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TT
he Problem of Points (POP) is not only the first major
problem of probability but it is also the one
responsible for its foundation. Indeed, it is one of

the questions the Frenchman Antoine Gombaud (1607-
1684) (better known as the Chevalier de Méré),

1 posed to
Blaise Pascal (1623–1662) in 1654. The latter discussed the
problem with his friend Pierre de Fermat (1601–1665). Both
men exchanged letters, and through their communication
the theory of probability was officially born. A recent book
recounting the exchange between Pascal and Fermat is by
Devlin [10]. POP had such an impact that almost all major
probabilists from then on, from Huygens to Laplace, had a
say on it. Even before Pascal, several solutions to POP had
been offered by the likes of Pacioli, Peverone, and
Cardano. However, these were incorrect and have been
well documented elsewhere [e.g., 16, p. 35;18;31, Chap. 1].
The aim of this article is to present thirteen correct methods
of solution to POP while also briefly discussing their
histories.

POP, in its general form for n players, is as follows
(POP-n):

Players P1, P2,…, Pn play a game for a sum of money.
The game is made up of several rounds such that their
respective probabilities of winning one round are p1,

p2,…, pn, where
P

i pi = 1. At some point, the players are
respectively s1, s2,…, sn rounds short of winning the
game when the game suddenly stops. How should the
sum of money be divided among the players?

Method of Enumeration
Consider the following simple example of POP-2, which
we denote by POP-2’: Two players A and B play a fair game
such that the first player who wins a total of 6 rounds wins
a prize. Suppose the game stops when A has won a total of
5 rounds and B has won a total of 3 rounds. How should
the prize be divided between A and B?

To solve POP-2’, we note that Player A is s1 = 1 round
short, and player B s2 = 3 rounds short, of winning the
prize. The maximum number of hypothetical remaining
rounds is (1 + 3)-1 = 3. In terms of equally likely sample
points, the sample space of the game is

X ¼ A1A2A3;A1A2B3;A1B2A3;A1B2B3;B1A2A3;f
B1A2B3;B1B2A3;B1B2B3g:

Here A1A2B3, for example, denotes the event that A wins
the first two remaining rounds and B wins the third. There

1Leibniz describes the Chevalier de Méré as ‘‘a man of penetrating mind who was both a player and a philosopher’’ [22, p. 539]. Pascal biographer Tulloch also notes

[33, p. 66]: ‘‘Among the men whom Pascal evidently met at the hotel of the Duc de Roannez [Pascal’s younger friend], and with whom he formed something of a

friendship, was the well-known Chevalier de Méré, whom we know best as a tutor of Madame de Maintenon, and whose graceful but flippant letters still survive as a

picture of the time. He was a gambler and libertine, yet with some tincture of science and professed interest in its progress.’’
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are in all eight equally likely outcomes, only one of which
(B1B2B3) results in B hypothetically winning the game.
Player A thus has a probability 7/8 of winning. The division
ratio (DR) between A and B should therefore be 7:1.

This method of enumeration is credited to Fermat and is
explicitly described in his September 25, 1654, letter to
Pascal. At first, some scholars (e.g., Roberval) questioned
Fermat’s principle of reasoning in terms of the maximum
number of hypothetical rounds, because it is very likely
that the maximum will never be played [14, p. 30]. Indeed
the sample space could have been written as X =

{A1, B1A2, B1B2A3, B1B2B3}. Fermat anticipated this criticism
and correctly pointed out that writing X in the latter form
would not result in equally likely sample points. In the
same September 25 letter, he writes:

‘‘[T]his fiction,’’ of extending the game to a certain
number of plays serves only to make the rule easy and
(according to my opinion) to make all the chances
equal; or better, more intelligibly to reduce all the frac-
tions to the same denomination [30, p. 562].
Fermat’s procedure is the easiest method of solution for

simple examples of POP. For POP-n, the maximum number
of remaining rounds is

qn ¼
Xn

i¼1

si � nþ 1

and the number of sample points in X is

Xj j ¼ nqn :

Thus, the method of enumeration quickly becomes
intractable when either the number of players (n) or
especially the maximum number of remaining rounds (qn)
increases. Moreover, it works only for players of equal skill
(all pi’s equal). These factors limit its usefulness.

Method of Recursion
Pascal was aware of Fermat’s method of enumeration [11]
but he also recognized it could become very complicated.
He therefore sought an alternative method. In his letter,
dated July 29, 1654, he states:

Your method is very sound and it is the first one that
came to my mind in these researches, but because the
trouble of these combinations was excessive, I found an
abridgment and indeed another method that is much
shorter and more neat, which I should like to tell you
here in a few words; for I should like to open my heart
to you henceforth if I may, so great is the pleasure I have
had in our agreement. I plainly see that the truth is the
same at Toulouse and at Paris.2 [30, p. 548]
The ‘‘shorter and more neat’’ method Pascal is referring

to in his letter is recursion. Pascal’s method of recur-
sion may be represented by a recursive tree as shown in
Figure 1. Suppose we wish to solve POP-2’ and determine

the DR at S(1, 3). To build the tree, we start from the root S
and build the tree downward. Each left branch added
corresponds to a round won by A (with probability 1/2);
each right branch corresponds to a round lost by A (with
probability 1/2). We continue building the tree downward
until, for i = 0, we reach an (i, 0) (corresponding to a
DR = 0:1), or an (0, i) (corresponding to a DR = 1:0), or an
(i, i) (corresponding to a DR = 1:1). Having done that, we
now determine the DR at U(1,2): From U, A can either win
the next round and win the game, or lose the next round
and then be at equality with B. The probability of this is
(1/2)(1) + (1/2)(1/2) = 3/4, i.e., the DR at U(1,2) is 3:1. We
can finally now determine the DR at S(1,3): From S, A can
either win the next round and win the game, or lose
the game and be at U(1,2). The probability of this is
(1/2)(1) + (1/2)(3/4) = 7/8, i.e., the DR at S(1,2) is 7:1.

Pascal’s reasoning may be expressed as a difference
equation as follows. Consider POP-2 such that the player
who wins a total of r rounds first collects the prize. Let the
game stop suddenly when A1 is short to win by s1 rounds
and A2 is short to win by s2 rounds, and let A1’s probability
of winning be P

ð1Þ
s1;s2 . Then

Pð1Þs1;s2
¼ 1

2
P
ð1Þ
s1�1;s2

þ P
ð1Þ
s1;s2�1

h i
; s1; s2 ¼ 1; 2;. . .; r ;

P
ð1Þ
s1;0
¼ 0; s1 ¼ 1; 2;. . .; r � 1;

P
ð1Þ
0;s2
¼ 1; s2 ¼ 1; 2;. . .; r � 1:

ð1Þ

Although Pascal’s recursive method may be applied to
POP-n in general, the method becomes cumbersome for large
n or largeqn, and may be used only for the simplest cases.

The Arithmetic Triangle
Pascal realized that his recursive method would quickly
become unwieldy for large s1 and s2 in POP-2. Moreover,
he was unable to use it when player A1 is s2 - 1 rounds
short and player A2 is s2 rounds short. Therefore, he
resorted to the Arithmetic Triangle3 for a solution. He

Figure 1. Tree Illustrating Pascal’s Method of Recursion.

2Pascal was residing in Paris while Fermat was in Toulouse.
3The Arithmetic Triangle was known well before Pascal and had also been used by Cardano in his Opus novum [1, 2]. It is called Yang Hui’s Triangle in China in honor of

the Chinese mathematician Yang Hui (1238–1298) who used it in 1261. Others have called it Halayudha’s Triangle because the Indian writer Halayudha used it in the

tenth century. The triangle was first called Pascal’s triangle by Montmort in his Essay d’Analyse sur les Jeux de Hazard [25, p. 80], see Samueli and Boudenot [29, pp.

38–39]. For a modern treatment of the Pascal’s Arithmetic Triangle, see Edwards [12] and Hald [16, pp. 45–54].
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correctly identified the value of s1 + s2 - 1 with each row
of the triangle, such that the corresponding entries give the
number of ways A1 can win 0, 1, 2, …, rounds. Thus, for
row s1 + s2 - 1, the jth entry counting from left is

s1 þ s2 � 1
j

� �

, the number of ways A1 can win j rounds

out of s1 + s2 - 1. Now, suppose player A1 is short by s1
rounds and player A2 by s2 rounds. Player A1 wins if she
wins any of the remaining s1, s1 + 1, …, s1 + s2 - 1
rounds. Pascal showed that the number of ways this can
happen is given by the sum

s1 þ s2 � 1

s1

� �

þ
s1 þ s2 � 1

s1 þ 1

� �

þ . . .þ
s1 þ s2 � 1

s1 þ s2 � 1

 !

�
s1 þ s2 � 1

0

� �

þ
s1 þ s2 � 1

1

� �

þ . . .þ
s1 þ s2 � 1

s2 � 1

 !

;

which is the sum of the first s2 entries in the Arithmetic
Triangle for row s1 + s2 - 1. Similarly, player A2 wins if she
wins any of the remaining s2, s2 + 1, …, s1 + s2 - 1
rounds. The number of ways this can happen is given by
the sum

s1 þ s2 � 1
s2

� �

þ
s1 þ s2 � 1

s2 þ 1

 !

þ . . .þ
s1 þ s2 � 1

s1 þ s2 � 1

 !

;

which is the sum of the last s1 entries in the Arithmetic
Triangle for row s1 + s2 - 1. Pascal was thus able to pro-
vide the general DR for a fair game between A1 and A2 from
the entries of his Arithmetic Triangle (counting from left):

sum of the first s2 entries for row s1 þ s2 � 1ð Þ
: sum of the last s1 entries for row s1 þ s2 � 1ð Þ ð2Þ

Although Pascal solved only simple cases in his corre-
spondence with Fermat, he was able to use mathematical
induction to prove the previously mentioned general DR in
his Traité du Triangle Arithmétique [27].4 Applying this
simple rule to POP-2, we have s1 = 1, s2 = 3, s1 + s2 -

1 = 3, and a DR of (1 + 3 + 3):1 = 7:1 between A and B,
as required.

The Arithmetic Triangle may be applied to any POP-2 as
long as the players are equally skilled. It may be used only
for simple cases as the method becomes cumbersome
when q2 = s1 + s2 - 1 is large. It is not applicable to POP-
n for n [ 2.

Binomial Distribution
Let us now generalize Pascal’s idea when players A1 and A2

have probabilities p1 and p2 (= 1 - p1) of winning each
round. Suppose A1 and A2 are s1 and s2 rounds, respec-
tively, short of winning the prize, when the game suddenly
stops. If the game had continued, the maximum number of
possible more rounds would have been s1 + s2 - 1. Player
A1 wins the prize by winning any of s1, s1 + 1, …,

s1 + s2 - 1 rounds. Now A1 can win j rounds out of

s1 + s2 - 1 rounds in
s1 þ s2 � 1

j

� �

ways, so A1’s proba-

bility of winning the prize is

Pð1Þs1;s2
¼

Xs1þs2�1

j¼s1

s1 þ s2 � 1

j

 !

p
j
1p

s1þs2�1�j
2 ; p2 ¼ 1� p1:

ð3Þ

Equation (3) first appeared in the second edition of
Pierre Rémond de Montmort’s (1678–1719) Essay d’Analyse
sur les Jeux de Hazard5 [26, pp. 244–245] as the first for-
mula for POP-2. This solution had been communicated to
Montmort by John Bernoulli (1667–1748) in a letter that is
reproduced in the Essay [26, p. 295].

The binomial method is one of the best methods for
solving any POP-2, but is difficult to extend to POP-n for
n [ 2. To see this, let us consider POP-3: Players A1, A2, and
A3 are s1, s2, and s3 rounds, respectively, short of winning a
prize, when the game suddenly stops. To calculate P

ð1Þ
s1;s2;s3 ,

A1 must not only win s1 rounds, but also she must do so
before A2 and A3 win s2 and s3 rounds, respectively. This
suggests a waiting time approach to solving such problems,
which is precisely what the next method does.

Negative Binomial Distribution
Having received Fermat’s method of enumeration for two
players, Pascal incorrectly stated that Fermat’s method was
not applicable to a game with three players (POP-3). In the
letter of August 24, 1654, Pascal says:

When there are but two players, your theory which
proceeds by combinations is very just. But when there
are three, I believe I have a proof that it is unjust that
you should proceed in any other manner than the one I
have. [30, p. 554]
In his September 25, 1654, letter to Pascal, Fermat

explains why his method of counting is actually correct and
gives the following alternative method to obtain the DR.
Fermat’s reasoning is based on the waiting time for a given
number of ‘‘successes.’’ Let us generalize his idea using
modern notation. Note that both Pascal and Fermat con-
sidered only fair games, but here we shall assume A1 and
A2’s probabilities of winning one round are p1 and
p2 = 1 - p1, respectively. Note that A1 is s1 rounds short of
winning the game and the maximum number of possible
more rounds is s1 + s2 - 1. To obtain P

ð1Þ
s1;s2 , we can either

focus on the number of additional rounds won, as in the
binomial case, or we can do the following: we watch the
game only until A1 wins s1 additional rounds (and ‘‘don’t
worry’’ about the rest of the game). Proceeding in this
manner, we see that the s1 rounds can be won out of s1
rounds, or out of (s1 + 1) rounds,…, or out of (s1 + s2 - 1)
rounds. Now, for A1 to win s1 rounds out of (s1 + j) rounds
(j = 0, 1, …, s2 - 1), she must win s1 - 1 rounds out of
s1 � 1þ j rounds and then also win the (s1 + j)th round.
Thus A1’s probability of winning can also be written as

4In Pascal’s Oeuvres Completes Vol. II [28, pp. 434–436].
5An Essay on the Analysis of Games of Chance.
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Pð1Þs1;s2
¼ ps1

1

Xs2�1

j¼0

s1 � 1þ j

s1 � 1

 !

p
j
2; p2 ¼ 1� p1: ð4Þ

The prize should therefore be divided between A1 and

A2 with DR =P
ð1Þ
s1;s2 : ð1� P

ð1Þ
s1;s2Þ: This second reasoning is

based on a binomial waiting time or negative binomial
distribution. The latter is also sometimes called the Pascal
distribution, although it is Fermat who first actually made
use of it for the case p = 1/2. Eq. (4) first appeared in the
second edition of Montmort’s Essay d’Analyse sur les Jeux
de Hazard6 [26, p. 245] as the second formula for POP-2.

Together with the binomial distribution, the negative
binomial distribution is the most frequently proposed
method for solving POP-2. Moreover, the negative binomial
distribution offers a natural extension of POP for more than
two players [17, p. 442]. Let us take the case of POP-3. Player
A1 is s1 rounds short of winning and the maximum number of
possible more rounds is s1 + s2 + s3 - 2. To win the game,
she can win either on the s1

th round, or the (s1 + 1)th round,
…, or the (s1 + s2 + s3 - 2)th round. Thus, she must win
s1 - 1 rounds out of the total s1 - 1 + j (j = 0, 1, …, s2 +

s3 - 2) rounds with players A2 and A3 also winning m2(\ s2)
and j - m2(\ s3) rounds, and then finally player A1 winning
the (s1 + j)th round. This event has probability

Xs2�1

m2¼j�s3þ1

s1 � 1þ j

s1 � 1; m2; j � m2

 !

ps1
1 pm2

2 p
j�m2

3

¼
s1 � 1þ j

s1 � 1

 !
Xs2�1

m2¼j�s3þ1

j

m2

 !

ps1
1 pm2

2 p
j�m2

3 ;

p3 ¼ 1� p2 � p1:

Summing over all j = 0, 1, …, s2 + s3 - 2, we obtain the
probability of A1 winning the game as

P 1ð Þ
s1;s2;s3

¼
Xs2þs3�2

j¼0

s1 � 1þ j

s1 � 1

 !
Xs2�1

m2¼j�s3þ1

j

m2

 !

ps1
1 pm2

2 p
j�m2

3 ;

p3 ¼ 1� p2 � p1:

The probability of A2 winning the game can be obtained
by interchanging p1, s1 with p2, s2, respectively,

P 2ð Þ
s1;s2;s3

¼
Xs1þs3�2

j¼0

s2 � 1þ j

s2 � 1

 !
Xs1

m2¼j�s3þ1

j

m2

 !

pm2
1 p

s2þj
2 p

j�m2

3 ;

p3 ¼ 1� p2 � p1:

We can use P
1ð Þ

s1;s2;s3 and P
2ð Þ

s1;s2;s3 above to solve the POP-3

problem (which we will denote by POP-3’) that we alluded to
at the start of this Section: Players A1, A2, and A3 of equal skill
are 1, 2, 2 rounds, respectively, short of winning a prize, when
the game suddenly stops. How should the prize be divided?

Using the formulas above, we have P
1ð Þ

s1;s2;s3 ¼ 17=27, P
2ð Þ

s1;s2;s3 ¼
5=27, and also P

3ð Þ
s1;s2;s3 ¼ 5=27.

An alternative form of solution, also using the waiting
argument, was offered by Abraham de Moivre (1667–1754)
[5, Problem 8;6]. The first general formula for POP-n appears
in de Moivre [7; 8, Problems 6 and 69; 9, Problem 6] as

P 1ð Þ
s1;...;sk

¼
X

0� xi � si�1;i¼2;...;k

�
s1 � 1þ x2 þ . . .þ xn

s1 � 1; x2; . . .; xn

 !

ps1
1 px2

2 . . .pxn
n ;

Xn

i¼1

pi ¼ 1: ð5Þ

The waiting-time argument offers a powerful method for
solving POP-n. The solution in (5) is appealing and may
easily be recommended.

Inverse Probability
In Mémoire sur la probabilité des causes par les événement,
Pierre-Simon Laplace (1749–1827) considered a Bayesian
variation of POP [20, p. 39]. In POP-2, for example, he
considered two players such that the player who wins a
total of r rounds first collects the prize. Let the game stop
suddenly when A1 is short of winning by s1 rounds and A2

is short of winning by s2 rounds, and let A1’s probability of

winning be P
ð1Þ
s1;s2 . Now Laplace assumes the probability p1

that A1 wins a round is unknown and has an a priori Unif(0,
1) distribution, i.e., f(p1) = 1 for 0\ p1 \ 1. Let F be the
event ‘‘A1 wins the game,’’ and G be the event ‘‘A1 wins
r - s1 rounds and A2 wins r - s2 rounds.’’ Then Bayes’s
Theorem yields

f ðp1jGÞ ¼
f Gjp1ð Þf p1ð Þ

R1

0

f Gjp1ð Þf p1ð Þdp1

¼ pr�s1
1 1� p1ð Þr�s2

R1

0

pr�s1
1 1� p1ð Þr�s2 dp1

¼ pr�s1
1 1� p1ð Þr�s2

B r � s1 þ 1; r � s2 þ 1ð Þ ;

where

B a; bð Þ ¼
Z1

0

ua�1 1� uð Þb�1du ¼ C að ÞC bð Þ
C aþ bð Þ

is the B-function, and

C að Þ ¼
Z1

0

e�uua�1du

is the C-function. Therefore,

Pr F jGf g ¼
Z1

0

Pr F jG; p1f gf p1jGð Þdp1

¼
Z1

0

P 1ð Þ
s1;s2

f p1jGð Þdp1:

Using the last expression for f (p1|G) and the formula for

P
ð1Þ
s1;s2 from Eq. (3), we have

6In the first edition of 1708, Montmort discussed the problem of points, but only for a fair game [25, pp. 165–178].
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Pr F jGf g

¼

R1

0

Ps1þs2�1

j¼s1

s1þ s2�1

j

 !

p
j
1 1�p1ð Þs1þs2�1�jpr�s1

1 1�p1ð Þr�s2dp1

B r� s1þ1;r� s2þ1ð Þ

¼
Xs1þs2�1

j¼s1

s1þ s2�1jð ÞB r� s1þ jþ1;rþ s1� jð Þ
B r� s1þ1;r� s2þ1ð Þ

� �

¼ 1

2r

s1þ s2�1

 !
Xs2�1

j¼0

rþ j

r� s1

 !
r� j�1

r� s2

 !

:

ð6Þ

If we solve POP-2’ using the above, we obtain a prob-
ability of A1 winning of

Pr F jGf g¼ 1

12

3

 !
X2

j¼0

6þ j

5

 !
5� j

3

 !

¼ 10

11
;

(and a probability of 1/11 for A2) [32]. On the other hand,
when we assume the two players are equally skilled
(p1 = p2 = 1/2), the probability that A1 wins is 7/8, as we
have shown several times before.

Laplace’s method of inverse probability can hardly
be recommended unless there is a strong justification
for using a Unif(0, 1) prior for p1. In most cases, such
a prior is based on the principle of indifference, and
carries all the criticisms attributed to the principle. The
strongest of these pertains to the inconsistencies that
arise if p1 was to be transformed to a one-to-one
function f (p1) and a Unif(0, 1) prior assigned to f (p1)
[see, e.g., 14, p. 135].

Difference Equations
In Recherches sur les suites récurrentes, Joseph-Louis
Lagrange (1736–1813) presented a solution to POP through
difference equations [19]. Lagrange first considers POP-2

and proceeds to solve for P
2ð Þ

s1;s2 by using an equation similar
to Eq. (1) (except that now the players are not assumed to
have equal skills):

Pð2Þs1;s2
¼ p1P

ð2Þ
s1�1;s2

þ p2P
ð2Þ
s1;s2�1 ; s1; s2 ¼ 1;2;. . .; r ; p1 þ p2 ¼ 1;

P
ð2Þ
s1;0
¼ 1; s1 ¼ 1;2;. . .; r � 1;

P
ð2Þ
0;s2
¼ 0; s2 ¼ 1;2;. . .; r � 1: ð7Þ

Lagrange assumes a general solution of the form

Pð2Þs1;s2
¼ cas1bs2 ; ð8Þ

where a, b, c are arbitrary constants. Substituting the above
in Eq. (7), we obtain

b¼ p2

1� p1=a
;

so that Eq. (8) becomes

Pð2Þs1;s2
¼ cas1 ps2

2 1þ s2
p1

a
þ s2 s2 þ 1ð Þ

2!

p2
1

a2
þ . . .þ

� �

¼ ps2
2 cas1 þ s2p1ca

s1�1 þ s2 s2 þ 1ð Þ
2!

p2
1ca

s1�2 þ . . .

� �

¼ ps2
2 P

ð2Þ
s1;0
þ s2p1P

ð2Þ
s1�1;0 þ

s2 s2 þ 1ð Þ
2!

p2
1P
ð2Þ
s1�2;0 þ . . .

� �

:

Now, for i ¼ 1; 2; 3; . . .; we have P
ð2Þ
i;0 � 1 and P

ð2Þ
0;i�1 �

0; so that the above becomes

Pð2Þs1;s2
¼ ps2

2 1þ s2p1 þ
s2 s2 þ 1ð Þ

2!
p2

1

�

þ. . .þ s2 s2 þ 1ð Þ s2 þ 2ð Þ. . . s2 þ s1 � 2ð Þ
s1 � 1ð Þ! ps1�1

1

�

:

This coincides in form to the solution provided by the
negative binomial argument in Eq. (4) (with p2, s2 replaced
by p1, s1, respectively).

Using difference equations, Lagrange also considers the
POP-3 and POP-n case. His general solution coincides in
form with Eq. (5). However, the method of difference
equations was historically less elegant than, and soon
superseded by, the next method.

Probability Generating Functions
Although Laplace had previously also used difference
equations to solve POP, in the Théorie Analytique des
Probabilités [21, p. 207] he solved POP-n through themethod

of probability generating functions. Let P
1ð Þ

s1;s2;...;sn be player
A1’s probability of winning the game. Generalizing Eq. (1) to
n players, we obtain

P
1ð Þ

s1;s2;...;sn ¼ p1P
1ð Þ

s1�1;s2;...;sn
þ p2P

1ð Þ
s1;s2�1;...;sn

þ. . .þ pnP
1ð Þ

s1;s2;...;sn�1.

where

P
1ð Þ

0;s2;...;sn
¼ 1; s2; . . .; sn [ 0;

P
1ð Þ

s1;0;...;sn
¼ 0; s1; s3; . . .; sn [ 0;

. . .

P
1ð Þ

s1;s2;...;0
¼ 0; s1; . . .; sn�1 [ 0;

Xn

i¼1

pi ¼ 1:

We define the multivariate probability generating func-
tion G(z1, z2, …, zn) : G by

G ¼
X1

s1¼1

X1

s2¼1

. . .
X1

sn¼1

P 1ð Þ
s1;s2;...;sn

zs1
1 zs2

2 . . .zsn
n

¼
X1

s1¼1

X1

s2¼1

. . .
X1

sn¼1

p1P
1ð Þ

s1�1;s2;...;sn
þ p2P

1ð Þ
s1;s2�1;...;sn

�

þ. . .þ pnP
1ð Þ

s1;s2;...;sn�1

	
zs1

1 zs2
2 . . .zsn

n

¼ p1z1G þ p1z1

X1

s2¼1

. . .
X1

sn¼1

zs2
2 . . .zsn

n

þ p2z2 þ . . .þ pnznð ÞG: ð9Þ
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Therefore,

G¼
p1z1

P1

s2¼1
. . .
P1

sn¼1
zs2

2 . . .zsn
n

1�p1z1�p2z2� . . .�pnzn

¼ p1z1z2. . .zn

1�z2ð Þ 1�z3ð Þ. . . 1�znð Þ 1�p1z1�p2z2� . . .�pnznð Þ :

ð10Þ

(Laplace’s expression for G is slightly different because he
starts the summations for G in Eq. (9) at zero). Thus, the
probability that player A1 wins the game is

P 1ð Þ
s1;s2;...;sn

¼ coef: of zs1
1 zs2

2 . . .zsn
n in

p1z1z2. . .zn

1�z2ð Þ 1�z3ð Þ. . . 1�znð Þ 1�p1z1�p2z2� . . .�pnznð Þ :

In general, the probability that player Aj wins the game is

P jð Þ
s1;s2;...;sn

¼ coef: of zs1
1 zs2

2 . . .zsn
n in

pj

Qn

i¼1
zi

1�
Pn

i¼1
pizi

� �
Qn

i¼1
i 6¼j

1�zið Þ
:

ð11Þ

In POP-2’ we had, for two players, p1 = p2 = 1/2 and
s1 = 1, s2 = 3. Therefore the probability that A wins is

coef: of z1z3
2 in

z1z2=2

1�z2ð Þ 1�z1=2�z2=2ð Þ¼
7

8
;

giving a division ratio of 7:1 for A and B, as we obtained
before.

In POP-3’, we had, for three players, p1 = p2 = p3 = 1/3
and s1 = 1, s2 = 2, and s3 = 2. Therefore, the probability
that A1 wins is

coeff: of z1z2
2z2

3 in
z1z2z3=3

1�z2ð Þ 1�z3ð Þ 1�z1=3�z2=3�z3=3ð Þ
¼ 17

27
:

The probability that A2 wins is

coeff: of z1z2
2z2

3 in
z1z2z3=3

1�z1ð Þ 1�z3ð Þ 1�z1=3�z2=3�z3=3ð Þ
¼ 5

27
;

resulting in a division ratio of 17/27:5/27:5/27 = 17:5:5,
again the same answer we obtained previously.

The method of probability generating functions is one of
the elegant methods for solving POP. It may be used for
any number of players with arbitrary skills and, with today’s
computational power, it is fairly easily applicable.

Incomplete B-Function
In his Cours de Calcul des Probabilités [24, p. 65], Antoine
Meyer (1801–1857) proposed an alternative solution to
POP. Let us consider POP-2, for example. Meyer’s lengthy
demonstration essentially boils down to showing the well-
known relationship between the distribution function of

the binomial and the incomplete B-function [e.g., see 15, p.
674]:

Xaþb�1

i¼a

aþ b� 1
i

� �

pi 1� pð Þaþb�1�i¼ Bp a; bð Þ
B a; bð Þ :

In the above, Bp is the incomplete B-function:

Bp a; bð Þ ¼
Zp

0

ua�1 1� uð Þb�1du:

Using Eq. (3), we have

Pð1Þs1;s2
¼ Bp1

s1; s2ð Þ
B s1; s2ð Þ ¼

C s1 þ s2ð Þ
C s1ð ÞC s2ð Þ

Zp1

0

us1�1 1� uð Þs2�1du:

ð12Þ

For POP-2, the above gives P
ð1Þ
s1;s2 ¼ 7=8 as we obtained

previously. Now, by making the substitution u = 1/(1 + t),
the formula in (12) becomes

Pð1Þs1;s2
¼ C s1 þ s2ð Þ

C s1ð ÞC s2ð Þ

Z1

p2=p1

ts2�1

1þ tð Þs1þs2
dt; p1 þ p2 ¼ 1:

By using the above form for P
ð1Þ
s1;s2 , Meyer is able to

extend the formula for POP-n:

Pð1Þs1;...;sn
¼C s1þ . . .þ snð Þ

C s1ð Þ. . .C snð Þ

�
Z1

p2=p1

. . .

Z1

pn=p1

ts2�1
2 . . .tsn�1

n

1þ t2þ . . .þ tnð Þs1þ...þsn
dt2. . .dtn;

Xn

i¼1

pi¼1:

ð13Þ

Let us solve POP-3’ using the above method. We have,
for three players, p1 = p2 = p3 = 1/3 and s1 = 1, s2 = 2,
and s3 = 2. Therefore,

Pð1Þs1;s2;s3
¼ 4!

0!1!1!

Z1

1

Z1

1

t2t3

1þ t2þ t3ð Þ5
dt2dt3¼

17

27
;

Pð2Þs1;s2;s3
¼ 4!

0!1!1!

Z1

1

Z1

1

t3

1þ t2þ t3ð Þ5
dt2dt3¼

5

27
:

For P
ð2Þ
s1;s2;s3 in the above, we have used P

ð1Þ
s1;s2;s3 with p1, s1

and p2, s2 interchanged.

Meyer’s method is general, computationally satisfactory,
and has much to recommend it. It may be preferred to the
method of generating functions because it does not require
extracting coefficients.

Variation on Negative Binomial Distribution: I
In Sur le Problème des Partis [23], Paul Mansion (1844–
1919) gave an alternative argument for POP, which results
in a relatively simple form of the solution. Mansion con-
siders POP-2 and uses the solution based on the negative
binomial distribution in Eq. (4):
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Pð1Þs1;s2
¼ ps1

1

Xs2�1

j¼0

s1 � 1þ j

s1 � 1

 !

1� p1ð Þj :

The latter can be written as

Pð1Þs1;s2
¼ ps1

1

Xs2�1

j¼0

s1 � 1þ j

s1 � 1

 !

1� p1ð Þj

¼ ps1
1

Xs2�1

j¼0

Xj

i¼0

s1 � 1þ j

s1 � 1

 !
j

i

 !

�1ð Þipi
1:

The coefficient of ð�1Þipiþs1
1 is

Ps2�1

j¼i

s1 � 1þ j

s1 � 1

� �
j

i

 !

¼
Xs2�1

j¼i

s1 � 1þ j

j � i

� �
s1 � 1þ i

i

� �

¼
s1 � 1þ i

i

� �Xs2�1

j¼i

s1 � 1þ j

j � i

� �

¼
s1 � 1þ i

i

� �
s1 þ s2 � 1

s2 � 1� i

� �

¼ 1

B s1; s2ð Þ :
1

s1 þ i

s2 � 1

i

� �

:

Hence,

Pð1Þs1;s2
¼ C s1 þ s2ð Þ

C s1ð ÞC s2ð Þ
Xs2�1

i¼0

ð�1Þi 1

s1 þ i

s2 � 1

i

 !

piþs1
1 : ð14Þ

Although Mansion’s method is relatively simple for the
POP-2 case, it is less elegant for n [ 2 and cannot be
recommended for such cases.

Variation On Negative Binomial Distribution: II
Eugène Charles Catalan (1814–1894) provided an alterna-
tive solution to POP in 1878 with interesting interpretations
[3]. Like Mansion, Catalan also starts with the solution
based on the negative binomial distribution for POP-2 (see
Eq. (4)):

Pð1Þs1;s2
¼ ps1

1

Xs2�1

j¼0

s1 � 1þ j

s1 � 1

 !

1� p1ð Þj ;

Pð2Þs1;s2
¼ ps2

2

Xs1�1

j¼0

s2 � 1þ j

s2 � 1

 !

1� p2ð Þj ; p2 ¼ 1� p1:

Now,

p�s1
1 ¼ 1� p2ð Þ�s1¼

X1

j¼0

s1 � 1þ j

s1 � 1

 !

p
j
2;

so that

1 ¼ ps1
1

X1

j¼0

s1 � 1þ j

s1 � 1

 !

p
j
2: ð15Þ

Because P
ð1Þ
s1;s2 þ P

ð2Þ
s1;s2 ¼ 1; we have

Pð1Þs1;s2
þ Pð2Þs1;s2

¼ ps1
1

X1

j¼0

s1 � 1þ j

s1 � 1

 !

p
j
2:

Subtracting Eq. (4) from the above equation, P
ð2Þ
s1;s2 can be

expressed as an infinite series:

Pð2Þs1;s2
¼ ps1

1

X1

j¼s2

s1 � 1þ j

s1 � 1

 !

p
j
2:

Similarly,

Pð1Þs1;s2
¼ ps2

2

X1

j¼s1

s2 � 1þ j

s2 � 1

 !

p
j
1: ð16Þ

Catalan then makes two interesting remarks (one
obvious, the other not so obvious):

• The right side of Eq. (15) is the sum of the probabilities
that player A1 wins s1 - 1 rounds out of s1 - 1 + j
(j ¼ 0; 1; 2; . . .), and then wins the (s1 + j)th round. It is
thus certain that A1 will eventually win the s1 rounds that
she is short of, if the game were to continue indefinitely.

• Eq. (16) gives the probability that player A2 wins s2
rounds out of a total of at least s1 + s2 rounds. This is the
same as the probability of A1 winning s1 rounds out of a
total of s1 + s2 - 1.

Catalan does not discuss POP-n for n [ 2, because the
aim of his article was to give an alternative interpretation of

P
ð1Þ
s1;s2 in terms of infinite series. The formulas for P

ð1Þ
s1;s2 and

P
ð2Þ
s1;s2 cannot be recommended for computational purposes

because convergence is relatively slow (e.g., for POP-2’, we

need to sum the first 16 terms to obtain P
ð1Þ
s1;s2 ¼ :875 to 3 d.p.)

Variation on Binomial Distribution: I
In addition to the two traditional approaches for solving
POP-2 (in earlier sections), George Chrystal (1851–1911)
provided an interesting third argument for P

ð1Þ
s1;s2 in the sec-

ond part of his famous Algebra: An Elementary Text [4, pp.
556–558].7 Unlike the two previous authors, Chrystal’s deri-
vation is actually based on the binomial distribution. Player
A1 wins at exactly j rounds out of s1 + s2 - 1 rounds with
probability

s1 þ s2 � 1

j

 !

p
j
1 1� p1ð Þs1þs2�1�j¼

s1 þ s2 � 1

j

 !

p
j
1

� 1�
s1 þ s2 � 1� j

1

 !

p1 þ . . .þ �1ð Þi
"

�
s1 þ s2 � 1� j

i

 !

pi
1�. . .þ �1ð Þs1þs2�1�jp

s1þs2�1�j
1

i

¼
s1 þ s2 � 1

j

 !

p
j
1 �

s1 þ s2 � 1

j

 !
s1 þ s2 � 1� j

1

 !

p
jþ1
1

7Chrystal’s text is especially famous for statisticians because the author chose to omit inverse probability from it, and that was used by none other than Fisher to

buttress his arguments against this particular use of probability [13, p. 29].
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þ . . .þ �1ð Þi
s1 þ s2 � 1

j

 !
s1 þ s2 � 1� j

i

 !

p
jþi
1

þ . . .þ �1ð Þs1þs2�1�j
s1 þ s2 � 1

j

 !

ps1þs2�1
1

¼
s1 þ s2 � 1

j

 !

p
j
1 �

j þ 1

1

 !
s1 þ s2 � 1

j þ 1

 !

p
jþi
1

þ . . .þ �1ð Þi
j þ i

i

 !
s1 þ s2 � 1

j þ i

 !

p
jþi
1

þ . . .þ �1ð Þs1þs2�1�j
s1 þ s2 � 1

s1 þ s2 � 1� j

 !

ps1þs2�1
1 :

Therefore, the probability that player A1 wins at least s1
rounds out of s1 + s2 - 1 rounds can be obtained by
summing the above from j = s1 to j = s1 + s2 - 1. In the

latter summation, the coefficient of
s1 þ s2 � 1

i þ s1

 !

piþs1
1 is

�1ð Þi
Xs1þi

j¼s1

s1 þ i

j

 !

�1ð Þj�s1 :

Except for the ( -1)i, the above is actually the coeffi-

cient of xi in ð1þ xÞ�1 1þ xð Þiþs1 ¼ 1þ xð Þiþs1�1; and is

thus equal to
i þ s1 � 1

i

 !

: Therefore, the coefficient of

s1 þ s2 � 1

i þ s1

 !

piþs1
1 is �1ð Þi

i þ s1 � 1

i

 !

: Hence, Chrystal

is able finally to give the following expression for P
ð1Þ
s1;s2 :

Pð1Þs1;s2
¼
Xs2�1

i¼0

�1ð Þi
s1 þ s2 � 1

i þ s1

 !
i þ s1 � 1

i

 !

piþs1
1 : ð17Þ

The interesting form that P
ð1Þ
s1;s2 takes is best seen when

expanded:

Pð1Þs1;s2
¼

s1 þ s2 � 1

s1

 !

ps1
1 �

s1 þ s2 � 1

s1 þ 1

 !
s1

1

 !

ps1þ1
1

þ
s1 þ s2 � 1

s1 þ 2

 !
s1 þ 1

2

 !

ps1þ2
1

þ . . .:þ �1ð Þs2�1
s1 þ s2 � 1

s2 � 1

 !

ps1þs2�1
1 :

Chrystal does not consider POP-n for n [ 2. Although
Eq. (17) provides interesting insights, Chrystal’s approach
cannot easily be extended for more players and is
recommended only for POP-2.

Markov Chains
In his recent book Chapters in Probability, Craig Smorynski
has offered yet an alternative method of solution for POP
through Markov chains [31, p. 372]. For POP-n, suppose the
players are s1,t, s2,t, …, sn,t rounds short of winning at some
time t during the game. Because the current state depends

only on what happened on the previous round (i.e., at time
t - 1), it is natural to model Sn,t = (s1,t, s2,t, …, sn,t) as a
Markov chain.

Let us now use this idea to solve POP-2’. The players A
and B are s1 = 1 and s2 = 3 short of winning the game. By
reasoning on what happens after (1, 3), we see that the
Markov chain {S3,t} has states {(0,1), (0, 2), (0, 3), (1,0), (1,1),
(1,2), (1,3)}, and transition probability matrix P:

0; 1ð Þ 0; 2ð Þ 0; 3ð Þ 1; 0ð Þ 1; 1ð Þ 1; 2ð Þ 1; 3ð Þ
0; 1ð Þ
0; 2ð Þ
0; 3ð Þ
1; 0ð Þ
1; 1ð Þ
1; 2ð Þ
1; 3ð Þ

1
0
0
0

1=2
0
0

2

6
6
6
6
6
6
6
6
4

0
1
0
0
0

1=2
0

0
0
1
0
0
0

1=2

0
0
0
1

1=2
0
0

0
0
0
0
0

1=2
0

0
0
0
0
0
0

1=2

0
0
0
0
0
0
0

3

7
7
7
7
7
7
7
7
5

The maximum number of additional rounds is 3. By
calculating aP3, where a = [0, 0, 0, 0, 0, 0, 1] (corresponding
to the starting state (1, 3)), we obtain the probabilities of
being in the various states after 3 additional rounds as

aP3 ¼ 1

8
;
1

4
;
1

2
;
1

8
; 0; 0; 0

� �

:

Therefore, P
ð1Þ
s1;s2 ¼ 1=8þ 1=4þ 1=2 ¼ 7=8 and P

ð2Þ
s1;s2 ¼

1=8, as required.
The Markov method is quite elegant and matrix com-

putations are not a problem currently. It works for any
POP-n although the transition matrix does become extre-
mely large when the number of players or additional
rounds increases.

Conclusion
POP is truly one of the most beautiful problems of proba-
bility and actually founded the discipline. As we have
shown, it is also one of great diversity in terms of the
number of ways it has lent itself to a resolution by some of
the greatest mathematicians of the past centuries. We sus-
pect that there are even more lines of attack than the
thirteen we have presented here
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[21] P.-S. Laplace, Théorie Analytique des Probabilités, Mme Ve

Courcier, Paris, 1812.

[22] G. W. Leibniz, New Essays Concerning Human Understanding,

The Macmillan Company, New York (original work written in 1704

and published in 1765), 1896.

[23] P. Mansion, Sur le problème des partis. Mém. de. Belg. XXI. F

Hayez (1870).

[24] A. Meyer, Cours de Calcul des Probabilités, F. Hayez, Bruxelles,

1874.

[25] P. R. d. Montmort, Essay d’Analyse sur les Jeux de Hazard,

Quillau, Paris, 1708.

[26] P. R. d. Montmort, Essay d’Analyse sur les Jeux de Hazard,

Quillau, Paris, 1713.
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