Surface and Bulk Interactions of Ionic and Nonionic Surfactants

N. J. Turro,* P.-L. Kuo,† P. Somasundaran, and K. Wong

Chemistry Department and H. Krumm School of Mines, Columbia University, New York, New York 10027
(Received: January 8, 1985; In Final Form: August 13, 1985)

The fluorescence parameter 11/13 of pyrene was used to detect the interaction between anionic and nonionic surfactants (SDS and CPheE10) in the bulk solution. In addition, the change in the air-water interface was investigated by surface tension over the interaction range. In the range of [SDS] = 10^{-5} to 10^{-4} M, the interaction is divided into three regions. In each region, the results from these two methods were compared and used to interpret the phenomena with each other. The foamate technique was used to estimate the change in the composition of surfactant at the air-water interface, and the trend of the change in foamate composition for several points in three regions is identical with that observed in the γ vs. [SDS] plot and supports the interpretation. Also, the moronic composition, the activity in the micelle, and the monomer concentration for SDS and CPheE10 were theoretically calculated. The trends of these calculated data are parallel to those of the experimental observations.

Introduction

Since micellar solutions of mixed surfactants can exhibit strikingly different physicochemical behavior from those of single surfactants, mixed surfactant systems have received considerable attention recently from both theoretical and industrial researchers. These systems have been studied in the past by means of conventional techniques involving measurements of surface tension, conductivity, solubilization, etc. Recently photoluminescence techniques have been applied to colloidal systems to detect the microviscosity, the local polarity, and the aggregation number of a micelle. The photoluminescence methods can provide direct information about an aggregate on the molecular level which cannot be detected by the conventional colloidal methods.

Fluorescence probe, pyrene, was successfully used to detect the interaction between surfactant and polymer in our previous work. In this paper, pyrene was used to obtain the information on micellization of anionic and nonionic surfactants in bulk solution. The fluorescence parameter 11/13 of pyrene was used to detect the interaction between anionic and nonionic surfactants (SDS and CPheE10). In Figure 4, the 11/13 vs. [SDS] curve in Figure 4 is similar to the corresponding curve in Figure 1. The shape of the γ vs. [SDS] curve in Figure 4 is similar to the corresponding curve in Figure 1. The shape of the γ vs. [SDS] curve in Figure 4 is similar to the corresponding curve in Figure 1.

Surface Tension Measurements. Surface tension was measured by the Wilhelmy plate method with Cahn2000 microbalance using a sandblasted platinum plate as sensor.

Fluorescence Measurements. All fluorescence measurements were recorded on a Perkin-Elmer Model MPF-3L spectrometer. The ratio of the intensity of pyrene emission at 373 nm and at 383 nm is defined as 11/13.

Fluorescence Measurements. All fluorescence measurements were recorded on a Perkin-Elmer Model MPF-3L spectrometer. The ratio of the intensity of pyrene emission at 373 nm and at 383 nm is defined as 11/13.

Results

Figure 1 shows that both surface tensions and 11/13 values track the expected cmc behavior of SDS. The 11/13 values show a rapid decrease from 1.85 (aqueous environment at [SDS] ca. 5 x 10^{-3} M to 1.25 (alcohol-like environment) at [SDS] ca. 1 x 10^{-3} M. The literature cmc for “pure” SDS is ca. 8.2 x 10^{-3} M.1 Since pyrene is a deliberately added “impurity” the values of γ were measured with and without pyrene. As can be seen from Figure 1, the addition of pyrene, at a concentration comparable to that employed for the 11/13 measurements, did not result in any significant modification of the γ vs. [SDS] behavior.

Figures 2 and 3 show the results of γ and 11/13 measurements as a function of [SDS] for systems containing fixed amounts (2.5 x 10^{-2} 5.0 x 10^{-5} M, respectively) of the nonionic Triton detergent CPheE10. Compared to Figure 1, the 11/13 vs. [SDS] curves in Figures 2 and 3 have the same general slope but the sharp decrease in 11/13 near the SDS cmc is broadened in Figure 2 and difficult to see at all in Figure 3. Compared to Figure 1, the γ vs. [SDS] curves in Figures 2 and 3 have a very different shape. For both of the latter figures after an initial decrease, γ increases, reaches a maximum, and then decreases. In both cases the maximum occurs at about 2 x 10^{-2} M SDS, and above 5 x 10^{-2} M SDS γ approaches a common limiting value of ca. 35 dyn/cm.

Figure 4 shows the results of γ and 11/13 measurements as a function of [SDS] for a system containing 5.0 x 10^{-5} M CPheE10. The shape of the γ vs. SDS curve in Figure 4 is similar to the corresponding curve in Figure 1. The shape of the 11/13 vs. [SDS] curve in Figure 4 does not show the sharp break observed in Figure 1, but rather a monotonic but gradual decrease in 11/13 up to about 1 x 10^{-3} M SDS, followed by an even smaller decrease at higher [SDS].

The results obtained for the SDS and CPheE10 concentrations in the foamate are given in Figure 6 as a function of the bulk concentration of SDS. As expected, SDS concentration in the foamate increases as the bulk SDS concentration is increased.

1Chemistry Department.

1H. Krumm School of Mines.
Surface and Bulk Interactions of Surfactants

Figure 1. Correlation between the plots of I/γ vs. [SDS] and of γ vs. [SDS] for SDS only and with pyrene.

Figure 2. Correlation between the plots of I/γ vs. [SDS] and of γ vs. [SDS] with C$_9$PhE$_{10}$ fixed at 2.5×10^{-3} M.

Figure 3. Correlation between the plots of I/γ vs. [SDS] and of γ vs. [SDS] with C$_9$PhE$_{10}$ fixed at 5.0×10^{-3} M.

C$_9$PhE$_{10}$ concentration in the foamate, on the other hand, is found to undergo very little change until about 7×10^{-4} M SDS and then an apparent increase followed by a clear decrease above about 5×10^{-3} M. Above about 2×10^{-2} M SDS, the C$_9$PhE$_{10}$ concentration in the foamate changes very little.

Discussion

The interpretation of the data in Figure 1 is straightforward and conventional. Near the cmc, SDS begins to form micelles in the bulk aqueous phase. As a result, at or above the cmc a further increase in SDS monomers produces very little decrease in the surface tension. Until micelles are formed, the value of I/γ reflects the pyrene dissolved in the bulk aqueous phase. As soon as micelles are formed, the pyrene is preferentially solubilized in the micelle aggregates and is mostly removed from the aqueous phase. Because the micelles provide a less polar environment for the pyrene molecules, near cmc, I/γ decreases sharply until all of the pyrene molecules are solubilized in micelles. At that point the value of I/γ undergoes a much smaller decrease with increasing [SDS].

The shapes of the γ vs. [SDS] curves in Figures 2 and 3 are drastically different from that of Figure 1. However, the shapes of the curves in Figures 2 and 3 are reminiscent of those observed when "impurities" are present in surfactant solutions. We can interpret the γ vs. [SDS] curves in terms of the nonionic detergent as a deliberately added impurity as follows. The nonionic C$_9$PhE$_{10}$ detergent is a more surface active material than SDS.\(^5\)\(^-\)\(^7\) At the

concentrations employed, C9PhE1o does not form a saturated monolayer on the surface, so that initial addition of SDS reduces the value of γ as added SDS monomers fill unsaturated sites on the surface. At values of ca. 1 \times 10^{-3} M SDS and ca. 1 \times 10^{-4} M SDS for the lower and higher initial C9PhE1o concentrations, respectively, the value of γ decreases to a constant. These data are consistent with the lowering of the cmc values of PEO decreases rapidly, while the value of γ remains nearly constant. These data are consistent with the removal of nonionic surfactant at the surface because of displacement by SDS and formation of comicelles, since comicelles will form at a lower [SDS] as the initial concentration of C9PhE1o decreases to a constant.

At ca. 2 \times 10^{-3} M the removal of C9PhE1o molecules from the surface is nearly complete and the value of γ decreases to a constant again as SDS monomers fill the unsaturated sites on the surface. At [SDS] \approx 1 \times 10^{-3} M, the value of γ approaches the value for pure SDS solutions.

We can define three regions and two transitions for the γ vs. [SDS] of Figures 2 and 3. In region I, the value of γ decreases with added [SDS] and in region II the value of γ increases with added [SDS]. The value of [SDS] for transition from I to II is smaller for the higher starting concentration of the nonionic additive (ca. 5 \times 10^{-3} M SDS for 2.5 \times 10^{-3} M C9PhE1o and ca. 1 \times 10^{-3} M SDS for 5 \times 10^{-3} M C9PhE1o). This result is consistent with the removal of nonionic surfactant at the surface because of displacement by SDS and formation of comicelles, since comicelles will form at a lower [SDS] as the initial concentration of the nonionic surfactant is increased.

Although the value of [SDS] required for the transition from region I to II depends on the initial concentration of C9PhE1o, the value of [SDS] required for transition from region I to II of C9PhE1o is independent of the initial concentration of C9PhE1o. These results are consistent with the formation of SDS micelles becoming the controlling factor in the value of γ; i.e., region II is one that is rich in SDS micelles.

The transition from I to II with [SDS] can now be viewed in terms of the above interpretation. Region I corresponds to the formation of low concentrations of comicelles or small micellar aggregates and concurrent solubilization of the pyrene in the comicelles. The transition I \rightarrow II is broad in Figure 2. During this transition the value of I/II decreases rapidly, while the value of γ remains nearly constant. These data are consistent with the lowering of the cmc of SDS by the added nonionic surfactant.8 The transition region II \rightarrow III in the γ vs. [SDS] curve corresponds to a break in the slope of the I/II vs. [SDS] curve. This coincidence of transitions is in agreement with the completion of the SDS monomer–micelle phase transition. Further increase in [SDS] simply increases the concentration of SDS micelles.

In Figure 3, the transition from region I to II is sharp in the γ vs. [SDS] curve but not perceptible in the I/II vs. [SDS] curve. At higher initial concentrations of C9PhE1o, formation of comicelles begins at lower concentrations of SDS and continues to form until [SDS] reaches a value of ca. 2 \times 10^{-2} M at which point SDS micelles and SDS-rich comicelles dominate the behavior of the colloid system.

From Figure 4 it is seen that for C9PhE2o, which is not as effective a surfactant as C9PhE1o as gauged by its ability to reduce the surface tension, the γ vs. [SDS] curve does not display a maximum, i.e., no region corresponding to region II of Figures 2 and 3. The graph of I/II vs. [SDS] has a similar shape to that in Figures 2 and 3. The absence of region II behavior is ascribed to the poorer surfactant ability of C9PhE2o relative to C9PhE1o and its poorer ability to form comicelles. Comparison of the initial portion of region I of Figures 3 and 4 shows it is consistent with a poorer ability of C9PhE2o to form micelles since the I/II value is found to remain initially constant for the larger surfactant as the [SDS] is increased.

Figure 5 shows the behavior of I/II as a function of [C9PhE1o] in the absence of SDS and in the presence of 3 \times 10^{-3} and 5 \times 10^{-3} M SDS. The curves have the shapes of typical cmc profiles, with the pure surfactant having the sharper break at the cmc (the value of which from Figure 5 is ca. 8 \times 10^{-3} M; the literature value is 7.5 \times 10^{-3} M); the limiting value of I/II in C9PhE1o micelles is 1.35, a value higher than 1.2 for SDS micelles, suggesting a more open, hydrated structure for the nonionic micelles.

The qualitative conclusions concerning comicelle formation can be put on a more quantitative basis by use of a formulation proposed by Rubingh (eq 1).13 Rubingh's model differs from the ideal mixing models developed by Lange11 and Clint8,9 in that it incorporates a regular solution approximation to describe the activity coefficients of the components in the mixed micelle. The ideal mixing theory is found to adequately describe cmc, monomer concentrations, and micelle composition for the systems where ideal mixing might be expected, i.e., homologous series of surfactants. It however fails to predict cmc and micelle composition for systems that deviate from ideality, such as surfactants with widely differing head groups. The regular solution theory in this context provides a reasonable mathematical approach by incorporating an interaction parameter β which can be obtained from experimental cmc data. This approach was found to be applicable to a variety of anionic, cationic, and nonionic surfactant mixtures almost all of which exhibited negative deviations from ideality. The relevant equations from Rubingh's derivation used in the present treatment to calculate monomer and micelle compositions are discussed below.

The mole fraction of a given surfactant (x1 for SDS) in a comicelle containing two surfactants 1 (SDS) and 2 (C9PhE1o) can be estimated from knowledge of the cmc's of the individual surfactants (C1, C2), the cmc of the mixed surfactant system (C*), and the mole fraction of surfactant 1 in the total mixed solution (a) by eq 1.

\[
1 = \frac{x_1 \ln \left(\frac{C^* a}{C_1 x_1} \right)}{(1 - x_1)^2 \ln \left(\frac{C^* (1 - a)}{C_2 (1 - x_1)} \right)}
\]

Solutions of mixed surfactants of known a value were successively diluted with the water solution of pyrene, so that a series of solutions of constant pyrene concentration and constant a but

Table I: Calculated Parameters of the Comicelles with Different Combinations of SDS and C9PhE1o

<table>
<thead>
<tr>
<th>no.</th>
<th>[SDS], (10^{-3}) M</th>
<th>[C9PhE1o], (10^{-3}) M</th>
<th>(C^*), (10^{-3}) M</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(I)</th>
<th>(f_2)</th>
<th>(C^*_M, M)</th>
<th>(C^*_r, M)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150.0</td>
<td>0.025</td>
<td>6.2</td>
<td>0.83</td>
<td>0.17</td>
<td>0.91</td>
<td>0.10</td>
<td>7.5 \times 10^{-3}</td>
<td>1.6 \times 10^{-4}</td>
<td>-3.4</td>
</tr>
<tr>
<td>2</td>
<td>30.0</td>
<td>0.025</td>
<td>4.3</td>
<td>0.70</td>
<td>0.30</td>
<td>0.75</td>
<td>0.19</td>
<td>6.1 \times 10^{-3}</td>
<td>1.8 \times 10^{-3}</td>
<td>-3.3</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>0.025</td>
<td>3.4</td>
<td>0.64</td>
<td>0.36</td>
<td>0.64</td>
<td>0.25</td>
<td>5.3 \times 10^{-3}</td>
<td>5.7 \times 10^{-4}</td>
<td>-3.4</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>0.025</td>
<td>2.4</td>
<td>0.56</td>
<td>0.44</td>
<td>0.52</td>
<td>0.36</td>
<td>4.2 \times 10^{-3}</td>
<td>7.7 \times 10^{-5}</td>
<td>-3.3</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>0.025</td>
<td>0.39</td>
<td>0.27</td>
<td>0.74</td>
<td>0.16</td>
<td>0.79</td>
<td>2.0 \times 10^{-4}</td>
<td>2.0 \times 10^{-3}</td>
<td>-3.4</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.45</td>
<td>0.28</td>
<td>0.72</td>
<td>0.18</td>
<td>0.76</td>
<td>1.3 \times 10^{-3}</td>
<td>6.7 \times 10^{-5}</td>
<td>-3.4</td>
</tr>
</tbody>
</table>

* The cmc's for SDS (surfactant 1) and C9PhE1o (surfactant 2) measured from the plot of I/II vs. [surfactant] (8.2 \times 10^{-3} and 7.5 \times 10^{-3} M, respectively) are very close to those measured by surface tension and conductivity methods.12,20
varying overall surfactant concentration were prepared. The I_1/I_2 values for three solutions are plotted against the concentration of SDS in the solution as shown in Figure 7 for No. 1 in the Table 1. The inflection point is observed which corresponds to the point at which micelles of this mixed system are formed. C^* is obtained by adding the concentration of C9PhE10 and SDS which are present in the solution at the inflection point.

From the x_1 value, it is convenient to calculate the following parameters β, f_1, and f_2 as given by eq 2, 3, and 4, respectively,

$$\beta = \ln \left(\frac{C^* x_1}{C_1 x_1} \right) \frac{(1 - x_1)^2}{(1 - x_1)^2} \quad (2)$$

$$f_1 = \exp \left(\beta \left(1 - x_1 \right)^2 \right) \quad (3)$$

$$f_2 = \exp \beta x_1^2 \quad (4)$$

on the basis of the calculated x_1 value obtained from eq 1. β is the interaction parameter, and f_1 and f_2 are the activity coefficients of surfactants 1 and 2 in the micelle, respectively.

The concentration of monomer surfactant 1 or 2 (C_1M or C_2M, respectively) at a given total surfactant concentration of 1 and 2 (C_t), in turn, can be calculated from

$$C_1M = \frac{C_t - \Delta}{[C_t - \Delta] + 4 \alpha C_1 \Delta} \frac{1}{2f_2C_1 \gamma (C_t - 1)} \quad (5)$$

$$C_2M = \left(1 - C_1M \right) f_2C_2 \quad (6)$$

where $\Delta = f_2C_2 - f_1C_1$.

From the eq 5 and 6, values of the mole fraction of SDS and of C9PhE10 were calculated (Table 1) for several points employing the data from the figures. The results allow the conclusion that for the regions in which micelles exist in significant concentration (up to the HI - III transition), an increase in [SDS] causes an increase (1) in the activity of SDS in the micelle, (2) in the SDS monomer concentration, and (3) in the fraction of SDS monomers in the micelle. The abrupt decrease in C_1M and f_2 from 5 \times 10$^{-3}$ M to 1.5 \times 10$^{-2}$ M corresponds to the increase in γ.

In the past foaming has been used to separate surface active components, such as in the purification of SDS, the fractionation of other alkyl sulfates, and the separation of closely related fatty acids. The foaming experiment here has been used to analyze the surface concentration of C9PhE10 and SDS.

The data obtained here for the foaming tests (Figure 6) are interpreted as follows: C9PhE10 exists at its equilibrium concentration at the surface for low [SDS]; as [SDS] is increased, C9PhE10 is solubilized at the surface and hence $[C_9PhE_{10}]_{solub}$ increases. At ca. 5 \times 10$^{-4}$ M SDS however, competition for surface sites and the formation of stable C9PhE10-solubilizing micelles pull the nonionic surfactant from the surface into bulk and thus $[C_9PhE_{10}]_{solub}$ decreases. The trends observed here in [SDS] and $[C_9PhE_{10}]_{solub}$ vs. [SDS] are similar to those in C_1M and C_2M shown in Table 1.

The I_1/I_2 of pyrene changes with the polarity (dielectric constant, ε) of the solvent encountered, and a linear relationship between I_1/I_2 and ε is obtained from Figure 6. A calibration line was done with the solvents ether, ethanol, methanol, water, and the mixture of water and methanol using our experimental condition (Figure 8). The relationship between I_1/I_2 and ε (reference data)18,19 can be expressed with equation

$$\varepsilon = (I_1/I_2 - 1.25) 86.2 + 20 \quad (7)$$

Therefore, from eq 7 the apparent dielectric constants of pure SDS micelle ($\varepsilon_{SDS} = 19.1$ at 30 mM), pure C9PhE10 micelle ($\varepsilon_{C_{9}PhE_{10}} = 33.8$), and the micelle ($\varepsilon_{m,app}$) can be calculated from I_1/I_2 values.

Alternatively, the dielectric constant of a micelle also can be estimated by eq 8 ($\varepsilon_{m,app}$) from the knowledge of ε_{SDS}, $\varepsilon_{C_{9}PhE_{10}}$, and the composition of the micelle.

$$\varepsilon_{m,app} = x_1\varepsilon_{SDS} + x_2\varepsilon_{C_{9}PhE_{10}} \quad (8)$$

where x_1 and x_2 can be obtained from Table 1. The $\varepsilon_{m,app}$ of the micelle formed from SDS (5 \times 10$^{-3}$ M) and C9PhE10 (5 \times 10$^{-4}$ M) (flat part in Figure 5) by eq 8 is 28.5, close to the $\varepsilon_{m,app}$ (26.0, calculated from eq 7 with $I_1/I_2 = 1.32$). This suggests that the calculation for the micellar compositions of the mixed micelle in this paper is reasonable.

Acknowledgement. We thank the Army Office of Research and the National Science Foundation for their generous support of this research.

Registry No. SDS, 151-21-3; C9PhE10, 99531-82-5.
