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Editorial Commentary

Can We Increase the Likelihood of Success for Future Association
Studies in Epilepsy?
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Recently, association studies have become a popular
tool to elucidate the genetic basis of diseases that show a
high familial recurrence rate but probably are not caused
by one single gene. These diseases, like many of the com-
mon forms of idiopathic generalized epilepsy, are thought
to be caused by several interacting genes, with perhaps also
an environmental component to the disease mechanisms.
Each of these genes is supposed to have only a small effect
and is neither necessary nor sufficient to cause epilepsy
by itself.

Association studies are considered to be a better tool
to detect those genes of small effect than, for example,
linkage studies (Risch and Merikangas, 1996). Genetic
association is observed at a population level by assess-
ing correlations between genetic variants and the epilepsy
phenotype reflecting the original genotype (haplotype/
genetic makeup) of a single founder that has been al-
tered by historical recombinations. However, proof that
association indeed exists would need replication of the
original findings in independent samples, and ultimately,
demonstration that the associated allele(s) can contribute
to the disease phenotype by altering biological functions
(Colhoun et al., 2003).

We expect the number of association studies in epilepsy
to increase in the future because of the relative ease of
collecting subjects (only patients and healthy controls are
needed compared to whole families in linkage studies)
and determining genetic variants (high through-put facil-
ities can process thousands of genotypes per day at ever
decreasing costs).

The expanding use of this association approach
raises several issues, some of them exemplified by the
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manuscript by Barratt and colleagues published in this
issue of Epilepsia. Sander et al. (2000) reported an asso-
ciation of idiopathic absence epilepsy (IAE) with a func-
tional variant in the μ-opoid receptor (OPRM) (p = 0.02).
In their replication study, Barratt and colleagues found no
difference in the frequency of this variant between their
cases with either IAE or idiopathic generalized epilepsy
and their controls. But they also noted a key difference be-
tween their study and that of Sander et al.: the frequency of
this variant was statistically highly significantly different
between control groups (p = 0.0001)!

How can we explain this observation? There are several
scenarios to consider depending on whether we assume
that there truly is or is not an association with OPRM and
epilepsy. Under the assumption of a true association, the
failure of Barratt and colleagues to replicate this finding
can be caused by either low power of the sample, popu-
lation stratification in their sample, or inadequate control
group. Barratt and colleagues addressed the issue of power
in their manuscript and showed that their sample is large
enough to detect an association if there is one. Population
stratification (PS) refers to the situation when the sample
is drawn from two different populations, each differing in
the frequency of the disease and the marker alleles. PS is
very unlikely in this case, because in order to mask the
assumed association in one population, the other popula-
tion would have to have a negative association with the
same allele of OPRM (i.e., in one population this allele is
contributing to the disease whereas in the other popula-
tion it is protective). The higher frequency of the variant
in the control sample of Barratt and colleagues could be
caused by the existence of epilepsy cases among the con-
trol sample. This is also very unlikely, because Barratt
and colleagues report that all controls were screened for
epilepsy.

Under the assumption of no association, we have to
declare Sander et al.’s (2000) result a false positive.
One major concern of spurious association results is
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population stratification. Sander et al. (2000) report only
that all their patients and controls are of German descent.
It is possible that their sample contains some hidden pop-
ulation structure that is not obvious from the geographical
area from which they were drawn. However, in a subse-
quent paper published by the same group (Lorenz et al.,
2006), the authors performed a structured analysis in a
much larger sample and found roughly equal frequency
distributions at neutral loci among their patients and con-
trols. It is therefore likely that the sample used in the initial
analysis (2000) is contained in the latter analysis (2006),
and that even if there is cryptic population substructure in
this sample, the effect is probably minimal.

Another, albeit unlikely, explanation of the low fre-
quency of the genetic variant in OPRM in the control
sample of Sander et al. is natural selection against this
variant in controls. This leaves us with the most likely
explanation for the observed constellation—that random
variation of the frequency of the genetic variant in the
controls has led to the observed association.

When we perform a statistical test, we always calculate
the p-value, or the probability of obtaining a result as ex-
treme as (or more extreme than) that observed, given that
chance alone is present. Using a nominal significance level
of 0.05 this probability is 5%, indicating that under the
null hypothesis, 1 of 20 tests on average is a false positive.
However, when we are using the same data set to test for
association with various candidate genes or chromosomal
regions, we are performing more than one test. In every
region, usually several markers with a variable number of
alleles are tested. Each allele is tested for correlation with
the disease, thus representing one test. Multiple testing
therefore becomes an issue, and the probability of obtain-
ing a false positive result increases. The most commonly
used method to correct for this increase in type I error
is the Bonferroni method, in which the nominal p-value
(i.e., the p-value obtained for one test) is multiplied by
the number of tests performed. The Bonferroni method is
sometimes conservative and overcorrecting because often
the markers are not truly independent. Another concern
is that we are looking for genes with small effect, and by
applying too stringent significance criteria we might miss
a true association.

Skepticism about the correctness of many positive find-
ings, derived from the observation that consistent replica-
tion is only obtained for a very small minority of asso-
ciation studies (Hirschhorn and Altshuler, 2002; Healy,
2006), has led some journals to produce guidelines for ge-
netic association studies of complex disorders (Editorial,
1999; Bird et al, 2001; Little et al, 2002; Cardon and Bell,
2001) or to openly discourage submission, unless key bio-
logic insights are disclosed (Marks, 2004). Guidelines for
genetic association studies in epilepsy were published in
Epilepsia in 2004 (Tan et al., 2004).

A key issue in increasing confidence in reported as-
sociations is replication and biological plausibility. How-
ever, nonsignificant or negative replication studies, when
designed properly, will be also helpful to identify false
positive results. As the study by Barratt and colleagues
showed, such studies can also highlight the importance of
rigorous design and evaluation strategies for future associ-
ation studies. Certain basic precautionary steps should be
taken so that future positive findings are viewed with more
credence, and not merely as false positives or artifacts:.

TESTING (AND CORRECTING) FOR
POPULATION STRATIFICATION

There exist several methods that either avoid PS, or test
and correct for it. The Transmission-Disequilibrium Test
(TDT) was devised as a test for association that is not
affected by PS (Spielman et al., 1993). It measures the
preferential transmission of an associated allele from par-
ents to offspring and thus requires “trios,” that is, cases
and their respective parents. Such samples may be harder
to collect than the standard samples for association stud-
ies; further, the TDT turned out to be not very power-
ful. A standard case–control design has been preferred
therefore by many researchers (Healy, 2006). However,
cases and controls should be matched for ethnicity, and
preferably should come from the same source population
(or geographical area). Although this caution might re-
duce confounding by PS, it is always possible for cryptic
substructure to exist in the study population. A simple chi-
square test for Hardy–Weinberg equilibrium (HWE) in the
controls can detect substructure, but this test is well known
to have poor power unless very large samples (∼500) are
used (Halliburton, 2003). If only cryptic substructure is
present, this test would be hopelessly underpowered. Thus,
failure to detect deviations from HWE in controls does not
discard PS of the magnitude that can adversely affect as-
sociation studies.

Pritchard and Rosenberg (1999) proposed the use of
a panel of markers unlinked to, and also not in linkage
disequilibrium (LD) with, the test locus, known as null
(or neutral) markers. These markers can be used to test for
PS in the sample of cases and controls. This test is based
on the fact that the sum of the chi-squares at these neutral
loci has a chi-square distribution under the hypothesis of
no PS. Any deviation from this distribution therefore has
to be considered as an indication for PS. More recently,
a related test has been proposed, which has the flexibility
of being able to test either for any PS or only for PS that
is practically important (Gorroochurn et al., 2006a).

PS will lead to an inflation of the chi-square test for as-
sociation and thus to more false positives than the nominal
significance level indicates. Several methods have been
recently proposed to correct for this inflation. Using the
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information from the neutral loci, the chi-square statistic
can be adjusted to reflect this inflation at the test locus
(also called Genomic Controls (GC); Devlin and Roeder,
1999; Devlin et al., 2001). Another method to approach
the problem of PS is structured association (SA; Pritchard
et al., 2000a; 2000b). SA applies a Bayesian clustering
method to a panel of neutral loci to infer the number of
subpopulations and the subpopulation membership of sub-
jects in a sample. Association between marker and disease
is then tested in each of these identified subpopulations.
Gorroochurn et al. (2006b) proposed a third method, delta-
centralization (DC), which uses a better approximation of
the test statistic than GC and avoids the computational
intensiveness of SA. It is easy to apply and furthermore
requires a relatively low number of neutral loci (about 20)
when the allele frequencies at these loci are matched to
those at the test locus.

We conclude, therefore, that with little increase in time
and money, positive association findings can be made
more robust and should become the “gold standard” for
future published results.

CORRECTING FOR MULTIPLE TESTING

As stated above, if several successive tests are per-
formed on the same data set, the overall (experiment-wise)
type I error (i.e., falsely rejecting the null hypothesis of
no association) increases. A reported p-value of 0.02 for
one experiment is associated with a different significance
level if only one experiment is performed or if it is part of
a series of tests. In the case of multiple testing, one should
either correct the p-value or at least report all the tests per-
formed so the reader can make an informed judgment and
interpretation of the finding.

Traditionally, the problem of multiple testing has been
addressed through a Bonferroni correction, which consists
of performing each of the L tests at an α/L level (where α is
the experiment-wise error). In genetic association studies
however, the number of tests performed becomes quickly
prohibitively large, thus making this procedure very con-
servative and the study underpowered to detect small but
true effects. For this situation, Benjamini and Hochberg
(1995) introduced the False Discovery Rate (FDR)—the
expected ratio of erroneous rejections to the number of
rejected hypotheses—as an appropriate error rate to con-
trol.

SAMPLE SIZE: PROS AND CONS

Pros: Under the “common disease, common variant”
hypothesis, sample size is of concern. Here we hypothe-
size that a genetic variant is neither necessary nor sufficient
to cause disease, that it is relatively frequent, and that it
is also found in controls albeit less often. Each of these
factors will contribute to requiring a large sample size to
detect a small effect.

But once an association is found, it is important to repli-
cate this finding (to confirm or refute it), especially since
so many association reports have turned out to be spuri-
ous (e.g., Healy, 2006). Power is specifically an issue in
replication studies that fail to replicate a reported associ-
ation. The failure to demonstrate an existing association
might be because the study is not sufficiently powered to
detect a small effect size. In addition, it has been shown
that the effect size is often overestimated in initial studies
and tends to be lower in replication studies, thus requiring
an even larger sample size than in the initial positive study.

But even when equal effect size is assumed in both
initial and replication studies, Greenwald et al. (1996) have
shown that—even in case of true association findings—a
replication of the study will not necessarily have a high
probability of yielding significance. If p ≈ 0.05 in the
initial study, for example, then the replication probability
is close to only 50%! For a replication probability of 80%,
one would need an association result that is significant at
p ≈ 0.005. While we do not recommend reporting results
only for such low p values, these numbers certainly suggest
that one should treat a study with a p value only slightly
smaller than 0.05 as an interesting but still unconvincing
support of the alternative hypothesis, and bear in mind
that such a study has an almost equal chance of not being
replicated in the future.

Cons: A strong word of caution is in order here. In
the absence of any bias (such as PS), or if bias is present
but corrected for, increasing the sample size reduces ran-
dom error and increases power to detect any true disease-
marker association. However if PS is present and not cor-
rected for, increasing the sample size increases the con-
founding effects of PS and further elevates the rejection
rate relative to the nominal significance level. In effect,
when no true association exists, the test for association
will have more power to detect PS! This explains why
cryptic substructure can be a nuisance when large case–
control studies are performed. In a nutshell, it is not only
pointless but also detrimental to use very large sample
sizes if the investigator does not correct for PS before car-
rying out a test for association.

Another consideration in epilepsy association studies
is heterogeneity. We already know that some of the rare
monogenic epilepsies can be caused by different genes,
and there is no reason to believe that the more common
epilepsies should not show heterogeneity as well. Het-
erogeneity increases random error in association studies,
so that larger sample sizes are required to detect a given
effect size. Alternative design techniques, however, may
be applied to increase the effect size by choosing more
homogenous subgroups of epilepsy. A variation that is
involved in juvenile myoclonic epilepsy (JME), for ex-
ample, might be detectable in a large sample of patients
with idiopathic generalized epilepsy, but only a fraction of
the sample size would have been necessary to detect this
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effect if only JME patients were chosen. While this exam-
ple may sound trivial, the point we want to make here is
that more is not always better, and careful clinical evalu-
ation might sometimes be a more useful strategy.

CHOOSING “BETTER” PHENOTYPES

In the last decade more than 50 association studies have
been performed in epilepsy, but gene defects for common
polygenic epilepsies have not yet been identified, lead-
ing to some skepticism about the association-study ap-
proach (reviewed by Tan et al., 2004). In addition to the
methodological issues highlighted above, the selection of
phenotypes that have been included in such studies de-
serves a comment; failures to replicate positive findings,
or negative or false positive results, might also be related
to phenotypic heterogeneity.

Idiopathic generalized epilepsies (IGEs), the most com-
mon target of association studies in epilepsy, include sev-
eral subtypes based on age of seizures onset, predomi-
nant seizure types, and EEG features (ILAE 1989; Engel
et al., 2001). Classification of individual patients is of-
ten challenging because existing categories are not mutu-
ally exclusive, and atypical traits or features common to
more than one syndrome are frequent. For this reason a
syndrome category of IGEs with variable phenotypes has
been suggested as a new concept (Engel et al., 2001).

Classification of families for genetic studies is also diffi-
cult because multiple IGE syndromes often coexist within
the same family, suggesting that IGEs share a common
genetic background (Marini et al., 2004). It was therefore
postulated that there might be genes that raise seizure sus-
ceptibility for IGE in general and that they act in combina-
tion with other genes that determine the specific seizure
type (Durner et al., 2001). This concept of “seizure”—
rather than “syndrome”—specific genes is also supported
by Winawer et al. (2005) who found that families are more
concordant for the same seizure type than IGE syndrome.
These findings suggest that, for the purpose of genetic
studies (and especially linkage studies), in addition to the
syndrome approach, seizure types should also be taken
into account when phenotyping patients or families.

While “lumping” different IGE phenotypes together
might help to identify the more general genes, this ap-
proach will not be helpful with the identification of
syndrome- or seizure-specific genes. But even with clin-
ically homogeneous syndromes, causal heterogeneity in
epilepsy is expected because of the effects of a number of
“susceptibility” genes.

Unlike in linkage studies, we have no means to iden-
tify heterogeneity in a sample for association studies. In
addition, heterogeneity will increase the sample size nec-
essary to detect an association. We are therefore proposing
to use clinical means to minimize heterogeneity and en-
rich a sample with patients as similar as possible. The goal

should be not to collect “more” patients but “better” pa-
tients. This approach also means being more restrictive in
the inclusion of patients—and patients with a syndrome
diagnosis, but with atypical features, should be excluded.
There are a variety of symptoms one could use to en-
sure more clinical similarity: For example, one could use
EEG criteria like photosensitivity or polyspike wave to
select for JME patients with or without photosensitivity,
or for absence patients with strictly 3 Hz spike-wave and
no polyspike wave. Alternatively, we could select only pa-
tients with a specific syndrome that show a certain phar-
macospecificity, showing complete seizure remission un-
der one specific drug. Another way to be more restrictive
would be to choose a certain age-of-onset cutoff. Typical
CAE cases may be limited to an age-of-onset between 5
and 7 years to minimize the chances that the patients have
absence seizures that are in fact associated with Juvenile
Absence Epilepsy on the upper age spectrum, or epilepsy
with myoclonic-astatic seizures (Doose syndrome) at the
lower end. This list is by no means exhaustive, and it
will be a challenge for observant clinicians to increase the
likelihood of success for future association studies and
identification of epilepsy-related genetic variations by bet-
ter defining the phenotype. Importantly, these criteria can
then also be used for replication studies, thus ensuring that
similar patients are studied and that nonreplication of pos-
itive results are not caused by inclusion of different forms
of epilepsy.

In addition, we could be more restrictive not only in
our choice of epilepsy cases but also controls. Instead of
only requiring that the controls do not have epilepsy, we
might collect controls that also have no family history of
epilepsy. Or we might even subject them to an EEG ex-
amination to rule out the presence of epileptiform activity
in the EEG.

Reducing genetic heterogeneity by careful, informed
phenotype definition, including both clinical and EEG in-
formation is essential for gene identification because it
allows division of the epilepsies into groups more likely
to share susceptibility genes, and improves the power to
find sound linkage or association. Unfortunately, IGEs
might respond to a genetic model for which very large
sample sizes, on the order of thousands, are required (Tan
et al., 2004), with the consequent, unavoidable need for
collaboration between centers and risk of underestimating
heterogeneity and phenotyping inconsistencies.

Many researchers have voiced skepticism about an as-
sociation approach to find genes involved in epilepsy, par-
tially because of so many conflicting results. But before
we throw out the baby with the bathwater, we believe
we should first try to improve on this strategy by care-
ful selection of cases and controls, avoiding possible bias,
honest reporting of number of tests performed, and pow-
ering these studies enough so an effect can be detected.
As we have shown, there will be many positive findings
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that have a low chance of replication. However, that might
not necessarily indicate that all of these findings are false
positives. The challenge will be to identify which ones are
true associations.
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