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Abstract

In this paper, we present the distribution of the coalescence time of two DNA sequences
(or genes) subject to symmetric migration between two islands, and conditional on
the observed number of segregating sites in the sequences. The distribution for the
segregating-site pattern is also obtained. Some surprising results emerge when both genes
are initially on the same island. First, the post-data mean coalescence time is shown to be
dependent on the migration parameter, as opposed to the pre-data mean. Second, both the
post-data density and expectation for the coalescence time are shown to converge, in the
weak-migration limit, to the corresponding panmictic results, as opposed to the pre-data
situation where there is convergence in the density but not in the expectation. Finally,
it is shown that there is convergence in the weak-migration limit in the distribution of
the number of segregating sites but not in the expectation and variance. Numerical and
graphical results for samples of size greater than two are also presented.
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1. Introduction

Much of the recent work on genealogical processes in population genetics has drawn from
the vast amounts of molecular genetic data that are rapidly becoming available. The data
normally consist of homologous DNA sequences obtained from various contemporary humans
(Griffiths and Tavaré (1994)). With the availability of these data, it has become important that
we revise many of our genealogical inferences which have hitherto been based on pre-data
analysis. However, recent post-data work has tended to concentrate exclusively or mainly on
panmictic models of population structure (Slatkin and Hudson (1991), Tavaré et al. (1997)).
See Marjoram and Donnelly (1994), Beerli and Felsenstein (1999) and Bahlo and Griffiths
(2000), though, for some recent simulation-based post-data work in subdivided populations.

In this paper, we consider a two-island model of population structure with symmetric
migration and make use of the coalescent in a population with geographic structure (Notohara
(1990), Nath and Griffiths (1993), Herbots (1997), Wilkinson-Herbots (1998), Gorroochurn
(1999); note that the different authors use different scalings for the rate matrix). The essential
details of the model are given in Section 2.2 below. We obtain exact results for the distribution
of the coalescence time of two genes, conditional on the observed number of segregating sites
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between them. We also obtain the distribution for the segregating-site pattern and point out
some anomalies when the two genes are initially on the same island.

2. The coalescent

2.1. Panmictic population

As first put forward by Kingman (1982a), (1982b), (1982c), the coalescent describes the
genealogical process of a random sample of n genes drawn from a large haploid population of
constant size 2N . We assume a panmictic population structure. We can trace back the ancestry
of the sample by considering a coalescent tree in which the leaves represent the sample gene
(or DNA) sequences (see Figure 1). Time is measured continuously up the tree (i.e. backwards)
in units of 2N generations. Coalescences are represented by the vertices of the tree, whereby
two of its ancestral lines (branches) merge to form a single ancestral line. Starting from time
t = 0, as we move up the tree (i.e. go back in time), more and more coalescences occur until
the entire ancestry coalesces to a single individual, known as the most recent common ancestor
(MRCA) of all the genes in the sample. The total time taken for this to happen is called the
time to the most recent common ancestor (TMRCA). For reviews of the coalescent process,
see Ewens (1989), Hudson (1991), Donnelly and Tavaré (1995) and Fu and Li (1998), (1999).

The times T(j) during which the sample has j distinct ancestors are independently distributed
with an exponential distribution of mean 2/{j (j − 1)}, j = 2, 3, . . . . This is equivalent to
saying that, conditional on there being j ancestral lines at some time in the tree, coalescences
occur according to a Poisson process of (total) rate j (j − 1)/2. Also,

E(TMRCA) =
n∑

j=2

2

j (j − 1)
= 2

(
1 − 1

n

)
.

Mutations can be superimposed on the coalescent tree. We assume no recombination and an
infinitely-many-sites model (Watterson (1975)). If the probability of a (neutral) mutation per
gene per generation is constant at u, then we set θ = 4Nu. This means that the mutation rate
per gene is θ/2. Moreover, conditional on a branch of length l, the number of mutations on
that branch has a Poisson distribution of rate θl/2, independently of other branches of the tree.

segregating site

a coalescence

time

TMRCA

t = 0

1 2 3 4 5 6 7

Figure 1: A typical coalescent tree with superimposed mutations. The numbers 1–7 denote the labelled
genes in the sample. Time is measured up the tree (i.e. backwards). A coalescence is said to take place

when two ancestral lines (branches) merge to form a single ancestral line as we move up the tree.
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2.2. Subdivided population

In many situations an assumption of geographic structure is necessary and the coalescent is
then approximated by the structured coalescent, as first put forward in its general form by Noto-
hara (1990). The next paragraph is adapted from the latter. Further applications of the coalescent
approach in subdivided populations include Takahata (1988), (1991), Notohara (1993), (1997),
Nath and Griffiths (1993), Donnelly and Tavaré (1995), Herbots (1997), Wilkinson-Herbots
(1998) and Gorroochurn (1999).

We consider a (haploid) population consisting of K colonies (or subpopulations) such that
colony i contains 2ciN genes, i = 1, . . . , K . We define αiN(τ) to stand for the number
of haploid genes sampled without replacement from colony i at generation τ . The K-tuple
αN(τ) = (α1

N(τ), α
2
N(τ), . . . , α

K
N (τ)) thus denotes the geographical composition of the sample

at generation τ in the past and is called the ancestral process. With migration taking place
between the colonies and Wright-type reproduction within each colony, and a re-scaling of
time t in units of 2N generations (i.e. τ = �2Nt�, where �x� denotes the greatest integer less
than or equal to x), the ancestral process can be well approximated by the structured coalescent
{α(t), Pα}. Here α(t) = (α1(t), α2(t), . . . , αK(t)),where αi(t) is the number of haploid genes
in colony i, and the initial number of sampled genes is |α(0)|. We now introduce the backward
migration matrix M = {mi,j /2}, where mi,j /2 is the scaled backward migration rate such that
the probability that a gene now in colony i actually came from colony j in the time interval
�t is (mi,j /2)�t + o(�t), where �t = 1/(2N) and i 
= j . Further, {α(t), Pα} defines a
continuous-time Markov chain with rates

qα,β =




αimi,j

2
if β = α − εi + εj , i 
= j ;

αi(αi − 1)

2ci
if β = α − εi;

−
{∑
i∈S

αi(αi − 1)

2ci
+

∑
i∈S

αi |mi,i |
2

}
if β = α;

0 otherwise.

(2.1)

Here, εi is the vector α for which αi = 1 and αj = 0, j 
= i, that is, εi = (0, 0, . . . , 1, . . . , 0)
with the 1 in the ith position. Also, since

∑K
j=1 mi,j = 0, we have mi,i = − ∑K

j=1,j 
=imi,j =
−mi , where mi/2 is the net emigration rate per gene from island i. In (2.1), a change of α to
β = α − εi + εj , i 
= j , corresponds to a migration backward in time of an ancestral lineage
from colony i to colony j ; the rate of such a migration is then αimi,j /2. A change of α to
β = α − εi corresponds to a coalescence between two lineages in colony i; the rate of such a
coalescence is thus

1

ci

(
αi

2

)
.

A coalescence between two lineages can occur if and only if those two lineages are in the same
colony at a particular point in time (see Figure 2, below).

A special case of the above is the symmetric island model of population structure (Wright
(1931)). In this model, we assume that all K subpopulations are of the same size 2N (i.e.
ci = 1) and the migration rate between any two subpopulations is the same, i.e. mi = m for
i = 1, . . . , K and mi,j = m/(K − 1) for j 
= i.
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3. Post-data inference in a panmictic population

We first consider the single-island case with two genes. We let T(2) denote the TMRCA for
the sample and S(2) the number of segregating sites in the sample. The conditional distribution
of T(2) given S(2) = k has been obtained by Tajima (1983); with a suitable re-scaling, it can be
written as

fT(2) | S(2){t | S(2) = k} = (1 + θ)1+k

k! tke−(1+θ)t , t > 0, (3.1)

which is Gamma(1 + k, 1/(1 + θ)). We note, from (3.1), that

E{T(2) | S(2) = k} = 1 + k

1 + θ
. (3.2)

This formula is reasonable intuitively, since if k � θ then this means that a lot more segregating
sites have been observed than the value of θ warrants, so the expected time to the most
recent common ancestor must be large. Moreover, when θ is known, it suggests the use of
T̂(2) = {1 + S(2)}/(1 + θ) as an estimator of T(2). If we compare T̂(2) with S(2)/θ (which is
sometimes used, because E{S(2) | T(2)} = θT(2)), we observe that the first estimator is biased
whereas the second is not. Nevertheless, T̂(2) is superior to S(2)/θ since the latter ignores post-
data information and is also inappropriate when S(2) = 0. For a review of some of the previous
methods used to estimate T(2), see Tavaré et al. (1997).

4. Post-data inference in a two-island model

We attempt a parallel analysis in a two-island model of population structure with symmetric
migration. Before we proceed to the actual derivation of densities, we give a brief explanation
on the nature of the segregating sites. Consider Figure 2, which shows a typical coalescent
tree with two subpopulations. From the figure, we can define the three quantities L1, L2, L12,

where

L1 = total length of edges subtended to island 1 at time 0,

L2 = total length of edges subtended to island 2 at time 0,

L12 = total length of edges subtended to both islands 1 and 2 at time 0.

If we denote by S1, S2 and S12 the number of segregating sites on island 1, on island 2 and
on both islands 1 and 2 respectively, at time 0, then, conditional on L1, L2 and L12, S1, S2
and S12 are independent Poisson random variables with means θL1/2, θL2/2 and θL12/2
respectively. Application of Bayes’ theorem then shows that the post-data distribution of the
time T to ultimate coalescence, conditional on the starting state α(0) and on the observed
segregating site pattern S = k, where S = (S1, S2, S12), is given by the following probability
density function:

fT {t | S = k, α(0)} = fT {t | α(0)}Pr{S = k | T = t,α(0)}
Pr{S = k |α(0)} (4.1)

(Tavaré et al. (1997)). We now consider some special cases of the above formula.

4.1. Starting state α(0) = (2, 0)

We first consider the case when both genes are initially (i.e. at time t = 0) on island 1
and assume a rate of symmetric migration between the two islands of m/2 per gene. Since
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island 2

t = 0
1 2 3 4

island 1

121 2

time

L12a L12b

L1a
L2a

L2b
L1b

L1 = L1a + L1b

L2 = L2a + L2b

L12 = L12a + L12b

Figure 2: The different types of edges in a two-island situation. The numbers 1, 2, 3, 4 denote the labelled
genes in the sample and the superscripts 1, 2 stand for the island on which a particular gene is at time
t = 0. Migrations occur when the double vertical lines are replaced by single ones, or vice versa. A
coalescence between two lineages can occur if and only if those two lineages are in the same colony at a

particular point in time.

α(0) = (2, 0), we have

S = (S1, S2, S12) = (S1, 0, 0),

k = (k1, k2, k12) = (k1, 0, 0),

and (4.1) can be written as

fT {t | S = (k1, 0, 0),α(0) = (2, 0)}
= fT {t | α(0) = (2, 0)}Pr{S = (k1, 0, 0) | T = t,α(0) = (2, 0)}

Pr{S = (k1, 0, 0) | α(0) = (2, 0)} . (4.2)

Now, fT {t | α(0) = (2, 0)} is the density of the time to ultimate coalescence conditional on
α(0) = (2, 0):

fT {t | α(0) = (2, 0)} = 1

2ξ
{(ξ − 1)e−(m+1/2−ξ/2)t + (ξ + 1)e−(m+1/2+ξ/2)t },

where ξ = (1 + 4m2)1/2 (Takahata (1988), Nath and Griffiths (1993), Herbots (1997), Gor-
roochurn (1999)). Also,

Pr{S = (k1, 0, 0) | T = t,α(0) = (2, 0)} = e−θt (θ t)k1

k1! , t > 0, k1 = 0, 1, 2, . . . .

Finally, since Pr{S = (k1, 0, 0) | α(0) = (2, 0)} is constant with respect to t, we write

1

Pr{S = (k1, 0, 0) | α(0) = (2, 0)} = K(s),

where we calculate K(s) below. From (4.2), we have

fT {t | S = (k1, 0, 0),α(0) = (2, 0)}

= K(s) (ξ − 1)e−(m+1/2−ξ/2)t + (ξ + 1)e−(m+1/2+ξ/2)t

2ξ
e−θt (θ t)k1

k1! .
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After simplification, we can re-write the above density as

fT {t | S = (k1, 0, 0),α(0) = (2, 0)}

= K(s)

{
(ξ − 1)θk1

2ξφk1+1
1

f
T
(s)
1
(t)+ (ξ + 1)θk1

2ξφk1+1
2

f
T
(s)
2
(t)

}
, (4.3)

where

T
(s)
1 ∼ Gamma

(
1 + k1,

1

φ1

)
, T

(s)
2 ∼ Gamma

(
1 + k1,

1

φ2

)
,

φ1 = m+ 1
2 − 1

2ξ + θ, φ2 = m+ 1
2 + 1

2ξ + θ.

(4.4)

We now integrate (4.3) with respect to t from 0 to ∞ and obtain

K(s) = 2ξ(φ1φ2)
k1+1

θk1{(ξ − 1)φk1+1
2 + (ξ + 1)φk1+1

1 } . (4.5)

Hence, by substituting (4.5) back into (4.3), we have

fT {t | S = (k1, 0, 0),α(0) = (2, 0)} =
(ξ − 1)φk1+1

2 f
T
(s)
1
(t)+ (ξ + 1)φk1+1

1 f
T
(s)
2
(t)

(ξ − 1)φk1+1
2 + (ξ + 1)φk1+1

1

. (4.6)

We see thatfT {t | S = (k1, 0, 0),α(0) = (2, 0)} is a linear combination of two gamma densities.
Straightforward calculations show that

E{T | S = (k1, 0, 0),α(0) = (2, 0)} = 1 + k1

φ1φ2

{
(ξ − 1)φk1+2

2 + (ξ + 1)φk1+2
1

(ξ − 1)φk1+1
2 + (ξ + 1)φk1+1

1

}
. (4.7)

Now, ξ → 2m,φ1 → θ + 1
2 , φ2 → 2m and φ1φ2 → m+ 2mθ , as m → ∞; thus

lim
m→∞ E{T | S = (k1, 0, 0),α(0) = (2, 0)} = 2(1 + k1)

1 + 2θ
.

The case when there are no mutations present in the sequences is also of interest since this
implies that all gametes in the sample are then monomorphic (Watterson (1975), Dorit et al.
(1995), Donnelly et al. (1996), Tavaré et al. (1997)). We have

E{T | S = (0, 0, 0),α(0) = (2, 0)} = 1

φ1φ2

{
(ξ − 1)φ2

2 + (ξ + 1)φ2
1

(ξ − 1)φ2 + (ξ + 1)φ1

}
.

From (4.6), we can also easily show that

var{T | S = (k1, 0, 0),α(0) = (2, 0)}
= 1

{(ξ − 1)φk1+1
2 + (ξ + 1)φk1+1

1 }2φ2
1φ

2
2

× ((ξ + 1)2φ2k1+4
1 + (ξ − 1)2φ2k1+4

2

+ 4m2(φ1φ2)
k1+1{2(φ2

1 + φ2
2 − φ1φ2)+ k1(φ1 − φ2)

2})
× (1 + k1).
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This implies that, in the strong-migration limit (Nagylaki (1980), (2000)), we have the following
result:

lim
m→∞ var{T | S = (k1, 0, 0),α(0) = (2, 0)} = 4(1 + k1)

(1 + 2θ)2

and also

var{T | S = (0, 0, 0),α(0) = (2, 0)}

= (ξ + 1)2φ4
1 + (ξ − 1)2φ4

2 + 8m2φ1φ2(φ
2
1 + φ2

2 − φ1φ2)

{(ξ − 1)φ2 + (ξ + 1)φ1}2φ2
1φ

2
2

.

Finally, we consider the probability mass function Pr{S = (k1, 0, 0) | α(0) = (2, 0)}. From
(4.5), we have

Pr{S = (k1, 0, 0) | α(0) = (2, 0)} = θk1

2ξ

(
ξ − 1

φ
k1+1
1

+ ξ + 1

φ
k1+1
2

)
, (4.8)

which is a linear combination of two geometric-like densities. The probability that the sample
is monomorphic is then

Pr{S = (0, 0, 0) | α(0) = (2, 0)} = 1

2ξ

(
ξ − 1

φ1
+ ξ + 1

φ2

)
.

From (4.8), we obtain the probability generating function (PGF), GS(z), for the number of
segregating sites,

GS(z) =
∞∑

k1=0

(zθ)k1

2ξ

(
ξ − 1

φ
k1+1
1

+ ξ + 1

φ
k1+1
2

)

= (m+ θ)− θz

(θ +m+ 2mθ + θ2)− θ(2m+ 2θ + 1)z + θ2z2 ,

from which it follows that

E{S | α(0) = (2, 0)} = 2θ, (4.9)

var{S | α(0) = (2, 0)} = 2θ

{
(2θ + 1)+ θ

m

}
. (4.10)

Note that the expectation in (4.9) is independent of the migration parameter (Slatkin (1987),
Notohara (1997)).

4.2. Starting state α(0) = (1, 1)

Now, if α(0) = (1, 1), then S = (S1, S2, 0), where S1 and S2 are independent and have the
same Poisson distribution conditional on the TMRCA T . The equation (4.1) becomes

fT {t | S = (k1, k2, 0),α(0) = (1, 1)}
= fT {t | α(0) = (1, 1)}Pr{S = (k1, k2, 0) | T = t,α(0) = (1, 1)}

Pr{S = (k1, k2, 0) | α(0) = (1, 1)} , (4.11)

with
fT {t | α(0) = (1, 1)} = m

ξ
{e−(m+1/2−ξ/2)t − e−(m+1/2+ξ/2)t } (4.12)
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(see Takahata (1988), Nath and Griffiths (1993), Herbots (1997), Gorroochurn (1999)). Also,

Pr{S = (k1, k2, 0) | T = t,α(0) = (1, 1)} = e−θt/2(θt/2)k1

k1!
e−θt/2(θt/2)k2

k2!
= e−θt (θ t)k1+k2

2k1+k2k1!k2! , k1, k2 = 0, 1, 2, . . .

(4.13)

and we write
1

Pr{S = (k1, k2, 0) | α(0) = (1, 1)} = K(d). (4.14)

By substituting (4.12), (4.13) and (4.14) into (4.11) and integrating with respect to t, we obtain

K(d) = 2k1+k2ξk1!k2!
m(k1 + k2)!θk1+k2

(φ1φ2)
k1+k2+1

(φ
k1+k2+1
2 − φ

k1+k2+1
1 )

, (4.15)

where φ1 and φ2 are as defined in (4.4).
If we substitute (4.12), (4.13) and the expression for K(d) back into (4.11), we obtain

fT {t | S = (k1, k2, 0),α(0) = (1, 1)} =
φ
k1+k2+1
2 f

T
(d)
1
(t)− φ

k1+k2+1
1 f

T
(d)
2
(t)

φ
k1+k2+1
2 − φ

k1+k2+1
1

, (4.16)

where

T
(d)
1 ∼ Gamma

(
k1 + k2 + 1,

1

φ1

)
,

T
(d)
2 ∼ Gamma

(
k1 + k2 + 1,

1

φ2

)
.

Note that φ2 > φ1, so that (as required) the density function in (4.16) is always positive and
bounded (see Figures 3 and 4).

From (4.16), we can prove in the same way as before that

E{T | S = (k1, k2, 0),α(0) = (1, 1)} = k1 + k2 + 1

φ1φ2

{
φ
k1+k2+2
2 − φ

k1+k2+2
1

φ
k1+k2+1
2 − φ

k1+k2+1
1

}

and

lim
m→∞ E{T | S = (k1, k2, 0),α(0) = (1, 1)} = 2(k1 + k2 + 1)

1 + 2θ
.

The expected TMRCA for the monomorphic case is given by

E{T | S = (0, 0, 0),α(0) = (1, 1)} = 1

φ1
+ 1

φ2
.

Also,

var{T | S = (k1, k2, 0),α(0) = (1, 1)}
= 1

{φk1+k2+1
2 − φ

k1+k2+1
1 }2φ2

1φ
2
2

× (φ
2(k1+k2+2)
2 − φ

2(k1+k2+2)
1

− (φ1φ2)
k1+k2+1{2(φ2

1 + φ2
2 − φ1φ2)+ (k1 + k2)(φ1 − φ2)

2})
× (k1 + k2 + 1).
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Figure 3: Plots of the various densities fT {t | S = (k, 0, 0),α(0) = (2, 0)} (α(0) = (2, 0) case, dotted
line), fT {t | S = (k1, k2, 0),α(0) = (1, 1)} (α(0) = (1, 1) case, dashed line) and fT(2){t | S(2) = k}

(panmictic case, solid line) with m = 0.5, θ = 2 and k1 + k2 = k = 3.
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Figure 4: Plots of the various densities fT {t | S = (k, 0, 0),α(0) = (2, 0)} (α(0) = (2, 0) case, dotted
line), fT {t | S = (k1, k2, 0),α(0) = (1, 1)} (α(0) = (1, 1) case, dashed line) and fT(2){t | S(2) = k}

(panmictic case, solid line) with m = 1, θ = 2 and k1 + k2 = k = 3.



Post-data inference in a two-island model 609

We note that the conditional density, expectation and variance of the TMRCA depend on the
observed segregation site pattern k = (k1, k2, 0) only through k1 + k2, a consequence of the
fact that the associated Markov chain {α(t), Pα} (see Section 2.2) is time-reversible. Also,

lim
m→∞ var{T | S = (k1, k2, 0),α(0) = (1, 1)} = 4(k1 + k2 + 1)

(2θ + 1)2
,

var{T | S = (0, 0, 0),α(0) = (1, 1)} = φ4
2 − φ4

1 − 2φ1φ2(φ
2
1 + φ2

2 − φ1φ2)

(φ2 − φ1)2φ
2
1φ

2
2

.

Finally, from (4.15), we have

Pr{S = (k1, k2, 0) | α(0) = (1, 1)} =
(
k1 + k2

k1

)
m

ξ

(
θ

2

)k1+k2
(

1

φ
k1+k2+1
1

− 1

φ
k1+k2+1
2

)
.

The probability of observing a monomorphic sample is

Pr{S = (0, 0, 0) | α(0) = (1, 1)} = m

ξ

(
1

φ1
− 1

φ2

)
.

5. Results for the case when both genes are initially on the same island

5.1. Dependence of the expected TMRCA on m

We note that the expectation in (4.7) is very dependent on m (see Figures 5 and 6), as
opposed to E{T | α(0) = (2, 0)} which is constant at 2 (Notohara (1990), Nath and Griffiths
(1993), Wakeley (1998)); thus, including the effects of mutation and conditioning on the number
of segregating sites results in the expected TMRCA being dependent on m, when the starting
state is α(0) = (2, 0).

5.2. Convergence in both distribution and mean of the TMRCA

We can take the limit of the density in (4.6) as m → 0+ and check if there is convergence
to the panmictic density. As m → 0+, ξ → 1+, φ1 → θ, φ2 → 1 + θ, so that

lim
m→0+ fT {t | S = (k1, 0, 0),α(0) = (2, 0)} = f

T
(s)
2
(t),

where T (s)
2 ∼ Gamma(1 + k1, 1/(1 + θ)) for m → 0+. Also, if we take the weak-migration

limit for the corresponding expectation, we obtain

lim
m→0+ E{T | S = (k1, 0, 0),α(0) = (2, 0)} = 1 + k1

1 + θ
.

Thus there is convergence to the single-island case in the conditional distribution as well as
in the conditional expectation as m → 0+ (see (3.1) and (3.2)). This is quite different from
the situation in which forces of mutation are not taken into account, where there is panmictic
convergence in the density but not in the expectation (Nath and Griffiths (1993)).

5.3. Convergence problems in the distribution of segregating sites

The results in (4.9) and (4.10) are surprising and point towards convergence problems in the
PGF GS(z) in the weak-migration limit. We have

lim
m→0+ GS(z) = 1

1 + θ − θz
, (5.1)
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Figure 5: Variation of various expected times with m(θ = 2 and k1 + k2 = k = 3). (i) E∗{T | S =
(k1, 0, 0),α(0) = (2, 0)} (two-island situation); (ii) E{T | α(0) = (2, 0)} (two-island situation);
(iii) E{T | S = (k1, k2, 0),α(0) = (1, 1)} (two-island situation); (iv) E{T | α(0) = (1, 1)} (two-island

situation); (v) E{T(2) | S(2) = k} (panmictic situation).
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Figure 6: A magnification of the graph in Figure 5. (i) E{T | α(0) = (2, 0)} (two-island situation);
(ii) E{T | S = (k1, k2, 0),α(0) = (1, 1)} (two-island situation); (iii) E{T | S = (k1, 0, 0),α(0) = (2, 0)}

(two-island situation); (iv) E{T(2) | S(2) = k} (panmictic situation).
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Figure 7: Variation of various variances with m (θ = 2 and k1 + k2 = k = 3). (i) var{T | S =
(k1, 0, 0),α(0) = (2, 0)} (two-island situation); (ii) var{T | α(0) = (2, 0)} (two-island situation);
(iii) var{T | S = (k1, k2, 0),α(0) = (1, 1)} (two-island situation); (iv) var{T | α(0) = (1, 1)} (two-island

situation); (v) var{T(2) | S(2) = k} (panmictic situation).
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Figure 8: A magnification of the graph in Figure 7. (i) var{T | S = (k1, k2, 0),α(0) = (1, 1)} (two-
island situation); (ii) var{T | S = (k1, 0, 0),α(0) = (2, 0)} (two-island situation); (iii) var{T(2) | S(2) = k}

(panmictic situation).



612 P. GORROOCHURN

which is the panmictic PGF for S(2) (Watterson (1975)), so there is convergence in the (con-
ditional) PGF of S = (S1, 0, 0), as m → 0+, to the panmictic PGF. However, there is clearly
divergence in both the (conditional) mean and variance:

lim
m→0+ E{S | α(0) = (2, 0)} = 2θ,

lim
m→0+ var{S | α(0) = (2, 0)} = +∞,

compared to the panmictic values:

E{S(2)} = θ,

var{S(2)} = θ + θ2.

6. Discussion

Conditioning on the observed segregating site pattern leads to marked changes in the
behaviour of the expected TMRCA, especially, for a sample of size two, when both genes
are initially on the same island. Figures 3 and 4 show the graphs of the densities in (3.1)
(panmictic case), (4.6) (α(0) = (2, 0) case) and (4.16) (α(0) = (1, 1) case) for when m = 0.5
and m = 1. Note the increase in variability due to subpopulation division, particularly when
migration rates are small.

Table 1: The variation of the ‘unconditional’ expected time E{T | α(0) = (5, 5)} and the ‘unconditional’
variance var{T | α(0) = (5, 5)} with m. Here θ = 3.

migration parameter, ‘unconditional’ expected time, ‘unconditional’ variance of time,
m E{T | α(0) = (5, 5)} var{T | α(0) = (5, 5)}
0.1 11.781 102.72
0.6 3.4619 3.6554
1.1 2.6927 1.4314
1.6 2.4118 0.87260
2.1 2.2620 0.62990
2.6 2.1756 0.49796
3.1 2.1118 0.41213
3.6 2.0682 0.35319
4.1 2.0349 0.30958
4.6 2.0140 0.27704
5.1 1.9833 0.24877
5.6 1.9690 0.18430
6.1 1.9566 0.20971
6.6 1.9459 0.19458
7.1 1.9348 0.18119
7.6 1.9298 0.17022
8.1 1.9226 0.16016
8.6 1.9087 0.15058
9.1 1.9025 0.14260
9.6 1.9057 0.13630
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Table 2: The variation of the ‘conditional’ expected time E{T | S = (3, 3, 2),α(0) = (5, 5)} and the
‘conditional’ variance var{T | S = (3, 3, 2),α(0) = (5, 5)} with m. Here θ = 3.

migration parameter, ‘conditional’ expected time, ‘conditional’ variance of time,
m E{T | S = (3, 3, 2),α(0) = (5, 5)} var{T | S = (3, 3, 2),α(0) = (5, 5)}
0.1 2.0071 0.51299
0.6 1.8633 0.43024
1.1 1.7337 0.37682
1.6 1.6544 0.34444
2.1 1.6015 0.32312
2.6 1.5701 0.31654
3.1 1.5388 0.31523
3.6 1.5168 0.30526
4.1 1.5038 0.29993
4.6 1.4932 0.30605
5.1 1.4787 0.29010
5.6 1.4667 0.29323
6.1 1.4595 0.29307
6.6 1.4491 0.28628
7.1 1.4466 0.28574
7.6 1.4450 0.29173
8.1 1.4437 0.29206
8.6 1.4328 0.28366
9.1 1.4287 0.28512
9.6 1.4312 0.28364

Figure 5 shows a comparison of various expected times as they vary with m. The graph
of E{T | S = (k1, 0, 0),α(0) = (2, 0)} clearly shows its dependence on m. If we compare the
graph of E{T | S = (k1, 0, 0),α(0) = (2, 0)} with that of E{T | α(0) = (2, 0)} and the graph of
E{T | S = (k1, k2, 0),α(0) = (1, 1)} with that of E{T | α(0) = (1, 1)}, we see that conditioning
on S results in a reduction in the expected TMRCA in general. This is not always true in
panmixia. The behaviour of E{T | S = (k1, 0, 0),α(0) = (1, 1)} comes as no surprise: as
m decreases, the expected TMRCA increases. This is because, with decreasing migration
rates, the two genes have to wait longer before they can be brought, through migration, to the
same colony so that they can coalesce. The graph of E{T | S = (k1, 0, 0),α(0) = (2, 0)} gives
another interesting observation, which is more clearly seen in Figure 6: a minimum when m is
very small.

In Figures 7 and 8, different variances are compared. The notable thing is the marked
decrease in the variance of the TMRCA when the observed segregating-site pattern is taken
into account.

We now consider samples of size greater than two. Using an adaptation of the rejection
algorithm (Tavaré et al. (1997)), it is possible to simulate the TMRCA and the segregating-site
pattern, and calculate their corresponding means and variances over a large number of runs
(100 000 typically) for n > 2, and different starting states, values of m and θ, and observed
segregating-site pattern k. In Tables 1 and 2 we list various means and variances for increasing
values ofm, and we use the term ‘conditional’ to mean conditional on the observed segregating-
site pattern k = (k1, k2, k12). Also, we assume α(0) = (5, 5), θ = 3 and k = (3, 3, 2). We
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Table 3: The variation of the mean segregating pattern E{S | α(0) = (5, 5)} with m. Here θ = 3.

migration parameter, mean segregating pattern,
m E{S | α(0) = (5, 5)}
0.1 (18.017, 17.982, 3.1640)
0.6 (5.3423, 5.3338, 3.4066)
1.1 (4.0754, 4.0740, 3.5405)
1.6 (3.5448, 3.5503, 3.6937)
2.1 (3.2608, 3.2503, 3.7772)
2.6 (3.0692, 3.0604, 3.8562)
3.1 (2.9325, 2.9170, 3.1938)
3.6 (2.8168, 2.8169, 3.9760)
4.1 (2.7295, 2.7339, 4.0248)
4.6 (2.6715, 2.6716, 4.0655)
5.1 (2.6034, 2.6013, 4.0903)
5.6 (2.5565, 2.5559, 4.1235)
6.1 (2.5300, 2.5006, 4.1534)
6.6 (2.4837, 2.4777, 4.1796)
7.1 (2.4451, 2.4515, 4.2030)
7.6 (2.4259, 2.4297, 4.2185)
8.1 (2.3965, 2.4072, 4.2404)
8.6 (2.3765, 2.3731, 4.2422)
9.1 (2.3590, 2.3501, 4.2586)
9.6 (2.3425, 2.3423, 4.2877)

do not, in general, expect the behaviour of the conditional means and variances to be greatly
different from that in the α(0) = (1, 1) case. In Table 3, we give the variation of the mean
segregating-site pattern E{S | α(0) = (5, 5)} with m (θ = 3). Figures 9 and 10 also illustrate
the results obtained.

We note that the graphs in Figures 9 and 10 are very similar to the n = 2 case, in
particular when α(0) = (1, 1). In Table 3, as m increases, both E{S1 | α(0) = (5, 5)} and
E∗{S2 | α(0) = (5, 5)} decrease, while E{S12 | α(0) = (5, 5)} increases and, overall, the ex-
pected total number of segregating sites decreases as well. The reason is intuitively clear: as m
increases, because of the increased number of migrations, there will be fewer segregating sites
on island 1 or 2 alone and more on both islands; the TMRCA also decreases, so that the total
number of mutations decreases as well.
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Figure 9: The variation of the ‘unconditional’ expected time E{T | α(0) = (5, 5)} and the ‘conditional’
expected time E{T | S = (3, 3, 3),α(0) = (5, 5)} with m. Here θ = 3.
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Figure 10: The variation of the ‘unconditional’ variance var{T |α(0) = (5, 5)} and the ‘conditional’
variance var{T | S = (3, 3, 3),α(0) = (5, 5)} with m. Here θ = 3.
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