Class Eleven: Excluding Induced Subgraphs

An **induced subgraph** of a graph is any graph which can be obtained by deleting some vertices. Note this is a more restrictive notion of containment than when we consider subgraphs, where we were allowed to delete both vertices and edges. If a graph G has no induced subgraph isomorphic to a graph H, then we say that G is H-free. If G is not H-free, we say that G**contains** H. For example, the above graph contains many triangles, i.e. C_3 , but is K_4 -free. A **split graph** is any graph which can be completely divided into two parts, one of which is a clique and the other stable.

Draw some small graphs and think about the following questions:

What are the induced subgraphs of K_4 ?

What are the induced subgraphs of a complete graph? How do things change if we instead consider subgraphs of a complete graph?

When is K_m an induced subgraphs of K_n ?

When is $K_{m,n}$ an induced subgraphs of $K_{s,t}$?

When is C_k an induced subgraph of C_ℓ ?

Which cycles are induced subgraphs of the Petersen graph?

Which stars are induced subgraphs of wheels?

Describe all P_2 -free graphs. What about all P_2^c -free graphs?

Describe all P_3 -free graphs. What about all P_3^c -free graphs?

Can you characterize forests in terms of excluding a family of induced subgraphs?

Can you characterize bipartite graphs in terms of excluding a family of induced subgraphs?

Describe all $\{C_3, paw\}$ -free graphs.

Describe all $\{C_3, P_4\}$ -free graphs. Hint: Are they bipartite?

Describe all P_4 -free graphs. Need they always be connected or anticonnected?

Is the complement of a bipartite graph a bipartite graph? Is the complement of a split graph a split graph?

Try and find three small graphs which are not split.

Lemma. A graph is a forest if and only if it is $\{C_3, C_4, C_5, ...\}$ -free, i.e. contains no cycle.

Theorem. A graph is a bipartite if and only if it is $\{C_3, C_5, C_7, ...\}$ -free, i.e. contains no odd cycle.

Theorem. A graph is a split graph if and only if it is $\{C_4, C_4^c, C_5\}$ -free.

Theorem. A graph is a threshold graph if and only if it is $\{C_4, C_4^c, P_4\}$ -free.

The **line graph** of an undirected graph G is another graph L(G) which encodes the adjacencies between edges of G. More specifically, given a graph G, its line graph L(G) is a graph such that

- each vertex of L(G) represents an edge of G, and
- two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G.

Draw some small graphs and think about the following questions:

Lemma. A graph is isomorphic to its line graph if and only if it is a cycle.

Theorem (Whitney). Two connected graphs are isomorphic if and only if their line graphs are isomorphic. (Only Exceptions are the triangle and claw.)

Theorem. A graph G is a line graph of a triangle-free graph if and only if G is both claw and diamond-free.

Theorem. A graph is a line graph if and only if it does not contain one of the following nine graphs as an induced subgraph.

