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Abstract

In a game of common interest there is one action vector that all
players prefer to every other. Yet there may be multiple Pareto-ranked
Nash equilibria in the game and the ”coordination problem” refers to
the fact that rational equilibrium play canot rule out Pareto-dominated
equilibria. In this paper, I prove that two elements - asynchronicity and
a finite horizon - are sufficient to uniquely select the Pareto-dominant
action vector (in subgame perfect equilibrium play).

1 Introduction

In a common interest game there is one action vector that all players prefer
to every other action vector. There may however be multiple Pareto-ranked
Nash equilibria in the game. The ”coordination problem” refers to the fact
that rational equilibrium play canot rule out these other Pareto-dominated
equilibria.

The principal contribution of this paper is to show that coordination
is not a problem when a common interest game is played over a long but
finite horizon provided players asynchronize their moves. More generally,
coordination is not a problem if players have the option to asynchronize
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moves. In either case there is a unique equilibrium outcome and it is one
in which the Pareto-dominant action gets played for all but a uniformly
bounded number of initial periods.

A secondary contribution of the paper is to introduce an endogenous
model of timing, a model in which players decide when they want to move,
a model that nests the standard simultaneous move model as well as the
alternating move model.

Common interest games have been extensively studied in recent times
and have been used to explain a variety of phenomena, including the Great
Depression, bank runs, credit cycles, the Poverty Trap in developing economies,
and the speed of adoption of new technologies in the presence of network
externalities. See, for example, the analysis and detailed references in the
book by Cooper (1999) - and for references in Industrial Organization, Tirole
(1989). One special case - and one studied in many of these applications - is
pure coordination where players agree on the entire preference order and not
just on the best element. Note that repeating the common interest stage-
game, and applying subgame perfection as the equilibrium criterion, makes
the coordination problem even a little worse because a variety of behavior
are supportable as equilibria (thanks to the folk theorems of Benoit-Krishna
(1985) and Fudenberg-Maskin (1986)).1

An asynchronous game is one in which at any period t at most one
player gets to change her action (and those of the others remain fixed at
their last action choice). Payoffs are, however, ongoing: the period t payoff
vector depends on the action that was selected by the mover in that period
as well as on the fixed actions of the others. A leading example of an
asynchronous game is a game of alternating moves.2 Asynchronicity often
reflects technological or economic constraints such as time to build or costs
to changing the status quo.

In an asynchronous game, as also in a simultaneous move game, the
timing of moves is exogenously specified. A second contribution of this

1Experimental evidence is mixed on whether players in ”real-life” always play the
Pareto-dominant action vector. See, for example, Cooper et. al (1990) and Van Huyck et.
al (1990). Also see Section 6 for a comment on the experimental literature in light of the
results in this paper.

2There is a growing literature on alternating move games. In Industrial Organization
theory there is the important paper pair of Maskin-Tirole (1988 a,b), a much earlier
treatment by Cyert-DeGroot (1970) and a more recent one of Wallner (1999). Alternating
move pure coordination games have been recently studied by Lagunoff-Matsui (1998) and
private provision of public goods by Gale (1995). More general treatments may be found
in Friedman (1988), Bhaskar-Vega-Redondo (1998), and Wen (1998).
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paper is to endogenize that timing. An asynchronisable game is one in
which players can choose when to move. Within some constraints to be
detailed in Section 2, players can choose any pattern of moves - they can
move simultaneously or in an alternating sequence or some intermediate
hybrid pattern.

I consider finite horizon games and use backward induction to study the
set of subgame perfect equilibria of common interest games. Two main
results are proved.

The first result is for asynchronous games (and, by corollary, for alternat-
ing move games). In that case there is a uniform upper bound, say Γ, within
which every subgame perfect equilibrium converges to the Pareto-dominant
action vector of the stage game (and is absorbed thereafter). Moreover the
bound is independent of the horizon: hence, whenever the horizon is long,
there is no coordination problem except in the first (few) periods. In partic-
ular, the unique limiting average equilibrium payoff is the Pareto-dominant
payoff.3

This contrasts with results from finite horizon simultaneous play of a
common interest game. In such games, the constant play of a Pareto-
dominated stage equilibrium is a subgame perfect equilibrium - and for
long horizons, every individually rational payoff is an equilibrium payoff.
And that brings up the question: which of these two dramatically differ-
ent conclusions is more robust? That of simultaneous moves or that of
asynchronous/alternating moves?

I study that question within the structure of asynchronisable games.
The option of asynchronising moves has a striking implication: again equi-
libria are always efficient - there is a maximal number of periods of inefficient
play in any subgame perfect equilibrium. Yet again the bound is uniform;
Γ is independent of the horizon (and initial level of miscoordination). In
particular, even if the players are initially stuck in a simultaneous move
inefficient equilibrium they will transit to Pareto-dominant play within the
maximal number of periods.

In terms of the literature, the two papers closest to the current one are
Lagunoff-Matsui (1997) and Gale (1995). Lagunoff-Matsui (1997) studied
infinite horizon alternating move pure coordination games and showed that
the unique equilibrium outcome for high discount factors is the Pareto-

3The same bound Γ also applies for all initial level of miscoordination, i.e., it does not
matter how many players are playing inefficiently to begin with or indeed what they are
playing.
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dominant one.4 Gale (1995) studied public provision of private goods
and proved an efficiency result. Although the model in that paper is quite
different from the current one, the induction method of proof is similar.5

For a further discussion of the two papers, please see Section 6.1.
In terms of the remaining literature, some authors have suggested aug-

menting the game structure. There have been appeals to bounded rational-
ity - memory bounds in the case of Aumann-Sorin (1989) or computability
restrictions in the case of Anderlini (1991) - or to pre-play communication
as in the case of Matsui (1991). A common lesson from all these papers is
that one needs surprisingly strong assumptions to rule out Pareto-dominated
equilibria.

The two main results of this paper show that two oft-used elements -
(potential) asynchronicity and a finite horizon - are together sufficient to
uniquely select the Pareto-dominant action vector. The two elements are
also minimally necessary since without either one there is a folk theorem in
common interest games. Benoit-Krishna (1985) prove that for simultaneous
move finite horizon games (Benoit-Krishna 1985). There is also a folk
theorem for asynchronous infinite horizon games (Dutta 1996).6

The finiteness of horizon allows us to employ backward induction and
that has an important implication for asynchronous common interest games:
if somehow, sometime, players converge to the Pareto-dominant action vec-
tor, then they stay there for the remaining periods. That players have the
option to asynchronise then plays a critical role in a second (and lengthy!)
argument. This argument shows that in asynchronous and asynchronisable
games, a sequence of players must build play up to the absorbing Pareto-
dominant state.

To summarize, in the standard simultaneous move model players are
forced to synchronise their move times. And that seemingly innocent as-
sumption makes all the difference in the world. When players have the
option to asynchronise - or are required to do so - coordination is not a
problem.

4The 1997 paper applied to pure coordination games. Recently, in Lagunoff-Matsui
(2002), they have partially extended the result to more general stage-games.

5An important feature of the model is irreversibility in actions. Gale (2000) studies a
more general model of irreversibility.

6Dutta (1996) proved a folk theorem for infinite horizon stochastic games. Stochastic
games, as is well-known, are like repeated games except with state variables. An asyn-
chronous move game has a state variable which is the fixed action of players other than
the current mover.
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The model is discussed in Section 2. Section 3 presents the basic re-
sults for the alternating moves case while Section 4 generalizes the results
to allow for endogenous asynchronisable moves. Section 5 discusses some
other results and extensions and Section 6 concludes with a discussion of
policy implications and the relevant literature. Some of the longer proofs
are collected in section 7.

2 Model

In this section, I present two models - an asynchronous game and an asyn-
chronisable game. But first I will discuss in some detail common interest
stage games.

2.1 Common Interest Stage Game

Let G denote an N player stage game (in strategic form). Denote player i’s
strategy set Ai and her payoff function πi, where, as usual, πi: A→ <, and
A ≡ A1 × A2 × A3 × .... AN is the set of strategy tuples for the N players.
Suppose that Ai is finite for every i.

Definition The stage game G is said to be a game of common interest if
there is a strategy tuple that gives each player her highest payoff in the game,
i.e., if ∃ ba ∈ A such that πi(ba) > πi(a) for all a 6= ba and for all players i =
1, 2, .... N .

A few examples will help clarify the definition.
Example 1 Pure Coordination Game - common preference order7

1\2 ba2 ea2ba1 1, 1 −1,−1ea1 −1,−1 0, 0

Example 2 General Coordination Game - common best element

1\2 ba2 ea2ba1 1, 1 −100,−1ea1 −1,−100 0, 0

Example 2 satisfies a property called strategic complementarity; the
increment πi(ba) − πi(eai, baj) - when player j plays the efficient action baj - is

7In a more general version of a pure coordination game, players agree on the ranking
over the payoff numbers πi(a) although their payoffs are not necessarily identical.
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larger than the corresponding increment πi(bai, eaj) − πi(ea) when j plays the
inefficient action.8 Not all common interest games satisfy strategic comple-
mentarity:

Example 3 Common Interest Game - common best element but not
strategic complementarity

1\2 ba2 ea2ba1 1, 1 −100,−1ea1 −1,−100 0, 0

a
0
2

0, 0
−200,−200

Here is a (simple) economic example of a common interest game.
Example 4 Partnership/Public Provision
Suppose that the N players jointly provide some input into a production

process that has the following indivisibility: if the action vector chosen is ba
= ba1, ba2 ... baN , then and only then is output produced. Suppose the payoff
to player i - when output is produced - is equal to πi− di(ba) while the payoff
to any other action vector a0 is − di(a0), where di(.) is (like) a disutility of
effort function. The stage game has common interest if πi > di(ba) − di(a0)
for all other action vectors a0.

Note that in each of the examples there are two pure strategy Nash
equilibria of the stage game: (ba1, ba2) and (ea1, ea2).9
2.2 Model 1 - (Exogenous) Asynchronous Game

Definition: An asynchronous game (with horizon T and stage game G)
is described by a player assignment function X: {1, 2, .. T} −→ {1, 2, ..
N}. At time t, player X(t) - and only that player - gets to move.

The fact that the assignment function is part of the game’s data is the
exogeneous part of the definition while the fact that only one player gets to
move in any period is the asynchronous part. 10

8In the literature, there are multiple terms for the same class of games. Aumann-Sorin
(1989) call a game that has a Pareto-dominant action vector, i.e., satisfies the definition
above, a game of common interest. I follow their terminology. Cooper (1999) - and some
other authors - call such games coordination games. However, the latter authors also
often impose strategic complementarity (and certain other conditions) in order to derive
their results. Consequently I will reserve the term coordination game for common interest
games that additionally satisfy strategic complementarity.

9In Example 4, the ea vector is an equilibrium if for every player di(ea) ≤ di(ai,ea−i) for
all ai.
10The analysis can be easily extended to the case where there may not be a mover in

certain periods.
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Whenever it is player i0s turn to move, he can choose any action ait
from the set of feasible actions in the stage game, Ai - and this action then
remains fixed till the next time i can change his action. Furthermore, payoffs
are ongoing, i.e., each player gets a payoff in every period t. If a−it denotes
the (fixed) action of all players other than the mover at time t, then the
payoff to player j in that period is given by πj(ait, a−it), j = 1, ... N .

The leading example of asynchronous games are alternating move
games in which the N players move sequentially, starting with player 1.
Hence, player i gets to first move in period i and then moves again in peri-
ods mN + i, for m = 1, 2, .. In this paper, I will discuss alternating move
games in detail and subsequently show in Section 5 that all the results hold
for arbitrary asynchronous games as well.

Since payoffs are ongoing, every asynchronous game needs a specification
of an initial action state a ≡ a1, ...aN for the game. Every action in that
initial state remains fixed in period 1 except the action choice of the period
1 mover. And so on. I will consider all possible initial action states.

2.3 Model 2 - (Endogenous) Asynchronisable Game

The more general model is one of endogenous timing in which players decide
a) when to move and b) whether or not to move asynchronously. The choice
of when to move will be modelled as follows: if a player chooses to next move
ζ periods from today then she cannot change her action for the next ζ − 1
periods. As regards b), a player can asynchronise her moves from those of
the other players in the following sense: once a player commits to next move
ζ periods from today, future movers cannot choose that exact same date as
their time of move. Needless to add, other current movers may also choose
to next move the same number of ζ periods from today.

In other words, whenever it is her time to move, a player does two things
- she chooses her next move-time, say, t+ ζ, and she chooses an action that
she plays in the current period t and that she commits to for periods t+ 1,
t + 2, ... t + ζ − 1.11 However that date can be chosen only if t + ζ was
not already picked as the next time of move by some player(s) in a period
before t. I will further impose the restriction that the longest period of
commitment is N , the number of players in the game.12

11Of course if t + ζ = t + 1, then she is not really committed to any action since she
gets to make an action choice in the very next period.
12I impose the restriction that the longest period of commitment is N for two reasons

- one, that is indeed the case with alternating moves and second to make the analysis

7



Let us consider some examples:
Example 1 Simultaneous Moves - Initially and Forever: Every player

has a move at time t and every player picks t+ 1 as the next time of move.
Futhermore, the same timing choices are made every period.

Example 2 Simultaneous Moves Transiting to Alternating Moves: Every
player has a move at time t (and so we begin with simultaneous moves and
all future dates are available to be chosen). In period t, player 1 picks
t+ ζ = t+ 1, player 2 picks t+ ζ = t+ 2, and so on through player N who
picks t+ ζ = t+N . Thereafter, the players are locked into the alternating
move structure.

More formally, we have:
Definition: A date t+ ζ is said to be available at t if no player chose it

as a time of next move in any of the periods t− 1, t− 2, ... t−N +1. Let
Θt be the set of dates available at t.

Definition: A time t strategy for any mover, say player i, is given by
a pair (ait, θit) where ait is an element from the set Ai and θit, the date of
next move, is an element of Θt.

Remark 1: An attempt to asynchronize may not succeed. For instance,
when there are multiple current movers, simultaneously some other player
might also pick the same currently available date for their next move.

Remark 2: In this model, once a player asynchronizes she is forever
asynchronized; thereafter, no one else can ever choose to move simultane-
ously with her nor can she choose to move simultaneously with the other
players. There is a more general model in which asynchronization might
be temporary; after some ”cycles” in which i moves by herself, she might
choose to move with other players (and vice-versa). The key idea in that
general model is that deciding at date t to move again at date t+1 is quite
different from deciding to move next at a date strictly greater than t + 1;
whereas the latter involves a commitment to hold a constant action for a
while there is no such commitment in the former case. Formally, in the
general model a player can choose to move either at date t + 1 or at any
available date thereafter.

One consequence of this expanded choice is that an alternating move
structure is no longer an absorbing state. It will be shown in Section 5.3
that the main theorem continues to hold for this general model. (Needless
to add, the proof is more cumbersome.)

interesting. The reader can convince himself that Pareto optimality is more likely to
emerge if players are allowed to make long commitments to the Pareto-optimal action.
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As with the exogenous move model, each player gets a payoff in every
period based on the actions chosen by the current mover(s) and the fixed
actions - if any - of the other player(s). Since payoffs are ongoing we have
to specify an initial state in this model as well. Again, I will be completely
agnostic and allow every possible initial state.

2.4 Finite Horizon

I study finite horizon games that end after period T (<∞). Lifetime payoffs
are evaluated according to the (undiscounted) average payoff; player i0s
evaluation of the payoff stream πi(at), t = 1, 2, ... T is given by

13

1

T

TX
t=1

πi(at) (1)

Note that both models are examples of dynamic or Markovian games
with the payoff-relevant state at time t being the fixed actions and the next
times of move of the non-movers. Let (at,θt) denote the state, at being the
previously determined actions and θt the next times of move. Obviously, in
Model 1, θt is exogeneously given while it is endogeneously determined in
Model 2. Hence in Model 1 the state is always an element of <2(N−1) while
in Model 2 it can range from the null vector (when every player is a mover)
to an element of <2N when no player is a mover.

For both models, strategies are defined in the usual way as history-
dependent action choices. A generic history up to period t, is a sequence
(a1,θ1), (a2,θ2), ... (at,θt) where (a1,θ1) is the initial state. A t− th period
strategy for a mover in that period is a history-dependent (mixed) action
choice. A complete strategy is a strategy specification for every move period
(and after every history). A strategy vector - one strategy for every player
- defines in the usual way a (possibly probabilistic) action choice for the
t− th period - and hence an expected payoff for each player in that period.
In addition, in Model 2, it also defines the player assignment function - the
timing of moves. The lifetime payoff for each player is then defined via the
undiscounted average of these periodic expected payoffs (as given by Eq. 1).

Since the game has a finite horizon, Subgame Perfect Equilibrium (SPE)
is determined via backward induction in both models. Consider period
T and a state (aT , θT ). Players who have a move in that period play a

13Everything that follows also applies to the case of discounting, under discount factor
δ. In that case the appropriate evaluation of lifetime payoffs is 1−δ

1−δT
PT

t=1
δt−1πi(at).
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simultaneous move game taking as given the fixed actions of the non-movers.
If only one player has a move - as would be the case in the exogenous move
model - then she picks a best response action at that state.

The equilibria in the family of last period subgames then determine equi-
libria in subgames involving the two periods T − 1 and T . And so on. Note
that in both models, the set of SPE payoffs is always history−independent;
the set of payoff vectors that can arise as a SPE in the subgame that starts
at date t and history (a1,θ1), (a2,θ2), ... (at,θt) only depends on the current
state at, θt (and the number of remaining periods T−t).14 A specific equilib-
rium might depend on history and to allow for this dependence I will write
a representative equilibrium payoff as vit(.; T ) and an equilibrium strategy
as α∗t (.;T ), where the argument in both functions is history up to period t.

This paper will investigate properties the equilibrium choice and value
sets must satisfy, when T is ”large”.

3 Alternating Moves

This section contains the first main theorem of this paper - an N−player al-
ternating move common interest game necessarily achieves efficiency within
a uniformly bounded number of periods. That the theorem applies to any
asynchronous game is shown in Section 5.

Theorem 1 Consider a family of finite horizon alternating move common
interest games that start from an initial state a1 and last T periods, T = 1, 2
... There are numbers Γ <∞ and (for every ² > 0) bT <∞ with the property
that for any pure strategy SPE, any horizon and for any initial state

Action Convergence - at every period t ≥ Γ, the Pareto-dominant
action vector ba is played.

Value Convergence - each player’s SPE payoff is within ² of the
Pareto-dominant payoff for horizons longer than bT , i.e., vi(.; T ) > bπi −
² for all T ≥ bT .

In other words, even if the players are ”mis-coordinated” initially, such
miscoordination will disappear within a fixed finite number of periods. Fur-
thermore, the number of periods required to correct such miscoordination is
independent of the initial state of the game, i.e., of what actions the players

14Note that in the perfect information setting of Model 1, optimal choices are, typically,
Markovian and unique. The only way that a mixed strategy SPE - or a history-dependent
SPE - can arise is from ties in the mover’s payoffs.
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are initially committed to. It is also independent of the games’s horizon; no
matter whether the horizon is T 0 say, or 10T 0, within Γ periods the Pareto-
dominant vector starts getting played by all players. And, finally, Γ is a
uniform upper bound that applies to every SPE.

3.1 Intuition for Theorem 1

To develop intuition, I discuss two examples - a two-player game and then,
to illustrate a problem that arises with more than two players, a three-
player version of that game. First consider Example 2, from Section 2.1,
reproduced here for easier access:

1\2 ba2 ea2ba1 1, 1 −100,−1ea1 −1,−100 0, 0

Suppose it is player 10s turn to move, and she has inherited the actionba2. If the current period is the very last period in the game, she can do no
better than play her half of the Pareto-dominant vector, i.e., play ba1. It is
not too difficult to see by backward induction that ba1 is the best response -
at state ba2 - even if the current period is not the last one. Hence, and this
is the first key idea, efficiency is an absorbing state - the best-response at
state baj is to play bai.

Suppose, on the other hand, that player 1 inherits the action ea2. Her
payoffs from playing ba1 are −100 followed by 1, 1, 1, ..... From playingea1 her current payoff is 0 and her future payoff depends on how she and
player 2 play in the resulting subgame (and that is known from backward
induction). There are two relevant cases to consider: a) player 2 will playba2 within the next 99 periods or b) he will not. In case a) it is better for
player 1 to free-ride and let player 2 bear the loss since over the next 99
periods 0, 0, ...0, −1 beats −100, 1, ... 1. On the other hand, in case b), it
is better for player 1 to initiate the switch to ba immediately since over the
100 or more periods 0, 0, ...0, −1 is worse than −100, 1, ... 1. The second
key idea then is that player i - who has the option to lock-in efficiency by
playing bai today - will pass on that option only if he knows he can free-ride
to efficiency within a bounded period. In particular, what is important is
not how many periods are left in the game but how many periods are left
before the current mover can free-ride.15

15In Example 2, the equilibrium is the following: neither player switches to bai when
11



Consider now a three-player version of Example 2.

1\2 ba2 ea2ba1 1, 1, 1 −100,−1,−100ea1 −1,−100,−100 −2,−2,−200

1\2 ba2 ea2ba1 −100,−100,−1 −200,−2,−2ea1 −2,−200,−2 0, 0, 0
3 plays ba3 3 plays ea3

As before, the Pareto-dominant action vector is ba whereas a Pareto-
dominated Nash equilibrium is ea. The analog of the first step above is
that once two of the players become coordinated, the three stay coordinated
forever thereafter; for example, if ever the game reaches the state (ba2, ba3) -
and it is player 10s turn to move - 1 can do no better than play ba1.

But the problem is that it now takes two to tango, i.e., neither player 2
nor 3 can unilaterally create the state (ba2, ba3). Indeed player 2 might not
want to get the ball rolling (by playing ba2) if he anticipates that 3 would not
play ba3 (and note that he gets the worst payoff of −200 by playing ba2 against
(ea1, ea3)). In turn, player 3 might not play ba3 since that too is very costly -
it generates the second worst payoff of −100 - and 3 might prefer someone
else bear that cost instead. Furthermore, since actions are reversible every
two periods, even if a player has currently chosen the efficient action other
players may not have assurance that such an action would not soon be
reversed. And so it appears that for want of ”coordinated sacrifices” the
kingdom might be lost.

Suppose that nevertheless 2 plays ba2 and creates the state (ea1, ba2) for
player 3. Note, player 3 could swallow the sacrifice of 100 and lock the
system into the Pareto dominant vector ba thereafter. The logic of Example
2 tells us that player 3 will pass only if she anticipates that a state such as
(ba1, ba2) will arise in the next Γ1 (≤ 99) periods.16

In turn we can now back up to player 2. Starting from the Pareto-
dominated action vector ea, he can a) move the system to semi-efficiency
- state (ea1, ba2) - in one step and he will know b) that within Γ1 periods
thereafter the system will move to full efficiency - state (bai, baj). In other
words, he can unilaterally move the system from zero efficiency to full
efficiency in at most Γ1 + 1 periods. Since, thankfully, it takes only one to

there are 100 or fewer periods remaining. The mover switches when there are 101, 103,
105, ... periods remaining but free-rides when there are 102, 104, 106,.. periods remaining.
16By playing ba3, player 3 guarantees a payoff stream of −100, 1, 1, 1, .... By playingea3, player 3 gets at most a payoff stream of −2, 0, 0, 0, ..... till such time as the Pareto-

dominant action gets played (and 1 thereafter). Evidently, player 3 will play ba3 unless
she is sure that she can free-ride within 99 periods.
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tango, player 2 will pass on such a unilateral initiation only if he is sure that
somebody else will initiate efficiency soon.17

3.2 Proof of Theorem 1

Step 1 - Full Efficiency is An Absorbing State

Lemma 2 In any SPE of any finite horizon alternating move common in-
terest game hT , Gi, regardless of the number of periods left, the unique best
response of every player i upon inheriting the Pareto-dominant action vectorbaj, j 6= i, is to play her part of the Pareto-dominant vector, i.e., for i = 1,
2, ... N , i 6= j, and for all t, α∗it(baj , T ) = bai.

Proof: The proof is by induction. Suppose that t = T . Evidently, the
lemma holds. Suppose therefore that it holds for all t = T , T−1, .. T−n+1.
Consider t = T − n. Suppose that player i inherits the Pareto-dominant
action baj as the fixed action of every other player. Her highest immediate
payoff arises from playing bai. By the induction hypothesis, her highest future
payoff also arises from playing bai - since that action will then get continued
for the remainder of the game.♦

Step 2 - An Induction Argument for Efficiency Buildup
The next step, that no matter where it starts, play must proceed to the

absorbing state in which all future movers are committed to the efficient
action will also be proved by induction but induction on the ”efficiency
level.” Call that state in which N − 1 players are committed to bai the
”N − 1 efficient” state. I will define a notion of intermediate efficiency and
show that if the efficiency level is, say, m then the current mover can always
increase it to at least m+ 1. By the induction hypothesis he can therefore
guarantee that full efficiency will be attained within, say, Γm+1 periods.
Hence in any best-response his lifetime payoffs have to be at least

(T − Γm+1 − 1)× bπi + (Γm+1 + 1)× πi (2)

17For instance, player 2 - by playing ba2 - can guarantee a lifetime payoff stream of
−200, −200, −200, ... 1, 1, 1, ... (where the sequence of −200 can last at most 100 periods
- see the previous footnote). On the other hand, by playing ea2 he can get at most a
payoff stream of 0, 0, ... till such time as the Pareto-dominant action vector gets locked
in. Clearly, player 2 has to anticipate that he can free-ride within 200 × 100 periods -
else he is better off by initiating efficiency.
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where πi is the lowest payoff in the game for player i. That immediately
implies that there must be a bound, say Γm, such that full efficiency is
attained within Γm periods starting from an m-efficient state. Indeed along
such a path the highest possible lifetime payoff for player i is

(T − Γm)× bπi + Γm × πi (3)

where πi is the second-highest payoff in the game for player i. The Γm
bound is therefore determied by the inequality

(T − Γm)× bπi + Γm × πi ≥ (T − Γm+1 − 1)× bπi + (Γm+1 + 1)× πi (4)

First, a definition.
Definition A state at is said to be N − 1 efficient if all N − 1 actions

that are fixed at date t are fixed at bai. If not all actions are fixed at bai, then
a state is said to be (m,k) − order efficient when i) exactly m components
are equal to bai, m = 0, 1, ... N − 2 and ii) the first period for which a fixed
action is in fact not equal to bai is t+ k, k = 1, ... N − 1.

In order to use induction on the grid (m,k) we need a linear order and
I will use the following lexicographic order:

Definition The highest efficiency number is (N − 1). Among two effi-
ciency numbers (m,k) and (m0, k0) - of relevance when max (m,m0) < N−1
- (m,k) is greater than (m0, k0) iff either i) m > m0 or ii) m = m0 and k < k0.

Lemma 3 For every (m,k), m = 0, ... N − 2, k = 1, ... N − 1 there is a
number Γm,k <∞ with the following property: for any pure strategy subgame
perfect equilibrium and in any subgame that starts from an (m,k) efficient
state, full efficiency is achieved within at most Γm,k periods, i.e., α

∗
t = ba ∀t

≥ Γm,k.
Proof: The proof is by induction on the efficiency level. Note that the

case where the state is N − 1 order efficient is the content of the previous
lemma. The next level down in terms of efficiency is (N − 2, 1). Without
loss of generality, suppose the current mover is player 1. We therefore have
the state (ea2, ba3, ... baN) - player 2 who will move in the next period is the
only one not committed to the efficient action. Evidently, player 1 can pickba1 as her action thereby leaving player 2 with an N − 1 efficient state which
will be then maintained forever after. By doing so her payoff will be at
least

(T − 1)× bπ1 + π1 (5)
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where π1 is the lowest payoff for player 1 in the stage game. If player 1
does not choose the efficient action it must be because full efficiency will be
attained in any case within ΓN−2,2 periods - after she passes on the current
opportunity - where that bound is defined by

(T − ΓN−2,1)× bπ1 + ΓN−2,1 × π1 ≥ (T − 1)× bπ1 + π1 (6)

where π1 is the highest payoff for player 1 among action vectors other
than the efficient one (whose payoff is bπ1). Of course, the inequality can be
simplified to bπ1 − π1 ≥ ΓN−2,1 × (bπ1 − π1) (7)

Suppose now that the conclusion holds for all (m,k) efficient states above
a cut-off level (m,k),for somem ∈ (0, ... N−2). Consider now a state (m0, k0)
that is less efficient than that cut-off by one order. There are two cases:

Case 1 - m0 = m − 1 (which means k0 = 1). The argument is very
similar to that for the (N − 2, 1) case that we just looked at.

The mover can turn the state into an (m,k) efficient state in the very
next period - for some k - by picking the efficient action on his move. By
the induction hypothesis the payoffs to this action are at least as large as

(T − Γm,k − 1)× bπ1 + (Γm,k + 1)× π1 (8)

If the mover passes on this efficient action it must be because full effi-
ciency will be attained in any case within Γm0,k0 periods where that bound
is defined by

(T −Γ
m0,k0 )× bπ1 + Γm0,k0 × π1 ≥ (T −Γm,k − 1)× bπ1+ (Γm,k +1)× π1 (9)

or
(Γm,k + 1)(bπ1 − π1) ≥ Γm0,k0 × (bπ1 − π1) (10)

Case 2 - m0 = m (which means k0 = k + 1). Again the mover can
unilaterally increase efficiency (to (m0, k) by playing the efficient action.
The rest of the argument is identical to what we saw for Case 1.

Hence the lemma is proved and so is the theorem.♦
Remark 1: Lemma 1 - that Pareto-dominance is an absorbing state and

that Pareto-dominant play starts the moment all players but one are playingbai - is a general result for all finite horizon asynchronous and asynchronisable
games. This result is untrue when the horizon is infinite since in that setting
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we cannot use backward induction; it is always possible that after playing ba
for a long time, player i might switch away simply because he believes that
player j will do the same thing the next period. The more complicated step,
especially when we consider asynchronisable games, is the second step in the
proof above, the one that shows that this absorbing state must be reached.

Remark 2: A natural question that arises is: how large can the period
of miscoordination Γ be? A crude upper bound is suggested by the analysis
above; it must be that Γ ≤ ∆ + ∆2+ ...∆M where ∆ =

πk−πkbπk−πk and M is the

cardinality of the set of efficiency levels.
Remark 3: The theorem above is for pure strategy SPE. A very similar

result applies to mixed-strategy SPE. This result is stated and discussed in
Section 5.

4 Endogenous Asynchronisable Moves

This section considers the second model of section 2, a model that allows
players to choose their times of move. The main theorem shows that even
in this case full efficiency is achieved within a uniformly bounded number
of periods by every SPE. Hence, what is important for the selection result
is not that players be forced to asynchronise but rather that they have the
option to do so.

Theorem 4 Consider any family of N-player endogenous asynchronisable
common interest games hT , Gi with initial state (a0, θ0) and horizon T =
1, 2 ... There are numbers Γ < ∞ and (for every ² > 0) bT < ∞ with the
property that for any pure strategy SPE, any horizon, and for any initial
state

Action Convergence - the Pareto-dominant action vector ba must be
played in all but at most Γ periods.

Value Convergence - each player’s SPE payoff is within ² of the
Pareto-dominant payoff for horizons longer than bT , i.e., vi(.; T ) > bπi −
² for all T ≥ bT .

The ideas behind the general result for asynchronisable games are quite
similar to that for alternating move games. Again the argument is in two
steps. There is an easy step to show that if the players ever get to an
alternating move timing structure - a single mover in the current period
and one each in the next N − 1 periods - and each of the future movers is
committed to the Pareto-dominant action, then the unique best response
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for the current mover is to play her Pareto-dominant action as well and
commit to moving next in N periods. In other words, alternating moves
plus efficiency is an absorbing state. The second and more difficult part is
to show that this absorbing state must be reached in finite time.

I will argue the second step by induction on the level of efficiency. The
exact definition of efficiency level is a bit more complex in this model -
relative to alternating moves - and so I shall explain that with some care in
the next subsection.

4.1 An Efficiency Index

Recall that Θ is the set of dates that are available at date t. By extension
let Θc be its complement, i.e., the set of dates already committed to (the
subset of t + 1, t + 2 ... t + N − 1 such that at every one of those periods
there is at least one mover). In turn, let bΘ be the subset of Θc that has at
least one mover committed to bai.

To fix ideas, consider the following two scenarios:
Example 1 - There are four players in a game, and players 3 and 4 are

committed to moving next in period t+ 3. Players 1 and 2 have a move in
the current period t. In this case, Θc = {t + 3}. If either - or both - of
players 3 and 4 are committed to bai, then bΘ = Θc.

Example 2 - In the same example if players 3 and 4 are both committed
to some action other than the Pareto-dominant one, then, again Θc = {t+3}
but bΘ = ∅.

Let me now turn to the efficiency index. Recall from Section 3 that
this index looks at two things - a) how many of the future periods have
a player committed to the efficient action and b) what is the first future
period at which an inefficient action will expire. In other words, a) counts
the cardinality of bΘ while b) notes the smallest time-period in the set Θc/bΘ,
the set of inefficient commitments.

Definition Suppose there is a mover at date t. A state (at, θt) is said
to be N − 1 efficient if the cardinality of bΘ is N − 1. Otherwise, a state is
said to be (m,k)− order efficient if i) the cardinality of bΘ is m, m = 0, 1,
... N − 2 and ii) the first period for which there is no fixed action equal tobai, i.e., the first period in the set Θc/bΘ is t + k, k = 1, ... N − 1. When
the set Θc/bΘ is empty, we define k = N .

Remark: Hence, for the timing structure of Example 1, m = 1, k = 4
while in that of Example 2, m = 0, k = 3.

There is one other possibility - there may not be any mover in the current
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period t. In that case I will make the natural reduction and define the
efficiency of the state as the efficiency of the first period thereafter in which
there will be movers.

Definition Suppose there is no mover at date t. Suppose further that
t+ s is the smallest element of Θc.18 The efficiency of state (at, θt) is then
defined to be the efficiency of the resultant state at date t+ s.

The ordering on (m,k) will be identical to that discussed in Section
3. The highest efficiency number will be (N − 1). Among two efficiency
numbers (m,k) and (m0, k0) - of relevance when max (m,m0) < N − 1 -
(m,k) is greater than (m0, k0) iff either i) m > m0 or ii) m = m0 and k < k0.

We are now ready to prove the theorem.

4.2 Proof of the Theorem

Proof: The first step is an analog of Lemma 2.

Lemma 5 Suppose that the current state is N − 1 - efficient. In any SPE
continuation of hT , Gi, regardless of the number of periods left, the Pareto-
dominant action vector must get played in every period thereafter.

Proof: The proof is identical to that for Lemma 2. Suppose that t = T .
Evidently, the lemma holds. Suppose therefore that it holds for all t = T ,
T − 1, .. T − k + 1. Consider t = T − k. Suppose that player i inherits an
N − 1 efficient state. Her highest immediate payoff arises from playing bai.
Furthermore, if she commits to bai for the next N periods, she hands over
an N − 1 efficient state to the single mover next period. By the induction
hypothesis, play will then be of the Pareto-dominant action vector ba for the
remaining periods, i.e., the highest future payoff will be realized.♦

The next lemma establishes that the efficient action vector must be
played in all but a set of uniformly bounded periods:

Lemma 6 For every (m,k) : m = 0, ... N−2, k = 1, ... N there is a number
Γm,k < ∞ with the following property: for any pure strategy subgame perfect
equilibrium and in any subgame that starts from an (m,k) efficient state,
full efficiency is achieved within at most Γm,k periods.

Proof: Suppose, to begin with, that there is at least one mover in the
current period. The proof is by induction on the efficiency level. Note that

18In this case by definition Θ is non-empty.
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the case where the state is N − 1 efficient is the content of the previous
lemma. The next level down in terms of efficiency is (N − 2, 1). Without
loss of generality, suppose the current mover is player 1. We know that
there must be exactly one mover in every period, t, t + 1, ...t+N − 1, the
t+1 mover must be committed to an inefficient action and every one of the
others must be committed to the efficient action.19

Player 1 has the option of commiting to move again in period t+N and
choosing ba1 as his fixed action. This increases the efficiency level to N − 1.
By the previous lemma, that will be then maintained forever after. By an
argument identical to that in Lemma 3 it follows that there must be a bound
ΓN−2,1 within which full efficiency must be achieved and it is defined by

bπ1 − π1 ≥ ΓN−2,1 × (bπ1 − π1) (11)

(where bπ1, π1, and π1 are, recall, the highest, lowest and second-highest
payoff for player 1 in the stage game).

Suppose now that the lemma holds for efficiency levels above a cut-off,
say (m,k), i.e., that it holds for all states (m,k) such that either i)m >m or
ii) m = m and k ≤ k. Consider now a state (m,k) that is less efficient than
(m,k) by one order. Again, without loss, assume that one of the current
movers is player 1. There are three cases:

Case 1 - m = m− 1 (which means k = 1). Player 1 can then turn the
state into an (m,k) efficient state in the very next period - for some k - by
picking the efficient action on his move and committing to move again in
period t+N .20 By the induction hypothesis the payoffs to this action are
at least as large as

(T − Γm,k − 1)× bπ1 + (Γm,k + 1)× π1 (12)

If player 1 passes on this efficient action it must be because full efficiency
will be attained in any case within Γm,k periods where that bound is defined
by

(T − Γm,k)× bπ1 + Γm,k × π1 ≥ (T − Γm,k − 1)× bπ1 + (Γm,k + 1)× π1 (13)
19This follows from the following facts: i) by assumption, there is at least one mover in

the current period, ii) since k = 1, there is at least one mover in the next period, and iii)
since m = N − 2, there are an additional N − 2 players committed to the efficient action
and committed to distinct periods. Since in all there are N players, it follows that there
is one each in the periods t through t+N − 1.
20If there are multiple movers in period t and some of those movers also pick the efficient

action and a period different from t+N , then in fact the state can become more efficient
than (m,k). The same argument applies however.

19



Case 2 - m = m, 1 < k < N (and, of course, k = k + 1). Player 1 can
pick the efficient action and commit to move again in period t +N . If the
next date after t at which there are committed movers is an element of bΘ,
i.e., if the next move date has an efficient commitment, then such a choice
by player 1 increases efficiency to (m,k).21 On the other hand, if the next
date at which there are committed movers is not an element of bΘ, i.e., if the
next move date has no efficient commitments, then such a choice by player
1 increases efficiency to at least (m + 1, k). The rest of the argument is
identical to what we saw for Case 1.

So far the argument has been essentially identical to the alternating
move case. We now deal with one new case that arises for asynchronisable
games: even at an intermediate efficiency level, there may not be any players
committed to inefficient actions:

Case 3 - m = m, k = N In this case the sets of committed dates and
the set of committed dates with efficient commitments are identical, i.e.,
Θc = bΘ and both sets might, of course, be empty.

There are three sub-cases that I need to consider. In each one the same
action - pick ba1 and commit to it till t +N - increases the efficiency level.
Call that action (ba1,N).

Case 3a - If the sets are empty, i.e., if all players have a move in the
current period, m = 0. Evidently (ba1,N) makes m > 0.

Case 3b - Suppose instead that the sets are non-empty and consider first
the case where there are multiple movers in the current period - one of them
being, say, player 1. If all of the other movers pick an inefficient action then
k becomes less than it is currently (= N), i.e., the efficiency index strictly
increases. If at least one of the other current movers picks the efficient action
as well then Player 1 can always pick a date that is distinct.22 Consequently
the index increases.

Case 3c - If, on the other hand, there is a single mover in the current
period then (ba1,N) maintains efficiency. Within at most N − 1 periods,
there has to be multiple movers. Then we are in case 3b.

So in all cases a mover can immediately - or withinN−1 periods - strictly
increase the efficiency index. By the induction hypothesis she can therefore
implement full efficiency within at most Γm,k periods. The argument of

21Again efficiency may actually increase further than that if there are multiple movers
- other than player 1 - at date t and some of those other movers asynchronize and commit
to the efficient action themselves.
22Note that if there are l players who are movers in the current period then there are

at least N − l open time-periods to which commitments can be made.
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Case 1 then says that she will pass on doing so only if she believes that she
can free-ride within a uniformly bounded number of periods anyway.

Suppose, finally, that there is no mover in the current period. By
definition, within N − 1 periods, there will be. The above argument can
then be applied.

Hence the lemma is proved and so is the theorem.♦

5 Three Other Results

This section presents two results that apply to the exogenous asynchronous
move model and one to the endogenous asynchronisable model. To begin
with I show that the first main result, Theorem 1, holds for general exoge-
nous asynchronous games (Theorem 1 showed that it holds for alternating
move games). Within that same model I then show that the result also
holds for mixed strategy equilibria (Theorem 1 showed that it holds for
pure strategy SPE).

Thereafter I turn to the endogenous asynchronizable model. I discuss a
slighly more general version of that model than the one that was discussed
in Section 4 and and show that the main theorem - Theorem 4 - continues
to apply in that more general model.

5.1 Exogenous Asynchronous Games

To recall, in this model there is a player assignment function X : {1, ...T}→
{1, ...N} such that X(t) is the sole mover at date t. From that one can
deduce individual player assignment functions Φi, one for each player, that
specify for every period t and every player i a next time of move for that
player, Φi(t). Since I am interested in arbitrary but long horizons, the
domain of these functions will be the set of all positive integers. If the game
under study is T periods long, then (at most) the first T components of Φi
are used.

The main result of this sub-section shows that as long as the move func-
tions satisfy a mild condition that I call unbiasedness, then finite horizon
play picks out the Pareto-dominant equilibrium. To set the stage for the
definition, let λi denote the maximum waiting time for player i:

λi = sup
t

[Φi(t)− t]
Definition The functions Φi are unbiased if for every player i, λi is finite.
Denote the largest λi value, M (< ∞).
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Evidently an alternating move assignment function is unbiased - in that
case M = N . An example of a biased assignment function is an alternating
and increasing function - one in which the N players alternate their moves
in the first ”round”; then each player gets to move twice in succession (and
play proceeds by turn through player numbers 1 to 2 to 3 and so on). Then
in the third ”round” the procedure is repeated except that each player gets
to move thrice in succession. By round K each player moves K times in
succession.

Unbiasedness is a condition that must necessarily be satisfied by the
assignment function in order for the convergence to efficiency result to hold.
To see this, note that if in the current round of play player i hasK successive
moves then, in any history-independent SPE, in the first K − 1 of those
periods he is going to play a myopic best response to the fixed actions of
the other players. After all they do not get to change their moves and any
action that he takes in these first K − 1 periods has no effect on subsequent
play. Since I consider all equilibria, including history-independent ones, I
will therefore not be able to prove convergence to efficiency for all SPE
with such a move function. Hence, unbiasedness is a necessary condition for
efficient selection.

It turns out to be a sufficient condition as well:

Theorem 7 Consider any family of N-player finite horizon asynchronous
common interest games hT , Φ, Gi that start from an initial state a0 and last
T periods, T = 1, 2 ... and whose move functions are unbiased. There are
numbers Γ < ∞ and (for every ² > 0) bT < ∞ with the property that for any
pure strategy SPE, any horizon and for any initial state, action and value
convergence holds (in the sense of Theorem 1).

The proof of the above theorem mirrors the proof of the analogous result
for alternating move games.23 Again the key ideas are two: a) that ba is an
absorbing state, and b) that players can build towards the Pareto-dominant
vector gradually, going from zero efficiency to partial and then full efficiency.
Part b) is a little more delicate than in the alternating move case. After
all, player k may have just moved and yet may have a next move before a
number of other players - a possibility that is ruled out under alternating
moves. In turn, this phenomenon can create a potential problem because
player k cannot increase the efficiency of the system by switching to bak in
23And on account of the similarity between the two proofs, I consign the proof to the

dungeon of section 7.
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the current period. Unbiasedness plays a key role in proving this second
step.

5.2 Mixed Strategy SPE

I now prove a result for mixed strategy SPE in the exogenous asynchronous
model. Clearly the result also covers mixed strategy SPE in alternating
move games.

In analyzing pure strategy SPE we found the following tension in a
mover’s incentives: she would rather free-ride and would be willing to wait
on the Pareto-dominant payoffs just so as to not bear the costs of switching.
On the other hand, she would rather switch now if she could not free-ride
relatively soon. A similar trade-off shows up in mixed strategy SPE; for
a high enough probability of free-riding in the immediate future, a player
prefers to wait while for a low probability she prefers to switch. In equilib-
rium, she is indifferent and herself switches with a probability that makes
the other players then indifferent between switching and free-riding. Con-
sequently, the system can take a while to transit to the Pareto-dominant
state. However, long waits are low probability events.

Theorem 8 Consider any family of N-player finite horizon asynchronous
common interest games hT , Φ, Gi that start from an initial state a0 and last
T periods, T = 1, 2 ... and whose move functions are unbiased.

Action Convergence: For every θ > 0 there is a number Γ(θ) < ∞
such that in any SPE, Prob {at = ba, ∀t ≥ Γ(θ)} ≥ 1− θ.

Value convergence: There is a number bT < ∞ such that in any SPE
- and for any initial state - each player’s payoff is within ² of the Pareto-
dominant payoff for horizons longer than bT .

Since the logic of the proof is merely a probabilistic version of the proof
of Theorem 1, I relegate it to Section 7.

The theorem admits the possibility that Γ(θ) might drift up to ∞ as θ
↓ 0, i.e., that is in some games with some mixed strategy equilibria, players
might stay uncoordinated for a long period of time - albeit with a very
small probability. It is however the best result that one can hope to get.
An alternating move game analysis of Example 2 - reproduced yet again for
easy reference - shows us why.

1\2 ba2 ea2ba1 1, 1 −100,−1ea1 −1,−100 0, 0
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Consider starting with the inefficient action vector ea. If T = 1, clearly
a best response for the mover is to continue to play eak. Even if T = 2, it is
still better to get a total payoff of 0 by continuing to play eak, rather than
to switch to bak and its associated total payoff of −99. Indeed it is easy to
see by backward induction that the unique best response to ea is to play eak
as long as T < 101. At T = 101, the mover is indifferent between her two
actions. Suppose that she picks eak with probability q.

In that case, for the other player, at T = 102, immediate switching yields
a total of −100 + 101 = 1 while staying with eak yields 0 + q.0 + (1− q)[−1
+ 100] = 99(1 − q). Evidently, the mover is indifferent at T = 102 if the
switch probability next period is q = 98

99 . Suppose that consequently the
mover at date T = 102 stays with eak with probability p.

Now consider T = 103. Immediate switching yields a total of −100 +
102 = 2 while staying with eak yields 0 + p[0 −100 + 100] + (1 − p)[−1 +
101]. The term in the second bracket exploits the fact that if the opponent
does not switch in the next period then the current mover is indifferent
between switching and not in the subsequent period after that; note that
switching after two periods means there are only 100 periods remaining at
that point and hence the total payoff is −100 + 100. The second total
is hence 100(1 − p). Evidently, the mover is indifferent at T = 102 if the
no-switch probability next period p is 4950 .

Indeed the case of T = 103 is more generally true whenever T > 103.
Suppose for instance T = 104. The way we have constructed the equilibrium,
when there are 102 periods left the mover - the same one as at date 104 - is
indifferent between switching and not switching. If she does in fact switch
then, we are reduced to the following comparison: continue with eak and
with probability p this yields 0 for the next two periods and −100 the period
thereafter while with probability 1 − p it yields 0, −1 and 1 over the next
three periods. Immediate switching yields −100, 1, and 1 over the same
three periods. Beyond the three periods, the continuations are identical,
viz., 1 every period thereafter. Evidently, for p = 49

50 , a player is indifferent
between her two actions.

These arguments yield the following proposition:

Proposition 9 In an alternating move version of Example 2, for any hori-
zon length T > 103 the following strategies constitute a mixed strategy SPE:
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α∗kt(baj) = bak for all t and
α∗kt(eaj) = eak w/ probability 49

50 , t ≤ T − 103
= eak w/ probability 98

99 , t = T − 102
= eak w/ probability 1, t > T − 102

Of course an implication of the proposition is that no matter how long
a horizon we consider, there is always an equilibrium that having started
at the inefficient action vector stays there with positive probability. On the
good news side, this probability is small. Hence, as Theorem 8 tells us the
equilibrium value is virtually that of the Pareto-dominant value.

5.3 A More General Model 2

In this subsection I generalize Model 2, the endogenous model. In particular,
I generalize the model to allow for temporary asynchronizations. Recall in
Model 2 that if a single mover - say player j - in the current period chose a
period t+ ζ as her next time of move, then no player between periods t+1
and t + ζ − 1 is allowed to choose that period. This has the immediate
consequence that j moves alone not only at period t + ζ but forever after.
Asynchronization cannot be temporary.

Moreover one can logically make the argument that in the scenario con-
sidered above, periods t+1 through t+ζ−2 are different from period t+ζ−1
in the following sense. Whereas at any one of the periods t + 1 through
t+ ζ − 2 having a next move at t+ ζ has a commitment aspect to it - after
all the fixed action will remain fixed for at least one more period - that is
not true at period t + ζ − 1. Once that penultimate period is arrived at
there is no more commitment left in the action since the very next period it
can be changed. This motivates the following idea:

Definition: A time t strategy for any mover, say player i, is given by
a pair (ait, θit) where ait is an element from the set Ai and θit, the date of
next move, is either an element of Θt or is the date t+1

24

Remark 1: The greater generality relative to Model 2 is that any period
t mover can choose to move again at date t + 1 even if there was a prior
commitment to that date by some other player. Of course a period t mover
can alternatively commit to a date beyond t + 1 and those dates can only
be chosen if no prior mover is committed to them.
24Recall the definition of Θt. A date t+ ζ is said to be available at t if no player chose

it as a time of next move in any of the periods t− 1, t− 2, ... t−N + 1. Let Θt be the
set of dates available at t.
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Remark 2: In this model, a player who asynchronizes by uniquely
choosing t + ζ is not forever asynchronized. At date t + ζ − 1 movers can
choose to move simultaneously with her in date t + ζ. Likewise, she can
choose to move simultaneously with the movers in t + ζ + 1. Hence, an
alternating move structure is not an absorbing state. To see that, consider:

Example Alternating Moves Transiting to Simultaneous Moves: Ini-
tially, player 1 has a move at t, player 2 at t+1, player 3 at t+2 and so on.
At his move time, player 1 can either make no commitment and move at
t+1 or he can make the only possible commitment which is to move next at
t+N . Suppose player 1 chooses t+1. And in the next period, he chooses
t+2; and every period thereafter he chooses to move again in the very next
period. The first time player 2 moves - at date t + 1 - she also makes no
commitment and moves again at t + 2. And so on - within N periods all
the players transit to moving every period.

In this model the same result that has been proved for endogenous asyn-
chronizable games holds:

Theorem 10 Consider the more general version of Model 2. There are
numbers Γ < ∞ and (for every ² > 0) bT < ∞ with the property that for any
pure strategy SPE, any horizon, and for any initial state action and value
convergence holds.

6 This and That

This section reviews the relevant literature, offers some policy implications
and concludes.

6.1 Literature

There is a vast literature on the coordination problem both from a theoret-
ical perspective as well as in terms of applications. The latter in particular
is nicely summarized in Cooper (1999) and I can do no better than point the
interested reader to that source especially if they are looking for macroeco-
nomic applications. Coordination games have also been used in Industrial
Organization especially to study markets with network externalities; a very
good source on that issue is Tirole (1989).

There have also been numerous experiments run with coordination games.
In a repeated game setting, the best known of these experiments were run
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by Van Huyck et. al. (1990).25 The authors repeatedly run a partner-
ship/public provision game similar to the one in Example 4; the game has
many Pareto-ranked Nash equilibria. They find that players do not play
the Pareto-dominant equilibrium especially in late stages (although they
do seem to in early periods). They also find that increasing the num-
ber of players makes the coordination problem worse. The finding that the
Pareto-dominant equilibrium is not played by subjects is a conclusion shared
by many experimental studies. Indeed based principally on the fact that
”.. coordination failure can arise in experimental games ..” (p. 19) Cooper
concludes that coordination is indeed a robust and wide-spread problem.
The results in this paper suggest a natural experiment using asynchronous
coordination games. To my knowledge, no one has done such an experiment.

Turning to theoretical analyses, Lagunoff-Matsui (1997) show that in
an infinite horizon alternating move pure coordination game, the Pareto-
dominant outcome will get uniquely selected in an SPE provided the dis-
count factor is high enough. Their result is very interesting but works off
the key insight that in a pure coordination game computing an equilibrium
is equivalent to solving a decision problem. This is because πi = π and
hence the life-time discounted payoffs to a time-profile a0, a1, ...at, .. is the
same for every player and is simply

P∞
t=0 δ

tπ(at). Indeed the reult is untrue
for common interest games (where πi 6= π), i.e., in discounted infinite hori-
zon alternating move common interest games, the Pareto-dominant action
is not the unique equilibrium outcome. Alternating move games are exam-
ples of stochastic games - with the fixed actions being the state variable -
and common interest games satisfy the full dimensionality requirement of
Dutta’s (1995) folk theorem for stochastic games. Note that pure coor-
dination payoffs (as a subset of the 45 degree line) do not satisfy the full
dimensionality requirement but common interest payoffs do.

Lagunoff-Matsui (2002) have recently shown that their result can be
extended in the following sense. Fix a pure coordination game. For a
fixed but high discount factor (such that Lagunoff-Matsui (1997) applies),
and a specified ² > 0, there is a neighborhood of games around the pure
coordination game such that all equilibria of each such game is within ² of
the Pareto-dominant payoff. This result works off the upper hemi-continuity
of the SPE correspondence when one varies the stage-game payoffs.

The second important paper related to the current one is Gale (1995).

25Static coordination game experiments have been run by many authors; a nice study
is Cooper et. al. (1990).
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Gale studies a model in which each player decides on a time at which to invest
in a (public) project. The investment decision is a one-time decision and
is irreversible, i.e., an investment once made cannot be withdrawn. There
is a fixed cost to making an investment and there is a coordination element
because the benefits to the project are increasing in the number of players
who have already made the investment. Since there is discounting, the
Pareto-dominant outcome is for all players to invest in period zero. However
there are private incentives to delay the cost and get in on the project only
after a sufficient number of other players have done so. The paper shows
that although equilibria will in general have delay, as the length between
contiguous periods goes to zero, all equilibria must converge to efficiency.26

What is very interesting about the paper is that the result was proved in
an induction manner very similar to that in the current paper. Gale defines
an efficiency index that counts the number of players who have already
invested. Beyond a certain cut-off on that index it is a dominant strategy
for all remaining players to invest. And then immediately short of that
cut-off players do backward induction on the efficiency level, etc.

One important difference between the two papers however has to do with
irreversibility. As Gale (1995, 2000) point out the result works critically off
the fcat that investment cannot be withdrawn. Hence efficiency can only
rise. By contrast in this paper no player is committed forever to any action.
Indeed efficiency may well fall along certain equilibrium paths.27

Turning to other authors, Crawford (1995) analyzes the performance of
boundedly rational adaptive decision rules in which agents play in period
t a simple average of their own play and a summary of the others’ play in
period t − 1. He shows that such rules explain well the Van Huyck et.
al. experimental conclusions but that risk dominance motivations do not.
Aumann and Sorin (1989), Matsui (1991), and Anderlini (1991) undertake
a very different objective; they try to find conditions (much as I do in the
current paper) under which the Pareto-dominant action will get played as
the unique equilibrium outcome. They do their exercises within the simul-
taneous move framework which explains in part why quite elaborate sets of
assumptions underlie each result.28 In contrast to all these papers I consider

26An earlier and nice paper on joint provision of publice goods is Admati-Perry (1991).
27In Gale (2000), the analysis is extended to monotone games with positive spillovers,

i.e., games in which actions can only increase (= irreversibility) and the payoff to any one
player is greater if the others take higher actions. It is shown that not all payoffs are
achievable in equilibrium but a subset called ”approachable” are.
28For example, Aumann-Sorin prove their result only for two players, they require per-
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fully rational players (playing SPE).

6.2 Policy Implications

The first - and most immediate - implication of my results is that asynchro-
nous choice makes a big difference. Hence, policy should allow asynchronic-
ity (as in my endogenous model) or should enforce it (as in my exogenous
model). To the extent that literal simultaneity of moves is a physical im-
possibility anyway this is not a demanding requirement. Of course, effective
simultaneity can also arise from lack of information about others’ (already
selected) choices. Hence, my results can be seen as a call for ”market trans-
parency”. Whenever there is common interest present, policy is best off
making choices publicly and rapidly available to everyone. Asynchronicity
allows a player to make a commitment and in that sense is more demand-
ing than simultaneous setting. However my results suggest that policy
need only allow short-period commitments (no bigger than the number of
players).

A second broad implication of my results is that the finiteness of horizon
is crucial and hence given a choice, say, between rolling policies and ones
with a definite time-line, the latter should be preferred by policy-makers
(whenever there is common interest). Finally, I showed that just one degree
of common interest - an agreement on the best outcome and only that - is
enough to uniquely select this social optimum. In particular, disagreements
of all kinds and of varied intensities further down the rank-list are irrelevant
to equilibrium selection. This suggests that designing an incentive scheme
may not be too difficult a policy problem in some contexts.

This paper showed when the horizon is finite and play is (potentially)
asynchronous, coordination is not a problem.

7 Three Proofs

7.1 Proof of Asynchronous Theorem

The proof is almost identical to that for Theorem 1, the alternating move
case. I shall first define an appropriate index of efficiency for this model -
the index is very similar to that for alternating moves.

turbration of every strategy with a strategy of uniformy bounded recall and require that
there be a positive probability that a myopic strategy gets played. Finally they only
prove a result for Nash equilibrium.
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Definition A state at is said to be N − 1 efficient if all N − 1 actions
that are fixed at date t are fixed at bai. If not all actions are fixed at bai, then
a state is said to be (m,k) − order efficient when i) exactly m components
are equal to bai, m = 0, 1, ... N − 2 and ii) the first period for which a fixed
action is in fact not equal to bai is t+ k, k = 1, ... M .

Note that the only difference in the definition is that the first time that
an inefficient action expires may be any time between t+1 and t+M (rather
than t+1 and t+N − 1 as was the case with alternating moves). A direct
implication of unbiasedness is that the upper bound t+M is finite. On the
grid (m,k) we will use the same lexicographic order as before.29

The first thing to note is that for any set of move functions - biased
or unbiased - Lemma 1 holds: if every other player last played bai and it
is player j0s turn to move, irrespective of the number of periods left in the
game, j0s unique best response is to play baj . The second step - that this
N − 1 efficiency must be attained in finite time - is almost identical to the
argument already presented in Lemma 2. Hence it is presented now in an
abbreviated form.

Lemma 11 Consider any family of finite horizon asynchronous common
interest games hT , Φ,Gi with unbiased assignment functions Φi. For every
(m,k), m = 0, ... N − 1, k = 1, ... M there is a number Γm,k < ∞ with
the following property: for any T ≥ Γm,k, any pure strategy SPE and in any
subgame that starts from an m,k − order efficient state, full efficiency is
achieved within at most Γm,k periods.

Proof: As before, the proof is by induction on the efficiency level. (N−1)
efficiency is absorbing. So consider a lower efficiency level. There are two
cases.

Case 1 - The t period mover is not the mover at period t+ 1: A mover
can then play bai till his next time of move. That will increase the efficiency
level. Then the analysis of Lemma 2 applies without change.

Case 2 - The t period mover is also the mover at period t+ 1: By the
unbiasedness assumption, within M periods it must be true that we arrive
at Case 1. Hence the bound derived in Case 1 plus M applies in this case.

We have the lemma and hence the asynchronous theorem.♦
29Among two efficiency numbers (m,k) and (m0, k0) - of relevance when max (m,m0) <

N − 1 - (m,k) is greater than (m0, k0) iff either i) m > m0 or ii) m = m0 and k < k0.
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7.2 Proof of Mixed Strategy Theorem

The theorem clearly works if we start with an N−1 efficient state. Suppose
then it works for all states above a cut-off efficiency level (m,k),m < N−1, k
∈ 1, ... M . Consider a state (m,k) that is one level less efficient than (m,k).
A contradiction to the theorem’s claim would yield θ0 > 0, and a sequence
Γp ↑ ∞ with the property that for every Γp there is a game hTp, Φ, Gi, Tp
≥ Γp, an initial (m,k) state a0, (a mixed strategy) equilibrium within the
game α∗(.;Tp) (with that initial state) and a time-period tp ≥ Γp for which
Pr ob. (α∗tp 6= ba) > θ0.

By virtue of Lemma 3, if α∗tp 6= ba it follows that on that history α∗t 6= ba,
for all t < tp. Hence, the payoffs of the mover in period 1, say player k, over
the first tp periods are bounded above by

tp[θ
0πk + (1− θ0)πk(ba)] (14)

where πk, as always, is the second-highest payoff for player k in the stage
game. By a logic identical to that of the previous proof, within at most M
periods we have to arrive at a state that can be raised in efficiency by the
moving player. By virtue of the induction hypothesis, the period zero payoff
to keeping alive the possibility of a switch is at least

(1−θ)[tp−M−Γm,k(θ)−1]×πk(ba)+[θ(tp−M−Γm,k(θ)−1)+(M+Γm,k+1)]×πk
where πk is the lowest payoff for player k in the stage game. Furthermore,

θ is chosen to be strictly smaller than θ0 and indeed such that [(θ0−θ)(πk(ba)−
πk) − θ(πk − πk)] > 0. The last expression is easily reduced to

tp[θπk + (1− θ)πk(ba)]− (M + Γm,k + 1)(1− θ)[πk(ba)− πk] (15)

By grouping similar terms, from Eqs. 14 and 15 it can be shown that
keeping the switch alive is more profitable if

tp{(θ0 − θ)[πk(ba)− πk]− θ(πk − πk)} > (M + Γm,k + 1)(1− θ)(πk(ba)− πk)

and that inequality must hold if tp is chosen appropriately large. The
theorem is proved.♦

7.3 Proof of Most General Theorem

The same efficiency index that was defined for Model 2 will be used here.
That the theorem holds for N − 1 efficient states is obvious. The induction
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proof will closely parallel that of Lemma 6 with the only real departure
being Case 3 in that proof. Hence that is the only case that will be dealt
with in any detail here.

Lemma 12 For every (m,k) : m = 0, ... N−2, k = 1, ... N there is a num-
ber Γm,k < ∞ such that for any pure strategy subgame perfect equilibrium
and in any subgame that starts from an (m,k) efficient state, full efficiency
is achieved within at most Γm,k periods, i.e., α

∗
t = ba ∀t ≥ Γm,k.

Proof: Suppose, to begin with, that there is at least one mover in the
current period. Suppose that the lemma holds for efficiency levels above a
cut-off, say (m,k). Consider now a state (m,k) that is less efficient than
(m,k) by one order. Again, without loss, assume that one of the current
movers is player 1. There are three cases:

Case 1 - m = m − 1 (which means k = 1). The proof is identical to
that of Case 1 in Lemma 6.

Case 2 - m = m, 1 < k < N (and, of course, k = k + 1). The proof is
identical to that of Case 2 in Lemma 6.

Case 3 - m = m, k = N In this case the set of committed dates and
the set of committed dates with efficient commitments are identical, i.e.,
Θc = bΘ and both sets might, of course, be empty.

Case 3a - If the sets are empty, i.e., all players have a move in the current
period, m = 0, and any current mover can increase efficiency by picking the
efficient action and commiting to move again in period t+N .

Case 3b - Suppose the sets are non-empty and consider first the case
where there are multiple movers in the current period - one of them being,
say, player 1 - and no mover in period t + 1. Player 1 can always pick a
date that is distinct from that of the other players and can pick the efficient
action. If at least one of the other current movers commits to a period
beyond t + 1 then efficiency increases.30. Even if all of the other current
movers choose to move again in period t+1 then again efficiency increases.31

Case 3c - Same as 3b except there are mover(s) in date t + 1. Player
1’s unilateral action then cannot increase efficiency if all the other movers
at date t decide to move again at date t + 1.32 At date t + 1, a mover
30If one of these other movers also picks the efficient action to commit to, then efficiency

increases to at leastm+1. If the commitments are all to inefficient actions, then k becomes
finite and consequently, again, efficiency increases.
31Since there are not any efficient commitments that are to expire in date t+ 1.
32Remember there is an efficient commitment that is expiring at date t+1 so player 1’s

efficient commitment merely replaces that efficiency index loss.
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at that date - say, player 2 - can mimic what player 1 does at date t (i.e.,
can commit to the efficient action till date t +N + 1). If there is no pre-
committed mover at date t + 2 we are in the world of Case 3b. Else, we
are back in Case 3c and Player 2 is only able to maintain efficiency if all the
other movers at t + 1 choose to move again at date t + 2. In other words
then we will repeat Case 3c but at date t+2. Strictly before date t+N −1
we have to arrive at Case 3b, i.e., a state where are no precommitted movers
in the subsequent period. A mover at that point can unilaterally increase
efficiency by the above argument.

Case 3d - If, on the other hand, there is a single mover in the current
period that mover can maintain efficiency by picking the efficient action and
commiting to move again in period t+N . Within N − 1 periods, there has
to be multiple movers. Then we are in case 3b or 3c.

So in all cases a mover can immediately - or withinN−1 periods - strictly
increase the efficiency index. By the induction hypothesis she can therefore
implement full efficiency within at most Γm,k periods. The argument of
Case 1 then says that she will pass on doing so only if she believes that she
can free-ride within a uniformly bounded number of periods anyway.

Suppose, finally, that there is no mover in the current period. By
definition, within N − 1 periods, there will be. The above argument can
then be applied.

Hence the lemma is proved and so is the theorem.♦
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