Class Seven: Ramsey Theory

The heart of Ramsey theory lies in the fact that once a mathematical object gets "big" enough it must contain certain special "small" structures. That is, complete disorder is impossible for a large object, as in fact disorder is, in some sense, a pattern in itself.

If $k+1$ objects are placed in k boxes, what can we can we conclude?

Given a set of numbers, is there always one at least the average? What about at most the average?

More generally, if p objects are placed in h boxes, what can we can we conclude?
Theorem (Pigeonhole Principle). If $k+1$ pigeons are placed in k holes, then one hole contains at least two pigeons. More generally, if p pigeons are placed in h holes, then one hole contains at least $\left\lceil\frac{p}{h}\right\rceil$ pigeons.

Use the pigeonhole principle to show that $\chi(G) \geq \omega(G)$ for any graph G. Give examples of graphs where equality does and does not hold.

Use the pigeonhole principle to show that $\alpha(G) \chi(G) \geq|V(G)|$ for any graph G. Give examples of graphs where equality does and does not hold.

Given a set of nine distinct numbers in order, is there always an increasing or decreasing subsequence of three numbers?
What if you're given a set of ten distinct numbers?
For example, given $10,3,2,1,6,5,4,9,8,7$ in order consider $10<9<8<7$.

Theorem. Given $n^{2}+1$ distinct numbers in order, there always exists a increasing or decreasing subsidence of length $n+1$.

How big must a graph be so it either contains a triangle or a non-edge? A K_{4} or a non-edge?
A K_{5} or a non-edge?
A K_{s} or a non-edge?
We define the Ramsey number $R(s, t)$ to be the minimum size a graph G needs to be so that we are guaranteed that either $\omega(G) \geq s$ or $\alpha(G) \geq t$. It should not be clear why such a number $R(s, t)$ exists, but it can seen to by inductively/iteratively applying the pigeonhole principle. In this new notation, our above observation that every graph is either complete or contains a nonedge translates as $R(s, 2)=s$ for all $s \geq 1$. Since $\omega(G)=\alpha\left(G^{c}\right)$ and $\alpha(G)=$ $\omega\left(G^{c}\right)$, it follows that $R(2, t)=t$ for all $t \geq 1$. In general, computing Ramsey numbers is very difficult and few are known.

Famous Party Problem: How many people must be at a party so that either there are three people any two of whom are friends, or there are three people such that no two of them are friends?

Can you determine $R(3,4)=R(4,3)$?
Erdős famously said that if aliens landed and said they'd blow up the earth if humans couldn't determine $R(5,5)$, then would should use all our minds and computers to compute its value. However, if instead they asked for $R(6,6)$, we should figure out how to destroy the aliens. An alternative way to think about the Ramsey number $R(s, t)$ is the following: Color the edges of the complete graph either red or blue, and determine the minimum size a graph G needs to be so that we are guaranteed that either a complete subgraph made up of red edges of size s or a complete subgraph made up of blue edges of size t.

> Thinking of coloring edges can you assign a meaning to $R(s, t, u)$ Compute $R(2,2,2), R(2,2,3)$ and $R(2,3,3)$. Can you give an upper bound on $R(3,3,3)$?

We can also generalize this edge coloring idea to finding any desired monochromatic subgraphs. And so can think of $R(s, t)=R\left(K_{s}, K_{t}\right)$.

Let P_{2} be the two-edge path. Determine $R\left(P_{2}, P_{2}\right)$ and $R\left(P_{2}, K_{3}\right)$.

> Color the integers $\{1,2,3,4\}$ red and blue. Need there be three integers x, y, z of the same color such that $x+y=z$?
> What if we two color $\{1,2,3,4,5,6\}$? What if we also require that $x \neq y ?$

Theorem (Schur's Theorem). For any $k \geq 2$ and $n \geq R_{k}(3, \ldots, 3)$, it follows that for any k-coloring of $\{1,2, \ldots, n\}$ there are three integers x, y, z of the same color such that $x+y=z$.

Theorem (Fermat's Last Theorem). The equations $x^{n}+y^{n}=z^{n}$ has no integer solutions for $n>2$ and $x, y, z \neq 0$.

Schur tried to use this result to attach Fermat's Last Theorem. However, again using Ramsey theory he was able to prove the following:

Theorem. For every $m \geq 1$, the equation $x^{m}+y^{m}=z^{m}(\bmod p)$ for all p sufficiently large.

