU is defined as one
swept radius and corresponds to ex = 1; it is the physical
distance over which ‘‘useful LD’’ [the first term in the
right in Eq. (4)] decays to 1/e � 37% of its starting value.
Figure 3 gives an example of a LDU map for a 216-kb
segment of class II region of MHC, with corresponding
hot spots of recombination (9). Because they are defined
in terms of ex , the LDUs are negatively correlated with
LD and positively correlated with recombination. More
technical details on the construction of LD maps can be
found in Maniatis et al. (39) and a discussion of optimal
statistical properties of qx can be found in Shete (40).

Eq. (4) indicates that the LD between markers at two
loci is decomposed into two components: the ‘‘true’’ LD
(due to linkage) and the spurious LD (due to population
artifacts). However, only the ‘‘true’’ LD contributes to the
LD map. Thus, two markers physically far apart could be
in high LD but only a few LDUs from each other if the

Figure 3. Top, LDU map for a 216-kb segment of class II of
MHC. Bottom, corresponding recombination hotspots. From
Jeffreys et al. (9).
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association was due to population artifacts. If we were to
rely on D (or D ¶, r2 , etc.), these would be reasonably large
and wrongly suggest that the markers were physically
close; however, the low value for LDU would correctly
indicate that the two markers were indeed physically far
apart in spite of being strongly associated! This gives an
example of how the use of LD maps can directly address
the problems associated with the conventional methods
used for LD fine-mapping as explained in Insights from
Population Genetics.

LD maps are thus better able to physically locate genes
of interest and thus less prone to most of the problems
mentioned in Insights from Population Genetics. The
LD maps built by Maniatis et al. (33) and others (e.g.,
refs. 41-43) support this statement. For example, by using
standard LD mapping techniques, Hosking et al. (44)
located the CYP2D6 gene (which is associated with poor
drug-metabolizing activity) to within a DNA interval of
390 kb. Using LDU locations, Maniatis et al. (33) were
able to predict the location of the gene only 14.9 kb from
its true location, surrounded by a 95% confidence
interval of 172 kb. LD maps can also be constructed on
genome-wide scales for GWA studies through selected
map assembly from DNA segments (39). Kuo et al. point
out that LD maps are achievable even at the highest
marker densities, including the HapMap data with
>3 million single nucleotide polymorphisms.

Conclusion

Understanding the major limitations of the current use of
LD for fine-mapping is essential lest the technique will be
regarded with skepticism and distrust by many. More-
over, recent research on metrics based on population
genetics theory represents a positive step toward
alleviating some of the current disenchantment with
association studies. In spite of the advantages offered by
the Malécot’s model and LD maps, the more popular
strategy in GWA studies has been simply the selection of
the statistically most significant single nucleotide poly-
morphisms (45, 46). However, selecting significant single
nucleotide polymorphisms and then trying to find the
causal gene in a neighboring region based on strong LD
will likely lead to many mapping problems in the future.
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