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Abstract
Objectives: This is the first of two articles discussing the
effect of population stratification on the type I error rate
(i.e., false positive rate). This paper focuses on the con-
founding risk ratio (CRR). It is accepted that population
stratification (PS) can produce false positive results in
case-control genetic association. However, which values
of population parameters lead to an increase in type I
error rate is unknown. Some believe PS does not repre-
sent a serious concern [1, 2], whereas others believe that
PS may contribute to contradictory findings in genetic
association [3]. We used computer simulations to esti-
mate the effect of PS on type I error rate over a wide
range of disease frequencies and marker allele frequen-
cies, and we compared the observed type I error rate to
the magnitude of the confounding risk ratio. Methods:

We simulated two populations and mixed them to pro-
duce a combined population, specifying 160 different
combinations of input parameters (disease prevalences

and marker allele frequencies in the two populations).
From the combined populations, we selected 5000 case-
control datasets, each with either 50, 100, or 300 cases
and controls, and determined the type I error rate. In all
simulations, the marker allele and disease were indepen-
dent (i.e., no association). Results: The type I error rate is
not substantially affected by changes in the disease prev-
alence per se. We found that the CRR provides a relative-
ly poor indicator of the magnitude of the increase in type
I error rate. We also derived a simple mathematical
quantity, ¢, that is highly correlated with the type I error
rate. In the companion article (part II, in this issue) [4], we
extend this work to multiple subpopulations and unequal
sampling proportions. Conclusion: Based on these re-
sults, realistic combinations of disease prevalences and
marker allele frequencies can substantially increase the
probability of finding false evidence of marker disease
associations. Furthermore, the CRR does not indicate
when this will occur.

Copyright © 2004 S. Karger AG, Basel
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Introduction

Many investigators use the case-control design for
genetic association studies to detect an association be-
tween a genetic marker and a disease or trait. Compared
to the family-based designs, data collection is easier and
power greater under case-control designs [5]. However,
case-control studies from different laboratories often
yield contradictory results [6]. This lack of reproducibility
is often attributed to marked variation of disease preva-
lence and marker allele frequency within subpopulations,
so-called PS. PS can lead to false evidence for an associa-
tion [6–10]. The extent to which PS, the mixing of indi-
viduals from heterogeneous backgrounds, biases case-
control genetic association studies has been debated in the
literature. Some believe PS does not represent a serious
concern [1, 2], while others believe that PS may contrib-
ute to the contradictory findings and thus represent a seri-
ous problem for association studies [11]. In order to try
and predict when PS would be a concern, Wacholder et al.
used the CRR [1]. These authors reported, for example,
that for bladder cancer in European-Americans, the CRR
indicated only moderate distortion due to PS. However,
the CRR indicates only the magnitude of the distortion in
the relative risk; it tells us nothing about the probability of
finding a false indication of genetic association. The type I
error rate, on the other hand, provides a direct measure of
how often the null hypothesis (i.e. no association between
the genetic marker and disease) is falsely rejected. Other
expressions describing the extent of confounding exist
[12], but the publication by Wacholder using the CRR has
had a strong influence on current literature [13–16]. In
this work, we use computer simulations to determine the
effect of PS on the type I error rate over a wide range of
disease frequencies and marker allele frequencies.

This and the companion article [4] determine the effect
of PS on the type I error rate. This first article uses com-
puter simulations over a wide range of disease frequencies
and marker allele frequencies for two equal-sized popula-
tions. The second article uses a theoretical analysis to
extend this work to multiple sub-populations and unequal
sampling proportions [4]. This first article has three goals:
(1) Determine which combinations of population parame-
ters elevate the type I error rate and in particular, the mag-
nitude of the effect that disease prevalence has on the type
I error rate. (2) Determine how the CRR compares to the
type I error rate in describing the extent of bias in associa-
tion studies. (3) Derive a mathematical expression that
predicts the magnitude of the type I error rate.

Methods

Combinations of Population Parameters
Using our genome simulator [17], we simulated two populations

in equal proportions (POP1 and POP2). The sizes of these popula-
tions ranged from 700,000 to 10 million. These populations were
simulated with varying disease prevalences and marker allele fre-
quencies (see below). We randomly mixed the two populations to
produce a combined population, from which we selected case-control
datasets, thus simulating the situation in which a sample is drawn
from a mixed population. From this combined population, we ran-
domly sampled 5000 datasets, each with 50, 100, or 300 cases and
controls. We determined how many of these samples yielded a ¯2

value 63.84 (nominal critical value for test significance of 5%). In all
simulations, there was no association between the marker and dis-
ease in the subpopulations, i.e., the marker allele was unrelated to
disease. Therefore, the proportion of datasets yielding ̄ 2 6 3.84 gave
the type I error rate or false positive rate.

We examined 160 parameter combinations. Let Ki represent dis-
ease prevalence, and pi, marker allele frequency, in population i. In
the first 80 combinations (Set A), POP1 had a ‘high’ disease preva-
lence of K1 = 0.10 and a marker allele frequency p1 = 0.2. Note that
for marker allele frequency pi, the carrier frequency (i.e., the frequen-
cy of individuals in the population who carry that marker allele) is
pi + 2 pi (1 – pi ), under the assumption of Hardy-Weinberg equilibri-
um. POP2 had 80 different combinations of K2 and p2, representing
all pairings of ten disease prevalence ratios K2/K1 = 0.1, 0.2, ..., 1.0
with eight marker allele frequency differences p2 – p1 = 0.0,
0.1, ..., 0.7. For the second 80 combinations (Set B), POP1 had a
‘low’ disease prevalence of K1 = 0.01; marker allele frequency was
again p1 = 0.2. POP2’s parameters were chosen to represent the same
disease prevalence ratios and marker allele frequency differences as
for Set A. We included the full range of disease prevalence ratios and
marker allele frequency differences to illustrate situations in which
the type I error rate is inflated. We included the extreme ends (e.g.,
marker allele frequency differences = 0.7 in different subpopulations)
to give some idea of upper bounds on possible type I error rate.
Table 1 shows the actual values for the 160 input parameter combi-
nations. For each of these 160 combinations, we selected samples of
50, 100, and 300 cases and controls.

Appendix A gives full details of how we generated and mixed the
populations and created case and control samples.

Confounding Risk Ratio 
We compared the observed type I error rate with the observed

CRR [1], defined as the ratio of the crude odds ratio (OR) to the
adjusted OR:

CRR o 
RRun

RRadj
,

where RRun and RRadj are the unadjusted (for the confounder) and
adjusted risk ratios, respectively. Denoting the confounder (i.e. sub-
population) by C, and the presence of marker allele by M and its
absence by MP, the above expression becomes

CRR o 
™k Pr �C = k AM �RRk

™kPr �C= k AMP �RRk
,

where RRk is the risk of the disease in subpopulation k given M,
divided by the risk of the disease in subpopulation k given MP [1].
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Fig. 1. Plots of type I error rate for each ratio
of disease prevalence for Set 1 (population 1
disease prevalence = 10% and marker allele
frequency = 0.2) and 100 cases and controls.
DR = Disease ratio.

Table 1. Listing of 160 input parameter
combinations

Set A Population 1: Disease prevalence K1 is fixed at 0.1, and marker allele frequency pi is
fixed at 0.2 (carrier frequency = 0.36). Population 2: Parameters include all pairings of the
following 10 values of K2 with the following 8 values of p2:

10 values of K2
Ratio 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
K2 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

8 values of p2
Diff. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Carr. 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99

Set B Population 1: Disease prevalence K1 is fixed at 0.01, and marker allele frequency pi
is fixed at 0.2 (carrier frequency = 0.36). Population 2: Parameters include all pairings of the
following 10 values of K2 with the following 8 values of p2:

10 values of K2
Ratio 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
K2 0.010 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001

8 values of p2
Diff. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Carr. 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99

Ratio = disease prevalence ratio; Diff. = marker allele frequency difference; Carr. = carrier
frequency.
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For the observed crude OR, we calculated the average OR of all
5000 case-control datasets in each simulation. For the observed
adjusted OR, we calculated the average Mantel-Haenszel adjusted
OR [18].

Relationship between Marker Allele Difference, Prevalence, and
Type I Error Rate
We define a population stratification statistic, ¢, which is a stan-

dardized measure of the difference between the proportions of
affected (denoted as s) and unaffected (denoted as t ) individuals with
the marker (Pr �M AD � and Pr �M ADP �, respectively) in the total popu-
lation:

s = 
d1m1 + d2m2

d1 + d2
, t = 

d1m1 + d2m2 – m1 – m2

d1 + d2 –2
(1)

Appendix B gives the mathematical details. In this formula, d1 and d2
are the disease prevalences, and m1 and m2, the carrier frequencies in
population 1 and population 2, respectively. The populations and the
number of cases and controls are assumed to be of equal size (n cases
and n controls). Then we define:

¢ = As – t A� 2n
(s + t )(2 – s – t )

. (2)

When either the disease prevalences or marker allele frequencies
are equal in the two populations, ¢ becomes 0. As the disease preva-
lences and marker allele frequencies increasingly differed in the two
populations, ¢ increases correspondingly. The s – t (expression 2) is
well-known in the literature as the case-control effect and has been
used to quantify the extent of bias [19]. Our expression is based on
the same principles as the expression reported in 1999 [12], but this
one is simplified and standardized. In the companion article (part II,
in this issue) [4], we extend this formula to any number of subpopula-
tions and unequal sampling proportions.

Results

Combinations of Population Parameters
Table 2A–C shows the type I error rates for the 80 com-

binations of disease prevalences K and marker allele fre-
quencies p in Set A (POP1 disease prevalence = 10%), for
sample sizes 50, 100, and 300 cases and controls. As
expected, when either the disease prevalences or the
marker allele frequencies were equal in both populations
(i.e., left column and bottom row of the tables), the type I
error rate was not inflated over the nominal value of 5%.
For the other parameter combinations, the type I error
rate increased as the parameters increasingly differed
between the two populations and could easily exceed 50%
or even be considerably higher. Figure 1 shows the type I
error rates as a function of marker allele frequency differ-
ence and disease prevalence ratio for Set A with sample
size of 100 cases and controls.

Table 3A–C shows the same combinations for Set B
(POP1 disease prevalence = 1%). The results of these

Table 2. Type I error rate (false positive rate) for Set A (population 1
disease prevalence = 10% and marker allele frequency = 0.2)

Disease
prevalence
ratio

Marker frequency difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A Sample size = 50 cases and controls

0.1 0.05 0.10 0.25 0.41 0.58 0.69 0.76 0.80
0.2 0.06 0.09 0.18 0.30 0.42 0.51 0.58 0.63
0.3 0.05 0.08 0.14 0.21 0.30 0.37 0.43 0.46
0.4 0.05 0.07 0.11 0.16 0.22 0.26 0.29 0.32
0.5 0.04 0.06 0.09 0.12 0.15 0.18 0.20 0.21
0.6 0.05 0.06 0.08 0.09 0.11 0.12 0.14 0.14
0.7 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.09
0.8 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.07
0.9 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.05
1.0 0.05 0.05 0.06 0.06 0.06 0.05 0.05 0.05

B Sample size = 100 cases and controls

0.1 0.05 0.15 0.42 0.68 0.85 0.93 0.96 0.98
0.2 0.05 0.12 0.30 0.53 0.69 0.81 0.87 0.90
0.3 0.05 0.10 0.22 0.38 0.51 0.62 0.70 0.75
0.4 0.05 0.08 0.16 0.26 0.36 0.45 0.51 0.55
0.5 0.05 0.07 0.12 0.18 0.24 0.31 0.35 0.38
0.6 0.05 0.06 0.09 0.12 0.16 0.19 0.23 0.24
0.7 0.05 0.06 0.07 0.09 0.12 0.13 0.13 0.15
0.8 0.05 0.05 0.06 0.07 0.08 0.08 0.08 0.09
0.9 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.06
1.0 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05

C Sample size = 300 cases and controls

0.1 0.05 0.36 0.85 0.99 1.00 1.00 1.00 1.00
0.2 0.05 0.25 0.68 0.92 0.99 1.00 1.00 1.00
0.3 0.05 0.17 0.50 0.78 0.93 0.98 0.99 1.00
0.4 0.05 0.14 0.36 0.60 0.78 0.88 0.93 0.95
0.5 0.05 0.10 0.23 0.40 0.56 0.69 0.77 0.81
0.6 0.05 0.08 0.16 0.27 0.37 0.46 0.54 0.59
0.7 0.05 0.06 0.10 0.16 0.22 0.26 0.31 0.34
0.8 0.04 0.05 0.07 0.09 0.11 0.13 0.15 0.17
0.9 0.04 0.05 0.06 0.07 0.07 0.07 0.08 0.08
1.0 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.05

combinations were similar to those in Set A. Thus, the
type I error rate is not substantially affected by changes in
the disease prevalence between 1 and 10%.

Confounding Risk Ratio
Table 4 shows the inverse of the observed CRR in Set

A (POP1 disease prevalence = 10%) for sample size 100
cases and controls. We took the inverse of the observed
CRRs for ease of interpretation. These values are similar
to those found by Wacholder [1]. While the observed
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Table 3. Type I error rate for Set B (population 1 disease preva-
lence = 1% and marker allele frequency = 0.2)

Disease
prevalence
ratio

Marker frequency difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A Sample size = 50 cases and controls

0.1 0.05 0.10 0.22 0.37 0.51 0.63 0.71 0.76
0.2 0.05 0.09 0.17 0.28 0.39 0.48 0.55 0.58
0.3 0.05 0.08 0.12 0.19 0.26 0.32 0.38 0.40
0.4 0.05 0.07 0.10 0.15 0.19 0.23 0.26 0.29
0.5 0.05 0.07 0.09 0.11 0.14 0.17 0.19 0.20
0.6 0.05 0.06 0.08 0.09 0.10 0.12 0.12 0.13
0.7 0.04 0.05 0.06 0.07 0.07 0.07 0.08 0.08
0.8 0.05 0.06 0.06 0.06 0.07 0.06 0.07 0.06
0.9 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.05
1.0 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05

B Sample size = 100 cases and controls

0.1 0.05 0.14 0.38 0.64 0.81 0.91 0.94 0.96
0.2 0.05 0.11 0.28 0.46 0.64 0.75 0.82 0.86
0.3 0.05 0.09 0.20 0.33 0.47 0.58 0.66 0.69
0.4 0.05 0.08 0.14 0.22 0.30 0.39 0.45 0.48
0.5 0.05 0.08 0.12 0.17 0.22 0.27 0.32 0.34
0.6 0.05 0.06 0.08 0.11 0.15 0.17 0.19 0.21
0.7 0.05 0.07 0.08 0.08 0.10 0.11 0.12 0.12
0.8 0.05 0.05 0.06 0.06 0.07 0.07 0.07 0.07
0.9 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
1.0 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05

C Sample size = 300 cases and controls

0.1 0.05 0.32 0.80 0.97 1.00 1.00 1.00 1.00
0.2 0.05 0.25 0.66 0.89 0.98 1.00 1.00 1.00
0.3 0.05 0.17 0.47 0.73 0.89 0.96 0.98 0.99
0.4 0.05 0.13 0.32 0.53 0.72 0.82 0.89 0.91
0.5 0.05 0.11 0.23 0.37 0.53 0.65 0.73 0.78
0.6 0.05 0.08 0.14 0.23 0.34 0.43 0.50 0.54
0.7 0.05 0.07 0.09 0.13 0.18 0.21 0.26 0.28
0.8 0.05 0.06 0.07 0.09 0.10 0.11 0.13 0.14
0.9 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07
1.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 4. Inverse of the confounding risk ratio (CRR) for Set A (pop-
ulation 1 disease prevalence = 10% and marker allele frequency =
0.2); Sample size = 100 cases and controls

Disease
prevalence
ratio

Marker frequency difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 1.01 1.34 1.68 2.06 2.43 2.78 3.08 3.27
0.2 1.00 1.26 1.53 1.79 2.07 2.31 2.52 2.66
0.3 1.01 1.21 1.41 1.61 1.81 2.00 2.16 2.26
0.4 1.00 1.16 1.31 1.46 1.61 1.75 1.86 1.93
0.5 1.00 1.12 1.24 1.35 1.46 1.56 1.64 1.70
0.6 1.00 1.09 1.18 1.26 1.35 1.43 1.49 1.53
0.7 1.00 1.06 1.12 1.18 1.24 1.29 1.34 1.38
0.8 1.00 1.04 1.08 1.12 1.16 1.20 1.23 1.26
0.9 1.00 1.02 1.04 1.06 1.08 1.11 1.13 1.14
1.0 1.00 1.00 1.01 1.01 1.02 1.03 1.04 1.05

CRR values were only ‘moderately’ inflated over 1.00, the
corresponding type I error rate can be quite large. For
example, while the CRR is ‘only’ 1.46 when the disease
ratio = 0.5 and the marker allele frequency difference =
0.4, the corresponding type I error rate is 24% (see discus-
sion). Thus, for this combination of parameters, 24% of
data sets would show statistically significant evidence of a
disease-marker association as opposed to 5%. The CRR
value of 1.46, while apparently reflecting only a modest
increase in relative risk, does not indicate the almost five-

fold increase in the probability of falsely finding evidence
for association.

Relationship between Marker Allele Difference,
Prevalence, and Type I Error Rate
As noted above, the type I error rate increased as the

disease prevalence and/or marker allele frequency in-
creasingly differed in the two populations. For Set A with
100 cases and control, the type I error rate and ¢ are high-
ly correlated (correlation = 0.98) and the proportion of
variation of type I error rate explained by ¢ is also high
(R2 = 96%). Figure 2 illustrates the sigmoidal relationship
between type I error rate and ¢. When we take the logit of
the type I error rate, the relationship is linear (logit type I
error rate = 1.62¢ – 3.13) with a concordant index of c =
85.8% [20]. Figure 3 shows this line. Thus, ¢ statistic is
highly predictive of the type I error rate. Elsewhere, we
have derived a general formula to incorporate any num-
ber of subpopulations and unequal population sizes [4].

Discussion

The main goals of this study were (1) to show to what
extent population stratification can inflate the type I error
rate; (2) to show how the CRR compares to the type I error
rate in describing the extent of bias in association studies,
and (3) to derive a mathematical expression that predicts
the magnitude of the type I error rate.
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Fig. 2. ¢ vs. type I error rate. Scatterplot of
type I error rate and ¢ and for Set A (popula-
tion 1 disease prevalence = 1% and marker
allele frequency = 0.2) with 100 cases and
controls. Polynomial fitted to datapoints.

Fig. 3. ¢ vs. logit type I error rate. Scatter-
plot of ¢ and logit type I error rate for Set A
(population 1 disease prevalence = 1% and
marker allele frequency = 0.2) with 100 cases
and controls. Line fitted to datapoints.

Inflation of Type 1 Error Rate
We have shown that even with moderate sample sizes

(100 cases and 100 controls) and with disease prevalences
of 1 and 10%, many combinations of disease prevalence
ratios and marker allele frequency differences between
the component populations can elevate the type I error
rate. The type I error rate is not elevated when the disease
prevalence ratio equals 1.0 or when the marker allele fre-
quency difference is 0 in the two populations. As ex-
pected, when type I error rate differences exist (i.e., when
the prevalence ratio is not 1.0 and the marker allele differ-

ence is not 0) the type I error rate also increases with
increasing sample sizes (e.g., 300 cases and 300 controls)
[21]. Studies that do not account for ethnic background
may exhibit artificial association. For example, one study
found an association between monoamine oxidase and
manic-depressive illness using a case-control design but
did not find an association using a family-based design
[22]. While newer methods exist to adjust for population
stratification [19], many studies do not account for eth-
nicity, which may have led to inconsistency in the litera-
ture [6].
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Table 5. Type I error rate for Set C (population 1 disease preva-
lence = 1% and marker allele frequency = 0.1); Sample size = 100
cases and controls

Disease
prevalence
ratio

Marker frequency difference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.05 0.22 0.59 0.85 0.96 0.99 1.00 1.00
0.2 0.05 0.17 0.43 0.67 0.83 0.92 0.96 0.98
0.3 0.05 0.13 0.30 0.49 0.66 0.79 0.87 0.91
0.4 0.05 0.11 0.21 0.34 0.49 0.60 0.69 0.75
0.5 0.05 0.08 0.15 0.24 0.33 0.42 0.49 0.55
0.6 0.05 0.07 0.10 0.15 0.21 0.27 0.32 0.35
0.7 0.05 0.06 0.08 0.11 0.14 0.17 0.19 0.22
0.8 0.05 0.06 0.07 0.08 0.10 0.11 0.12 0.13
0.9 0.05 0.05 0.05 0.06 0.06 0.07 0.07 0.07
1.0 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.05

Note that the type I error rate is not substantially
affected by changing the disease prevalence in population
1 from 1 to 10%. To further test the effect of prevalence,
we increased the disease prevalence to 40% in population
1 with little change in results (data not shown). On the
other hand, the marker allele frequency in population 1
does make a difference. We tested 80 parameter combina-
tions (Set C) with p1 = 0.1 (and K1 = 0.10) for a sample
size of 100 cases and controls. The lower marker allele
frequency notably raised the type I error rate, as shown in
table 5 (compare with table 2, part B).

Comparison of FRP with CRR as a Predictor of the
Effect of PS on Association Results
The CRRs derived from the parameters used in our

simulation were similar in magnitude to those found by
Wacholder (2000). However, the type I error rate corre-
sponding to small or moderate increases in CRR were
often highly elevated, a fact not easily discerned by merely
looking at the magnitude of the CRR. Thus, while an
inflation of the observed risk ratio from, for example, 1.0
to 1.4 may not appear severe, it may in fact represent a
quite substantial increase in the chance of a finding being
a false positive. Therefore, the CRR provides a relatively
poor indicator of the magnitude of the increase in type I
error rate. The CRR answers a different question: What is
the magnitude of the distortion? In addition, since hy-
pothesis testing approaches are used to evaluate whether
or not a specific marker is associated with a disease, an
elevation of the type I error rate rather than the CRR is
the appropriate measure of distortion. Studies of genetic

association generally report whether or not a specific
marker is statistically different in cases and controls (i.e.,
hypothesis testing). However, many of these studies are
not large enough to reach statistical significance for genes
of modest effect [6, 23] and may have contributed to the
lack of consistency [6–8]. Instead, attention should be on
the effect size and confidence interval [24].

The fundamental difference between the CRR and the
type I error rate corresponds to that between estimation
and hypothesis testing. The CRR gives an idea of the mag-
nitude of bias due to population stratification, but no
indication of how meaningful that magnitude is for the
given sample size. The type I error rate indicates ‘statisti-
cal significance’ of the bias but does not indicate its mag-
nitude. Analogously, if we were comparing the means of
two normal distributions (e.g., mean height between two
groups of people), a mean height difference of, say, 2.5
inches, would not be meaningful by itself, without either a
hypothesis test or a confidence interval. Thus, whereas
Wacholder says that ‘bias is remarkably small even when
the range of genotype frequencies is extremely large’ [1],
we have shown that relatively small CRR values can
actually represent highly inflated type I error rate. More-
over, for any given CRR value, the type I error rate
becomes more inflated as sample size increases.

We certainly do not want to exaggerate the effects of
population stratification on association studies. If any-
thing, we were originally predisposed the other way, i.e.,
toward believing that other people may have exaggerated
the concerns about population stratification. We were sur-
prised by our findings in this work. We now believe the
situation is more nuanced than we had originally thought.
Wacholder’s work has made people question the danger
and magnitude of population stratification, which is good.
But for some, the pendulum has swung back the other
way, i.e., toward, ‘it turns out that population stratifica-
tion need not be a concern at all’. Unfortunately, this is
also an oversimplification. This is what we have tried to
convey in these papers.

Mathematical Expression
We have derived a formula, ¢, which is a standardized

measure of the difference between the proportions of
affected and unaffected individuals with the marker in
the total population. This statistic is highly correlated
with and predictive of the type I error rate.
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Conclusions

What combination of disease prevalence and marker
allele frequency difference can we expect in an actual
study of disease? While PS can elevate the type I error
rate, the question remains: Are disease prevalence differ-
ences or marker frequency differences in different popula-
tions so great that PS is actually a problem? The differ-
ence in marker allele frequencies in the two populations
simulated ranged from 0 to 0.70, with the lowest marker
allele frequency in one population being 0.1. Just how
often these values are found in realistic situations is
unclear. Variations in allele frequency are reported in the
literature [25]. A recent paper found significant evidence
for population stratification in real populations [26]. To
get an idea of the variation in the frequency of marker
alleles in different population, we reviewed the ALelle
FREquency Database (ALFRED) [27], which lists the fre-
quency distribution of alleles (including mutations in
known genes, CA repeats, and SNPs) at a number of loci
in different populations. While many loci have allele fre-
quencies that are similar across populations (e.g. allele fre-
quency for PV92 Alu insertion of the CDH13 locus: Bre-
tons = 0.27; Cypriot Greeks = 0.25; Spaniards = 0.25) oth-
er alleles had highly variable frequencies (e.g., TPA25 Alu
insertion: Ingush = 0.22; Bretons = 0.32; Finns 0.65;
French 0.72). Even within a supposedly geographically
homogeneous population, different studies reported pop-
ulation allele frequencies at variance with one another.
For example, the allele frequencies for the ACE Alu inser-
tion ranged from 0.27 to 0.48 in three independent sam-
ples of Yucatan Mayas and 0.64 to 0.96 in three indepen-
dent samples of Malaysians. Reported variation of intra-
population allele frequencies suggests that either sample
sizes from which the frequencies were estimated were too
small or there may be unexpectedly high variation in what
are thought to be homogeneous populations. Whatever
the reason, there is the potential for significant differences
in allele frequencies in different populations and even,
apparently, within the same population. The values re-
ported above are for known genes. How SNPs will vary
across populations remains to be determined.

What about realistic variations of disease prevalence?
The ratio of disease prevalence generated in these simula-
tions ranged from 1.0 down to 0.1. While some diseases,
such as epilepsy [28], appear uniform throughout various
populations, there are notable examples of diseases with
markedly different prevalence rates in different popula-
tions. For example, the worldwide prevalence of many
cancers varies substantially [29] as well as type 1 diabetes

[30]. Even within the United States, cancer rates vary sub-
stantially by state [31]. For example, the US Caucasian
male bladder cancer rate ranges from 4.34/100,000 per-
son-years (UT) to 8.58/100,000 person-years (RI) – a dis-
ease ratio of 0.51. Moreover, not only may estimates of
disease prevalence be based on small sample sizes, but the
definition of the disease, the diagnostic criteria for the dis-
ease, the precision of the diagnosis, and cultural factors in
disease definition may all play a role to make comparison
of some diseases among populations most problematic.

Thus, it is difficult to determine what range of differ-
ences to expect in allele frequencies of marker alleles
among populations, although that may eventually be de-
termined. Determining disease frequencies for the so-
called common complex diseases will be more difficult.
More importantly, the extent of mixing of different popu-
lations in the large cities of the developed world, where
many disease studies take place, is difficult to determine.

In this first paper, we limited ourselves to two specif-
ics: First, the findings are based on only two component
subpopulations. Most studies may well include individu-
als from more than two subpopulations. Wacholder
(2000) concluded that the PS is expected to be less of a
concern as more subpopulations are included (e.g. four to
eight ethnic groups). In the second article [4], we use a
theoretical analysis to extend the number of sub-popula-
tions and relaxed the assumption of equal sampling pro-
portions. In that paper, we show that bias can sometimes
be quite substantial even with a very large number of sub-
populations. Secondly, we have addressed only the ques-
tion of mixtures of ‘intact’ populations. These observa-
tions do not address the problem of population admix-
ture, which we define as the offspring of parents from dif-
ferent populations, which may, in fact, be the more
important question when assessing disease-marker asso-
ciation than is population stratification. More simula-
tions are needed to determine if similar elevations in type
I error rate in admixed populations.

Recent methods, known as genomic control, have been
proposed to adjust for population stratification. These
methods use a panel of unlinked markers to determine if
PS exists and if so, provide a means to adjust. While these
methods are intuitively appealing, to date none have been
rigorously tested to determine their efficacy. Recent data
suggest that genomic control may not adjust appropriately
(i.e., over or under-conservative) [21, 32]. Thus, the per-
formance of these methods is currently unknown. Further
evaluation of these methods is necessary before they are
adopted [33].
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Appendix A 

We created our simulated samples in the following three steps:
Step 1. Generate the Populations. Beginning with Set A, we gener-

ated between 700,000 and 1 million random individuals for POP1
(K1 = 0.10, p1 = 0.2). Then for each combination of K2 and p2 we
created a POP2, by generating the same number of random individu-
als as POP1. This yielded 81 populations for Set A (1 POP1 and 80
versions of POP2). We then repeated the procedure for Set B (K1 =
0.01, p1 = 0.2), yielding 81 more populations, except we generated
between 3.2 and 10 million individuals in each population.

Step 2. Create 160 Pairs of Case Files and Control Files. Begin-
ning with Set A, for each of the 80 population pairs, we mixed the
populations as follows: Generate a random number to choose either
POP1 or POP2 with equal probability. From the chosen population,
take the ‘next’ individual (in sequence as those populations were orig-
inally generated). Put that individual into either the Case or Control
File, depending on whether the individual is affected or unaffected.
Repeat the process until one or the other population is depleted. This
procedure yielded 80 pairs of Case Files and Control Files for Set A.
We then repeated the procedure for Set B, yielding 80 more pairs of
Case and Control Files. All Case Files contained at least 40,000 ran-
dom individuals (many over 100,000), and all Control Files con-
tained at least 600,000 individuals.

Step 3. Create Samples from the Case and Control Files. For each
of the 160 pairs of Case and Control Files, we randomly sampled
individuals (with replacement) from the mixed population to create
samples of size 50, 100, or 300 cases and controls. Every simulation
consisted of 5,000 samples.

Appendix B

Derivation of ¢

Notation and Terminology
Let there be two subpopulations of the same size. Define the

events: D = person in population has disease; M = genotype in popu-
lation has marker; Ci = person is selected from subpopulation i
(i = 1, 2).

We define the following probabilities: di = Pr �D ACi �; mi =
Pr �M ACi �; Pr �C1� = Pr �C2� = 1/2. By assumption, M and D are not
associated within any subpopulation, hence

Pr �M ∩ D ACi� = mi di

Derivation
The population proportion of affected individuals in the popula-

tion with the marker is:

s = Pr �M AD � =

Pr �M ∩ D AC1�Pr �C1� + Pr �M ∩ D AC2�Pr �C2�
Pr �D AC1�Pr �C1� + Pr �D AC2�Pr �C2�

(by Bayes’ Rule)

= 

m1d1

2
+ 

m2d2

2
d1

2
+ 

d2

2

= 
m1d1 + m2d2

d1 + d2
.

Similarly, the proportion of unaffected individuals in the population
with the marker is

t = Pr �M ADP � = 
m1(1 – d1) + m2(1 – d2)

2 – (d1 + d2)
.

Let ŝ and t̂ represent the observed proportions of cases and controls,
respectively, that have the marker allele (cf., e.g., (1) in text). We
define the ¢̂ statistic as the standardized difference between these
two proportions in the sample:

¢̂ = A ŝ – t̂
SE (ŝ – t̂)

A = 
A ŝ – t̂ A

��ŝ + t̂
2

��1 – 
ŝ + t̂

2
��2

n
�

= A ŝ – t̂ A� 2n
(ŝ + t̂ )(2 – ŝ – t̂ )

.

For n large, the sample statistics ŝ, t̂ and ¢̂ approach the correspond-
ing population values s, t and ¢ respectively, so that the magnitude of
the standardized difference between the proportions of affected and
unaffected individuals with marker in the total population is approx-
imately:

¢ = As – t A � 2n
(s + t )(2 – s – t )

,

which is equation (2) in the text.
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