
Class Seven: Ramsey Theory

The heart of Ramsey theory lies in the fact that once a mathematical object
gets “big” enough it must contain certain special “small” structures. That is,
complete disorder is impossible for a large object, as in fact disorder is, in
some sense, a pattern in itself.

If k + 1 objects are placed in k boxes, what can we can we conclude?

Given a set of numbers, is there always one at least the average?
What about at most the average?

More generally, if p objects are placed in h boxes, what can we can we conclude?

Theorem (Pigeonhole Principle). If k+ 1 pigeons are placed in k holes, then
one hole contains at least two pigeons. More generally, if p pigeons are placed
in h holes, then one hole contains at least d p

h
e pigeons.

Use the pigeonhole principle to show that χ(G) ≥ ω(G) for any graph G.
Give examples of graphs where equality does and does not hold.

Use the pigeonhole principle to show that α(G)χ(G) ≥ |V (G)| for any graph G.
Give examples of graphs where equality does and does not hold.

Given a set of nine distinct numbers in order, is there always an increasing
or decreasing subsequence of three numbers?

What if you’re given a set of ten distinct numbers?

For example, given 10, 3, 2, 1, 6, 5, 4, 9, 8, 7 in order consider 10 < 9 < 8 < 7.



Theorem. Given n2 + 1 distinct numbers in order, there always exists a in-
creasing or decreasing subsidence of length n+ 1.

How big must a graph be so it either contains a triangle or a non-edge?
A K4 or a non-edge?
A K5 or a non-edge?
A Ks or a non-edge?

We define the Ramsey number R(s, t) to be the minimum size a graph G
needs to be so that we are guaranteed that either ω(G) ≥ s or α(G) ≥ t. It
should not be clear why such a number R(s, t) exists, but it can seen to by
inductively/iteratively applying the pigeonhole principle. In this new notation,
our above observation that every graph is either complete or contains a non-
edge translates as R(s, 2) = s for all s ≥ 1. Since ω(G) = α(Gc) and α(G) =
ω(Gc), it follows that R(2, t) = t for all t ≥ 1. In general, computing Ramsey
numbers is very difficult and few are known.

Famous Party Problem: How many people must be at a party so that
either there are three people any two of whom are friends, or
there are three people such that no two of them are friends?

Can you determine R(3, 4) = R(4, 3)?

Erdős famously said that if aliens landed and said they’d blow up the earth
if humans couldn’t determine R(5, 5), then would should use all our minds and
computers to compute its value. However, if instead they asked for R(6, 6), we
should figure out how to destroy the aliens. An alternative way to think about
the Ramsey number R(s, t) is the following: Color the edges of the complete
graph either red or blue, and determine the minimum size a graph G needs to
be so that we are guaranteed that either a complete subgraph made up of red
edges of size s or a complete subgraph made up of blue edges of size t.

Thinking of coloring edges can you assign a meaning to R(s, t, u)
Compute R(2, 2, 2), R(2, 2, 3) and R(2, 3, 3).
Can you give an upper bound on R(3, 3, 3)?

We can also generalize this edge coloring idea to finding any desired monochro-
matic subgraphs. And so can think of R(s, t) = R(Ks, Kt).

Let P2 be the two-edge path. Determine R(P2, P2) and R(P2, K3).



Color the integers {1, 2, 3, 4} red and blue. Need there be three integers x, y, z
of the same color such that x+ y = z?

What if we two color {1, 2, 3, 4, 5, 6}? What if we also require that x 6= y?

Theorem (Schur’s Theorem). For any k ≥ 2 and n ≥ Rk(3, ..., 3), it follows
that for any k-coloring of {1, 2, ..., n} there are three integers x, y, z of the same
color such that x+ y = z.

Theorem (Fermat’s Last Theorem). The equations xn + yn = zn has no
integer solutions for n > 2 and x, y, z 6= 0.

Schur tried to use this result to attach Fermat’s Last Theorem. However,
again using Ramsey theory he was able to prove the following:

Theorem. For every m ≥ 1, the equation xm + ym = zm (mod p) for all p
sufficiently large.


