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Abstract
This paper presents an analysis of the Unicode encoding scheme for Tibetan from the 

standpoint of morpheme entropy.  We can speak of two levels of entropy in Tibetan: 
syllable entropy (a measure of the probability of the sequential occurrence of syllables), and 
morpheme entropy (a measure of the probability of the sequential occurrence of characters 
or morphemes), the latter being a measure of the redundancy of the language.  Syllable 
entropy is a purely statistical calculation that is a function of the domain of the literature 
sampled, while morpheme entropy, we show, is relatively domain independent given a 
statistically significant sample.  Morpheme entropy can be calculated statistically, though a 
theoretical upper bound can also be postulated based on language dependent morphology 
rules.  This paper presents both theoretical and statistical estimates of the morpheme 
entropy for Tibetan, and explores the Tibetan Unicode encoding scheme in relation to data 
compression, and other issues analyzed in light of entropy-based language modeling.

Introduction
Although derived from the context of statistical mechanics and thermodynamics, the 

concept of entropy was introduced to the realm of information theory by Claude Shannon 
who defined it simply as a measure of the uncertainty or amount of disorder in a system.  
Shannon postulated the Fundamental Coding Theorem that stated that the lower bound 
to the average number of bits per symbol needed to encode a message was given by its 
entropy.  Since the entropy of a system relates to the unpredictability of a data point in a 
sequence given a previous data point, if the entropy of a system can be reduced, then the 
predictability of the next data point increases.  The key to decreasing entropy and increas-
ing the predictability of elements in a sequence is contingent on the representation (i.e., 
language model) of the system.

In 1948, Claude Shannon published “A Mathematical Theory of Communication”1 in 
which he discussed the uncertainty or amount of disorder of a communications system.  
From the set of axioms that he proposed to model this behavior, he identified a quantity 
H, which he called entropy.  Analogous to its role in a thermodynamics context, Entropy 
can also be considered as a measure of randomness in a system, and can be utilized both 
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to verify the accurate arrival of messages and as a mechanism for reducing the physical size of mes-
sages while retaining their meaning.

In constructing various language models, there are a number of perceived advantages to the con-
struction of a minimal entropy model:

•	the	 language	model	 that	 represents	 a	 data	 sequence	 in	 a	manner	 that	 lowers	 the	
overall entropy without compromising its representational power is a more efficient 
medium;2

•	the	entropy	of	a	language	is	a	lower	bound	for	the	compression	ratio	of	any	com-
pression algorithm for linguistic data, and thus a language model so constructed 
approaches this limit;

•	the	theoretical	entropy	value	represents	a	measure	of	the	complexity	of	the	language	
script.

In this paper we explore the calculation and implications of both the theoretical and statistical 
measures of the entropy of the Tibetan language.

The Information Measure of Symbol Sequences
In many information systems, not every symbol is equally likely to be used in a given com-

munication.  Looking at the English language for example, the letter “e” is 12 times more 
likely to occur than other letters in a statistically representative text sample.3  This uneven 
distribution of symbols in a language is also a characteristic of distinctive groups of letters 
or words (n-grams).4

When extended to the ASCII symbol set, it is immediately obvious that each of the 256 
symbols in ASCII is not likely to occur an equal number of times in any meaningful com-
munication (with the obvious, trivial exception of a communication consisting of the ASCII 
set).  Since digital communications occur in the medium of binary values (1 and 0), if a 
message is encoded in binary in the most efficient manner possible, then the average number 
of binary digits (“bits”) required per symbol of the source language is given by the entropy.  
Hence, the entropy of a set of equally likely symbols (such as the digits 0–9 in a table of 
random numbers) is simply the logarithm (base 2) of the number of symbols in the set, or in 
this case, log

2
(10) = 2.30 bits per symbol.  The entropy of the English alphabet — which 

contains 27 case-insensitive characters (26 letters and a space) — is similarly: log
2
(27) or 

a theoretical upper limit of 4.76 bits per symbol.  Since meaningful communications in the 
English language tend not to consist of random sequences of characters, but rather contain 
an uneven distribution of them, the actual entropy of the English language is considerably 
lower, and is calculated as follows:

H = - (P1log2
P1 + P2log2

P2 + ... Pilog2
Pi + ... + P27log2

P27)

Where, Pi is the probability of occurrence of the ith character in the English alphabet, and the 
symbol H is the entropy.  Simplified, the algorithm is:

             n
H = - ∑ Pilog2

Pi
          i = 1
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Where, n represents the n possible distinct characters or symbols in a language or code.  Since 
the probability, Pi of any given symbol (i.e., letter) xi is contingent upon the previous letter(s), the 
contingent (bi-gram) probability function takes the form of:

            n
Pi = - ∑ P(xi|xj)
          j = 1

with the obvious extrapolation to an n-gram model.  Performing statistical calculations for a n = 8 
model, Shannon calculated the entropy of printed English to be roughly 2.3 bits per symbol; carry-
ing the calculation up to n = 100, he estimated the entropy to be 1.3 bits per symbol.  The English 
language, he concluded was roughly 75 % redundant in its formal representation.5

The Entropy Calculation for Literary Tibetan
Applying these calculations to the Tibetan language, we can compute upper-bound esti-

mates for the entropy of printed Tibetan.  In the traditional presentation of the Tibetan lan-
guage — omitting ornamental flourishes and foreign words — there are forty-four discrete 
morphemes: thirty letters, four explicit vowels, three super-scripts, four sub-scripts, a syllable 
delimiter (tsheg), a phrase delimiter (shad), and whitespace.  Assuming a simple even distri-
bution (Pi = 1/44) yields an upper-bound for the morpheme entropy of Tibetan of H = 5.46 
bits per symbol.

Unlike English, however, which has a small number of generic letter combination rules for nor-
mative text (“q” followed by “u” etc.), Tibetan possesses a finite set of morphological constraint 
rules for syllable formation.  These rules are summarized and illustrated in Table 1 and Figure 1.

Table 1. Morpheme Topology Restrictions

    Prefix                                  Superscript

e [ d f z               c
⊗
   v
⊗
   n
⊗

  

Root Letters

q w e r t y u i o p [ ] a s d f g h j k l ; z x c v b n m ,

        Subscripts                Vowels

⊗ K ⊗ X ⊗ C ⊗ √               ⊗ # ⊗ & ⊗ * ⊗ (  

          Suffix                        Secondary Suffix

e r [ ] d f z c v n         n
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Ignoring non-Tibetan constructions (Sanskrit, etc.), it is possible to calculate the morpheme 
entropy, H, of Tibetan.  Assuming an even distribution over topologically-constrained morphemes 
as described above (Table 1) in combination with traditional morpheme restriction rules, it is pos-
sible to recalculate probability values according to an order-1 finite context language model (i.e., 
conditional bi-grams) where the probability Pi is given by:

            44
Pi = - ∑ P(xi|xj)
           j = 1

This yields an entropy of H = 4.82 bits per symbol (Figure 2). 

Fig. 1. Morpheme Classes in an Example Tibetan Syllable

Fig. 2. Bi-gram Probabilities — 44 Morphemes (Theoretical)
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Unicode
The Tibetan encoding within Unicode was first proposed in December 19906 and based 

on a Sanskritic model relying on a virāma.  This version, although structurally similar to 
character encoding model used for many of the Indic scripts, was subsequently deprecated 
and removed.  The foundation for the current Unicode Tibetan scheme reappeared in al-
tered form in version 2.0.0 of the standard (July 1996) and encoded all morphemes given in 
Table 1 (above) except the three superscripts.  In this encoding, the three superscripts were 
conflated with their full height equivalent characters, and a second set of zero-width, sub-
joined Tibetan characters was added.  The question of whether or not the three superscripts 
are the same morphemes7 or characters8 as their full height equivalent characters — since 
different positions within an individual syllable convey different phonemic and collational 
information — was debated at length.  For the sake of systematic processing and encoding, 
however, the decision was made to define these superscripts as the same characters as their 
full height equivalent characters (although they do appear to be different morphemes) and to 
map them to the same code points.  One of the issues addressed in this paper is whether or 
not this distinction is statistically significant in terms of the entropy of the language model.

In its currently established form, the Unicode encoding for Tibetan does not employ the 
traditional morpheme distinctions.  Rather, this standard gives preference to a “stack-friend-
ly” encoding (suitable for keyboard interface design), which necessitates back-tracking to 
properly disambiguate the three superscript morphemes from traditional “root” letters.  This 
has the unfortunate side-effect of complicating the implementation of traditional sort rules 
for Tibetan,9 but the advantage of simplifying “stack” construction for a rendering engine.

 In the Unicode scheme, fifty-six characters are required to completely specify the same 
set of data as the traditional forty-four given above.  These fifty-six characters consist of the 
thirty letters (filling the prefix, root, superscript, and two suffix positions), nineteen sub-
joined consonants (representing root letters which take a superscript and the four traditional 
subscripts), four explicit vowels, two logical delimiters for syllable and phrase boundaries, 
and whitespace (Table 2).

Table 2. Unicode characters needed to represent normative Tibetan

Root Letters and “Superscripts”

q w e r t y u i o p [ ] a s d f g h j k l ; z x c v b n m ,

Subscripts and Subscribed Root Letters

⊗ œ ⊗ ´ ⊗ ® ⊗ † ⊗ ¨ ⊗ I ⊗ ø ⊗ “ ⊗ ‘ ⊗ å ⊗ ∂ ⊗ ƒ ⊗ © ⊗ ∆ ⊗ K ⊗ X ⊗ C ⊗ √ ⊗ µ
Vowels           Delimiters

⊗ # ⊗ & ⊗ * ⊗ (            “ ”   - !
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A simple even distribution (Pi = 1/56) yields an upper-bound for the morpheme entropy of 
Tibetan of H = 5.81 bits per symbol, but assuming an even distribution over topologically-
constrained characters based on traditional character restriction rules with probabilities de-
rived from an order-1 finite context language model yields a morpheme entropy of H = 4.79 
bits per symbol (Figure 3).

It is possible that this measure could vary when all Sanskritic letter combinations are 
accounted for.  For example, in his design of the Tibetan encoding for the “Comparative 
Kangyur and Tengyur” (bka’ bstan dpe bsdur ma) project, Tashi Tsering identified over 7,000 
Sanskritic character stacks.10  Although many are rare, some occurring only once in the 
canon, their existence must be allowed for in any encoding and compression scheme.  None-
theless, there is no statistically significant difference between the two language models.

Statistical Calculations of Morpheme Entropy
As can be seen, both the traditional and Unicode encodings yield similar estimates of the 

morphological entropy of Tibetan, roughly 4.8 bits per symbol.  A statistical estimate was 
calculated using the Unicode encoding with an order-1 finite context language model over 
the ACIP data set. The bi-gram probabilities (Figure 4) yield an estimate of the entropy at 
H = 4.35 bits per symbol.  

The first observation, immediately apparent in Figure 4, is that the bi-gram probabilities 
are heavily dominated by syllable boundary effects, that is, the characters that appear adja-
cent to syllable delimiters (tsheg) and phrase delimiters (shad).  This can be seen when the 
contingent (bi-gram) probabilities are collapsed into simple probabilities.  Figure 5 shows a 
comparison between the theoretical and statistically derived probabilities for the individual 
morphemes.

Fig. 3. Bi-gram Probabilities — 56 Morphemes (Theoretical)
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Fig. 4. Bi-gram Probabilities — 56 Morphemes (Statistical)

Fig. 5. Theoretical vs. Statistical Probabilities

A second observation — also apparent from Figure 5 — is that excluding syllable boundary 
effects, the statistical probabilities for letter bi-grams follow their theoretical values closely.  
Taking into account language features that are outside the scope of a bi-gram language model 
— the fact that the average length of a Tibetan syllable is five characters, and the average 
length of a shad-delimited phrase is sixty characters (i.e., twelve syllables) — the theoretical 
probabilities can be appropriately re-weighted and the resultant entropy calculated.  The 
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result is a theoretical morpheme entropy value of H = 4.37 bps, which agrees closely with 
the statistical calculation, and hence appears to be a valid approximation of the morpheme 
entropy of literary Tibetan.

Variable Compression Experiments

While the above experiments were conducted on a statistically large sample, it is possible 
to compute the morpheme entropy for smaller, more homogeneous texts and text collections.  
For example, the statistical entropy values for a subset of texts and a few individual texts are 
given in Table 3.

Sample
Entropy, H

(bps)
twenty Bka’-’gyur texts 4.29
Diamond Sutra 4.17
Candrakīrti’s Prasannapadā 3.78

Hence, in practical applications, a variable compression rate can be achieved for some in-
dividual texts that is considerably lower than both the theoretical and statistical averages, 
though quickly approaches the statistical limit with as few as twenty texts.

An Entropy-based Data Compression Algorithm

Most text compression algorithms are tailored for Euro-American languages.  In examining 
the performance of these for non-Euro-American languages, Vines and Zobel found that no 
currently publicly available text compression techniques performed very well for Chinese, 
and their application to that language required either excessive memory or yielded only mod-
erate compression.11  Tibetan, being an alphabetic language however, does not suffer from 
the same problems as Chinese does.  Hence, any generic entropy compression routine would 
yield a usable degree of compression for either transmission or storage.

Furthermore, it has been shown that although Tibetan is an unsegmented language pos-
sessing syllable- and phrase-delimiters with no explicit word boundaries, by invoking a small 
number of grammar rules a shallow parser can yield 95% of all word boundaries.  The result 
is that in retrieval experiments comparing words against n-grams, the average length of a 
Tibetan word was determined to be two syllables.  Consequently, a bi-gram probability func-
tion would be sufficient to approximate syllable-level entropy for Tibetan.

Although other constraint rules could be brought to bear in n > 2 morpheme entropy cal-
culations, given the observed dominance of syllable boundary probabilities, it is more likely 
that any gains in compression would be a reflection of syllable-level effects rather than a 
refined morpheme-level language model.

Table 3. Entropy Values for Limited samples of literary Tibetan texts
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Final Remarks
This paper represents an initial foray into Tibetan language entropy research as a founda-

tion for additional inquiry.  While a morphologically-constrained bi-gram language model 
offers a working upper limit for the letter entropy of literary Tibetan (H = 4.8 bps), it is 
insufficient to truly approximate a statistical estimate.  When the complexity of the language 
model is slightly increased by the incorporation of syllable and phrase boundary probabilities 
however, the theoretical estimate and statistical estimate converge.  As a result, we estimate 
morpheme entropy for literary Tibetan at H = 4.4 bps.

Although the significance of compression routines has been lessened of late in light of substantial 
progress in storage media and communications bandwidth, language entropy research remains 
valuable in terms of other secondary applications beyond text compression such as spell-checking, 
data corruption recovery, and OCR error detection.  In addition, extrapolations of this research 
into larger n-gram language models including syllable n-grams offers potential as a parser evalua-
tion metric and as a tool for neologism detection.

Notes
Claude Shannon, “A Mathematical Theory of Communication,”  1. Bell System Technical Jour-
nal, 27 [1948]: 379-423, 623-656.
Caroline Lyon, and Bob Dickerson, 2. Exploiting statistical characteristics of word sequences for 
the efficient coding of speech. Technical report. Computer Science Department, University of 
Hertfordshire (1999).
Gilbert Held, 3. Understanding Data Communications. NY: Addison Wesley (2000), p.93.
A two symbol (or word) pair can be referred to as a bi-gram, similarly tri-grams, etc.; an in-4. 
dexable sequence of n symbols is generically referred to as a set of n-grams.  Common high 
frequency letter bi-grams in the English language, for example, are “th” and “er.”
The immediate implication of Shannon’s calculation being that it would be theoretically pos-5. 
sible to reconstruct a message even if every other letter were lost or corrupted.  Claude Shan-
non, “Prediction and entropy of printed English,”  Bell System Technical Journal, 30 [1951]: 
50-64.
The Unicode Consortium, 6. Unicode 1.0. Draft Standard, n.p., December 1990.
That is, “a minimally distinctive unit of writing in the context of a particular writing system.”  7. 
The Unicode Standard, Version 3.0.
That is, “the abstract meaning and/or shape, rather than a specific shape.”  8. The Unicode Stan-
dard, Version 3.0.
For example, a problem with conflation of 9. c- and c-fe(-, etc. is that only (a minimum) n = 3 
(tri-gram) probability calculation would sufficiently disambiguate the occurrence of one from 
the other.  Similarly, the character bi-grams involving n are insufficiently distinguished in the 
instances: dn-, dnf-, dNƒ, and between -n, -N, where expectation values would shift radically 
between root, superscript, and suffix usages.  Root and suffix uses are sufficiently determined 
by a bi-gram probability, though root vs. superscript usage is not, and the conflation results in 
either a greater entropy for a low n-value Unicode language model, or necessitating a higher 
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n-value language model.  For a discussion of Tibetan sort rules under Unicode, refer to: Rob-
ert Chilton, “Sorting Unicode Tibetan using a Multi-Weight Collation Algorithm,” Paper 
presented at the Tenth International Association for Tibetan Studies (IATS-X) Conference, 
Oxford, United Kingdom, September 6-12, 2003.
private communication.10. 
Phil Vines and Justin Zobel, “Compression Techniques for Chinese Text,” p.1300.11. 
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