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Abstract

Do observed inefficiencies in betting markets generalize to real financial markets?

Evidence from an online exchange with characteristics of both types of markets suggests

they do not. This study replicates some known anomalies in sports wagering markets

on the online exchange, such as overreaction to news. The observed inefficiencies do

not generalize to other wagering markets, such as financial markets, even though both

markets have similar liquidity, volume and contractual structure. These results sug-

gest researchers should proceed with caution before drawing analogies between sports

wagering markets and real financial markets. They also show that financial markets

can be efficient despite numerous obstacles to arbitrage.
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1 Introduction

The online exchange studied here is similar in many respects to wagering markets. Somewhat

surprisingly, many papers studying sports betting markets find significant market inefficien-

cies. Several studies (e.g., Ziemba and Hausch, 1986, and Jullien and Salanie, 2000) using

horsetrack data have documented the “favorite-longshot bias”: expected returns to betting

on a horse increase monotonically with the probability of the horse winning. Woodland and

Woodland (1994) find a reverse favorite-longshot bias in the baseball point-spread market:

expected returns to betting on a baseball team decrease monotonically with the probability

of the team winning. Woodland and Woodland (2001) replicate this finding in the National

Hockey League betting market. And Avery and Chevalier (1999) discover that point spreads

in the professional football betting market overreact to information, allowing a marginally

profitable contrarian trading strategy.

Do observed inefficiencies in betting markets generalize to real financial markets? Evi-

dence from an online exchange with characteristics of both types of markets suggests they do

not. This result contradicts the commonly held belief that inefficiencies in betting markets

are analogous to inefficiencies in real financial markets. In fact, some authors of studies on

betting markets have argued that “wagering markets have a better chance of being efficient

[than securities markets] because the conditions (quick, repeated feedback) are those which

usually facilitate learning” (Thaler and Ziemba, 1988).

Studies of betting markets attempt to address three limitations that cloud the interpre-

tation of field studies based on traditional financial markets. First, all field studies must test

market efficiency jointly with a model of equilibrium (Fama, 1970; Fama, 1991). Models of

asset market equilibrium must specify the appropriate price of risk in the economy and the

extent to which different assets are exposed to these risks (Roll, 1977). Wagering markets

overcome this difficulty, because most assets traded in these markets are contingent claims

with no non-diversifiable (systematic) risk.

Second, the field environment must closely approximate the conditions of the theoretical

model being tested. Many models of rational financial markets assume the forces of arbi-

trage operate unchecked. However, as emphasized by DeLong et al. (1990), mispriced assets

in real financial markets can become even more mispriced in the short-run and can remain

mispriced for years. These factors limit arbitrageurs’ ability to correct mispricing, because

arbitrageurs often have short time-horizons and limited access to capital. In wagering mar-

kets, arbitrageurs know that asset prices will soon reach fundamental value, allowing them

to take larger positions and correct mispricing.
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Third, studies using new data from wagering markets avoid the problem of data mining

that besets studies based on data from real financial markets. It is necessary to test financial

theory on data sets other than those used to develop the theory. Because studies of real

financial markets perform myriad tests of efficiency using the same data, they are likely to

find spurious market inefficiencies.

For these three reasons, authors of studies on wagering markets argue these markets

should be quite efficient relative to real financial markets. When previous studies identify

inefficiencies in wagering markets, the authors implicitly or explicitly claim that these ineffi-

ciencies generalize to real financial markets. Proponents of efficient markets are skeptical of

this argument, because betting markets differ from real financial markets in numerous ways

that could make them less efficient.

First, different sets of contracts are traded on sports wagering markets and real financial

markets. There are potentially rational, non-monetary reasons to bet on sporting events.

Fans could receive enjoyment from betting on their favorite team or from the excitement of

wagering. These non-monetary motives are unlikely to play a large role in the trading of

financial event futures contracts. Because most models of market efficiency assume traders

act to maximize their expected utility from wealth, it is important to test these models in

environments where this assumption is satisfied.

Second, few traders in sports betting markets have experience trading in other realms,

such as Wall Street, suggesting trader inexperience could lead to inefficient outcomes. For

example, most bettors at horsetracks have no professional trading experience in financial

markets. If these bettors are less likely to identify profitable arbitrage opportunities, these

opportunities could persist indefinitely on horsetrack markets.

Third, although sports betting markets eliminate some impediments to arbitrage, they

introduce new deterrents to arbitrage. Sports betting markets operate on a smaller scale,

supply less liquidity, use less transparent and robust trading mechanisms, and have higher

transaction and participation costs than most real financial markets. All of these features

imply arbitrage will be less appealing and less effective in sports betting markets.

To explore the effect of making betting markets more like real financial markets, I examine

an online exchange that differs from most betting markets in four important ways that make

it more like real financial exchanges.1 First, some contracts on the online exchange are

based on financial events. Second, many traders on the online exchange have experience

1Nevertheless, like other betting markets, the online exchange operates on a smaller scale than real
financial markets. I will demonstrate later that differences in stakes appear to have very little effect on
pricing and trading activity on the online exchange.

3



trading in other realms, such as Wall Street. Third, contracts on the online exchange are

traded via a continuous double auction similar to the mechanisms used on the world’s major

stock, currency, commodity and derivatives exchanges.2 Fourth, the online exchange charges

lower commissions (fees) on trades and has lower entry and exit costs than typical betting

markets.3

The results from statistical tests in this study replicate several inefficiencies discovered in

earlier studies of sports betting markets, such as overreaction to past performance and the

reverse favorite-longshot bias. However, these inefficiencies do not generalize to the financial

markets on the online exchange, even though the structure, liquidity and volume of the

financial and sports contracts on the exchange are quite similar.4 The relative efficiency of

financial markets as compared to sports markets on the exchange is also surprising, because

both markets serve a primarily speculative purpose. Overall, these results show financial

markets can be quite efficient despite numerous obstacles to arbitrage.

Finally, it is important to mention that there are larger and more liquid sports and

financial exchanges (in Las Vegas and New York, respectively) with nearly identical contracts

to those traded on the online exchange examined here. If cross-exchange arbitrage is effective,

then the pricing patterns on the online exchange should be similar to pricing patterns in other

sports and financial exchanges. Thus, the conclusion that financial markets are efficient

relative to sports markets could apply to other exchanges as well.

The next section describes the data set used in this paper. In this section, I also examine

the features of the online exchange in greater depth, offering some descriptive statistics.

The third section sketches a theoretical framework for modeling the contracts traded on

the exchange. The fourth section reports nonparametric and parametric tests of market

efficiency. In the final section of the paper, I interpret the results and draw conclusions.

2Gode and Sunder (1993), Friedman and Ostroy (1995), Cason and Friedman (1996), and Noussair et al.
(1998) experimentally demonstrate that double auctions are particularly robust mechanisms that promote
rapid adjustment towards market equilibrium even in the presence of market frictions and trader irrationality.
Gjerstad and Dickhaut (1998) and Satterthwaite andWilliams (2002) prove theoretically that double auctions
implement efficient allocations even in settings with boundedly rational and finite numbers of traders. By
contrast, most betting markets operate under a single market maker who determines contract odds through
a parimutuel mechanism. A few betting markets use a fixed odds system in which prices do not respond
conventionally to supply and demand.

3Horsetrack markets and many other betting markets studied in the past have significant commission
costs of 10 to 20 per cent of the amount wagered. Entering these markets can be difficult for prospective
traders, because the markets are often held in geographically remote locations with no electronic means for
conducting trades.

4There is also anecdotal evidence that suggests many traders participate in multiple segments of the
online exchange.
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2 Description of the Exchange Data

The data consist of snapshots of the TradeSports.com web site taken at approximately 30-

minute intervals over a six-month period. I developed a program to extract periodically

all publicly available information about the contracts listed on the web site.5 The program

then transforms this information into a large contract database, which forms the basis of

the statistical analyses performed in this paper. The database includes basic statistics for

each contract such as transaction prices, the volume of contract transactions, the quantities

and prices of offers to purchase or sell the contract, and the last price at which the contract

trades (the expiry price). To reduce the size of the unwieldy database resulting from the

extraction program, I select only observations with the greatest relevance for financial theory.

The smaller database includes observations on contracts that have recently been traded and

contracts that are based on events that are about to occur.

The online exchange market is conducted via a publicly available web site, TradeSports.com.

The company TradeSports Exchange Limited hosts this web site and is registered in Ireland.

The TradeSports exchange facilitates the trading of event futures contracts by its members;

that is, the exchange does not conduct transactions for its own account. The owner of a

contract receives a pre-specified amount ($10) if and only if a pre-specified, verifiable state

of nature occurs. I will refer to the event outcome that determines the state of nature as the

underlying event. Expiration is the first time at which the state of nature becomes verifiable.

TradeSports limits the risk that a counterparty to a contract will default by imposing

stringent margin requirements for each sale or purchase of a contract by one of its members.

In most cases, members must retain sufficient funds in their TradeSports account to guard

against the maximum possible loss on a transaction. TradeSports also settles and clears all

transactions conducted on its exchange.

It is extremely easy for anyone with access to the Internet to open an account with

TradeSports and begin trading almost immediately. I have verified TradeSports’ claim that

opening an account takes less than 10 minutes. Some traders with accounts on the exchange

have trading experience in other realms. Chat forums and informal web site polls hosted on

TradeSports.com indicate that many traders are based in New York and Chicago and trade

more conventional financial securities in their day jobs.6 The available evidence suggests

these professional traders account for a great deal of volume and market-making activity on

TradeSports.com.

5The TradeSports exchange has granted me permission to run this program.
6I have also acquired anecdotal evidence that confirms this conjecture.
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The trading interface developed by TradeSports is similar to electronic trading interfaces

on financial exchanges. Both members and non-members can view a quoteboard listing all

contracts in a user-specified category (e.g., politics) by visiting the web site and clicking

through two links. By clicking on a specific contract listing, a user can see the entire order

book for that contract. TradeSports lists all buy and sell orders anonymously and aggregates

these orders by price.7 The exchange processes order submissions with a latency of about

one second.

For ease of interpretation, the exchange divides most contract prices into 100 ticks, worth

$0.10 per tick. Some heavily traded contracts are divided into 1,000 ticks, worth $0.01 per

tick. TradeSports charges very low commissions for transactions conducted on its exchange.

Commissions equal to 0.4% of the maximum contract price ($10) are levied on a per con-

tract basis whenever a contract is bought or sold. At the time of contract expiration, all

outstanding contract positions must be liquidated and incur commissions. Note that the

$0.08 round-trip transaction fee is smaller than the value of one tick ($0.10) for most con-

tracts. This implies arbitrageurs have an incentive to push prices back towards fundamental

values if they stray by even one tick.

More generally, arbitrageurs face few limitations on their trading behavior. Traders can

place unlimited buy or sell orders on any asset at any time, regardless of their current con-

tract position or past pricing patterns. By contrast, many regulated financial exchanges

prevent traders from selling certain assets that they do not own or only permit short-sales

that follow an “uptick” (a price increase). Although TradeSports does not specifically forbid

insider trading, the exchange would presumably report such conduct to Irish law enforce-

ment agencies. The exchange rules do proscribe trades intended to “manipulate prices.”

Finally, the exchange accepts order submissions and operates for 23 hours out of every day,

temporarily closing between 3 a.m.EST and 4 a.m.EST for maintenance.

All contracts listed on TradeSports.com are designed by the company that runs the

exchange, which encourages input on the content and design of its contracts fromTradeSports

members. Although listed contracts can depend on the outcomes of financial, economic,

weather, entertainment, political, legal, and other current events, the most common contracts

are based on United States and international sports events. TradeSports.com seems to be

unique in the wide variety of contracts offered. Some of the more intriguing contracts from

the fall of 2003 are described in Table I.

7When two users submit orders to buy a contract at the same price, the first order is filled before filling
any part of the second order. This is consistent with the rules for most continuous double auctions.
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Table I
Examples of Listed Contracts on the Exchange

Contract Description Price Volume Expiry
Dean to be Democratic presidential nominee 35.5 39,609 7/26/04
Palestinian State established before 2006 20.0 377 Unknown
Homeland Security alert system at “Orange” 16.5 500 12/31/03
Dow Jones to close higher on 10/17/03 6.5 1,605 10/17/03
Buccaneers to win SuperBowl XXXVIII 15.9 86,237 Unknown

Source: TradeSports.com as of approximately 14:00 EST October 17, 2003.

The rules describing how the outcome of an event will be verified are extremely thorough.

In general, TradeSports requires written statements from at least two major news sources

to verify event outcomes. For contracts that depend upon complex events such as Saddam

Hussein’s capture or neutralization by a specific date, the exchange issues periodic updates

and clarifications to the event rules whenever outcome verification is ambiguous. These

difficult-to-verify contracts sometimes hinge upon related events, such as “the Pentagon

issues a statement declaring Saddam Hussein is captured or neutralized,” that are easier to

verify. Remarkably, the verification process has worked flawlessly and without controversy

in the past.

Table II
Types of Actively Traded Contracts on TradeSports.com

Category Contracts Frequency
Sports-related 11,919 83.8%
Financial 1,967 13.8%
Entertainment 175 1.2%
Current Events 148 1.0%
Miscellaneous 16 0.1%
Total 14,225 100.0%

Source: Author’s database based on TradeSports.com web sites from March 18, 2003 to
October 4, 2003. To be included in this table, a contract must have been traded.

Table II documents the number and relative frequency of different types of contracts

actively traded during the sample period studied. The table shows that sports contracts

constitute the vast majority of contracts listed on the exchange, but financial contracts are

also significantly represented. The duration of contracts is typically quite short as compared

to futures contracts traded on other exchanges. Table III reveals that most of the contracts

contained in the data sample expired within one day of the time when they were first listed
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on the exchange. Still, the sample does contain over eight hundred contracts with durations

that exceed two months.

Table III
Duration of Listed Contracts

Duration Contracts Frequency Cumulative Frequency
One day or shorter 8,311 58.4% 58.4%
From one day to one week 4,340 30.7% 89.1%
From one week to two months 739 5.2% 94.3%
From two to five months 490 3.4% 97.8%
Five months or longer 315 2.2% 100.0%
Total 14,225 100.0%

Source: Author’s database based on TradeSports.com web sites from March 18, 2003 to
October 4, 2003. To be included in this table, a contract must have been traded.

TradeSports proudly proclaims it has over 20,000 members who have wagered over $380

million through the exchange. This implies an average of $19,000 wagered per member.8

This amount represents the sum of all capital invested in and withdrawn from contracts

on the exchange. Although these stakes are not nearly as large as those on most financial

markets, they are orders of magnitude larger than the stakes in economics experiments.

It is difficult to compare the magnitudes on TradeSports to the amounts traded on real fi-

nancial markets, because participants in real financial markets who own derivative contracts

and sell stocks short face unbounded risks. The market for buying stock is the most appro-

priate (albeit imperfect) point of comparison for markets on TradeSports. On the NYSE,

roughly 100 million investors have approximately $10 trillion worth of capital at risk in the

market for owning stock. Turnover on the exchange is about one stock per year, so the “aver-

age” investor on the NYSE trades approximately $100,000 worth of stock. Although investors

in real financial markets undoubtedly face larger incentives than TradeSports’ members, the

stakes on TradeSports are large enough to merit the attention of Wall Street traders.

The scale of the TradeSports exchange is quite large relative to previously studied exper-

imental markets, including the Iowa political futures markets. A typical wager in a single

transaction on TradeSports is $100; many transactions exceed $1,000.9 By contrast, partic-

ipants in the Iowa political futures markets have an average of only $50 of their own money

8If the distribution of amounts wagered per member is positively skewed (which is likely), the typical
TradeSports member has wagered less than $19,000.

9The $100 estimate is based on the default order size of 20 contracts on TradeSports times the average
amount wagered on each contract. This latter quantity is identically equal to $5 because buyer and seller
wagers necessarily add up to the total amount at risk on each contract, which is $10.
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at risk in the entire market.10 Subjects in other economics experiments rarely face risks of

more than tens of dollars.

In summary, many features of the TradeSports exchange recommend its use as a “natural

laboratory” for testing asset pricing theory. It is easy to determine the fundamental value

of the contracts on the exchange that are only exposed to idiosyncratic risk. Because events

on TradeSports tend to be widely publicized, the assumption that all traders can costlessly

acquire information about these fundamental values is probably not a bad approximation.

Moreover, if prices ever stray from fundamental values, experienced traders from real

financial markets have excellent opportunities to identify and eliminate arbitrage opportuni-

ties on the TradeSports exchange. Prospective arbitrageurs face minimal hurdles to entering

the market, near-zero transaction costs, and very few regulations on their trading behavior.

If at least some of these arbitrageurs have rational expectations, purely monetary motivations

and access to sufficient capital, they will prevent substantial mispricing on the TradeSports

exchange. This concept motivates the model in the next section.

3 A Theory of Arbitrage on TradeSports

This section describes a theoretical framework for understanding observed pricing patterns

on the online exchange. The model is based on arbitrage pricing theory (APT) from Ross

(1976). The intuition behind APT is straightforward: because investors can hold diversified

portfolios of contracts, they will require no compensation for bearing idiosyncratic risk.

Because many contracts on TradeSports are not exposed to systematic risk, this idea leads

to specific pricing predictions. Moreover, these predictions do not require any economic

assumptions about trader preferences.

3.1 Setup and Notation

I consider an environment in which traders can invest in N assets (contracts) indexed by

i = 1, ..., N . For notational simplicity, I assume the exchange allows trading in all contracts

for exactly T periods: t = 1, ..., T . At time t = T , each contract i expires and pays an

uncertain dividend exiT , which equals 0 ticks or 100 ticks (i.e., $0 or $10). Denote the set of
all possible contract price and dividend realizations at time t by St, where st ∈ St. Let SiT be

the set of states at time T in which contract i yields a dividend of 100 ticks. In each period

10This $50 estimate is based on data from Berg et al. (1997).
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prior to expiry, information about the state is revealed publicly. The conditional probability

at time t that asset i’s dividend equals 100 ticks is Pr(sT ∈ SiT |st). The notation for the
price of asset i at time t is pit.

3.2 Contract Prices with Perfect Arbitrage

I make the crucial assumption that there are no arbitrage opportunities available on the ex-

change. Ross (1978) proves that this assumption alone implies asset prices can be represented

by the expected product of a strictly positive stochastic discount factor and asset payouts.

Applying Ross’s theorem to the current situation, at each time t, there exists at least one sto-

chastic discount factormt that is strictly positive in all states st with Prt−1(st ∈ Sit|st−1) > 0.
This stochastic discount factor satisfies the following relationship:

∀i = 1, ..., N, pi,t−1 = Et−1(mtpit) (1)

The preceding equation prices any contract i given the contract’s prices one period hence.

Imposing the no-arbitrage requirement that piT = xiT and using backward induction, one

obtains asset pricing equations for each contract i that relate current prices to prices at all

future dates and to dividends at expiry:

∀t0 = 1, ..., T − t, pit = Et(mt+1mt+2...mt+t0pi,t+t0) (2)

pit = Et(mt+1mt+2...mTxiT ) (3)

For convenience, define another stochastic discount factor Mt,t+t0 = mt+1mt+2...mt+t0

withMt,t = 1 In all asset pricing models,Mt,t+t0 represents investors’ intertemporal marginal

rates of substitution, which are complicated functions of many economic variables. I assume

thatMt,t+t0 = f(ct+t0, yt+t0, t0), where ct+t0 denotes investors’ consumption at t+t0 and yt+t0
denotes a vector of state variables that affect investor utility at t+ t0. I assume further that

f(·) is continuous in all its arguments. Nearly all asset pricing models meet these intuitive
requirements.

Under these assumptions, it is straightforward to show thatMt,t+t0 converges toward 1 as

t0 approaches 0. Because most contracts on TradeSports have extremely short durations, the

stochastic discount factor will be very close to 1. This approximation simplifies equations
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(2) and (3) for each contract i:

∀t0 = 1, ..., T − t, pit = Et(pi,t+t0) (4)

pit = Et(xiT ) (5)

The first equation states that all contract prices on TradeSports follow a randomwalk without

drift. The second equation ensures that contract prices equal fundamental values at all times.

3.3 Incorporating Market Frictions

Even on TradeSports, arbitrageurs incur some costs when they trade. Most arbitrage strate-

gies involve purchasing and selling contracts rapidly, suggesting that arbitrageurs must pay

the current asking price to buy a contract but receive only the current bid price when they

sell a contract. In addition, TradeSports charges a non-trivial commission on each one-way

transaction. In this section, I relax the assumption of perfect arbitrage to model these market

frictions.

The presence of bid-ask spreads and commission costs implies the effective price of a

contract is different for contract purchases and sales. In other words, equations (4) and (5)

become two inequality constraints that place bounds on the maximum and minimum price of

a contract. Let ait and bit be the ask price and bid price for contract i at time t. Denote the

commission cost per contract by c. Define the observed price to be the average of the current

bid and ask prices, so that pit = (ait + bit) /2. An arbitrageur wanting to buy a contract at

time t and liquidate the contract at time t + t0 must not be able to earn abnormal profits,

which places a lower bound on the price of contract i at time t:

∀t0 = 1, ..., T − t, pit +
ait − bit
2

+ c ≥ Et(pi,t+t0 −
ai,t+t0 − bi,t+t0

2
− c) (6)

Similarly, no arbitrageur must be able to earn excess profits from selling a contract at time

t and liquidating the contract at time t+ t0:

∀t0 = 1, ..., T − t, pit −
ait − bit
2

− c ≤ Et(pi,t+t0 +
ai,t+t0 − bi,t+t0

2
+ c) (7)

The situation is somewhat different for an arbitrageur using a trading strategy that holds

contracts until they expire, because this trader incurs no bid-ask spread cost at expiry. Trade-

Sports still charges traders normal commissions if they hold open positions when contracts
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expire. Ruling out profitable trading strategies that buy or sell contracts and liquidate them

at expiry generates the restrictions:

pit +
ait − bit
2

+ c ≥ Et(xiT − c) (8)

pit −
ait − bit
2

− c ≤ Et(xiT + c) (9)

A careful examination of equations (8) and (9) reveals that they imply that equations

(6) and (7) hold. Although equations (6) and (7) are theoretically redundant, it is easier to

form accurate empirical measures of the variables in these equations. Accordingly, I will use

equations (6) and (7) in the next section to test the model.

The two restrictions from equations (8) and (9) place tight upper and lower bounds on

contract prices at all times, but they do not predict the pricing fluctuations that occur within

the bounds. Financial theory offers little guidance here, so it becomes necessary to rely on

economic insights. I assume that price fluctuates randomly within the arbitrage bounds. The

source of uncertainty in the model arises from demands of traders with “complex” motives.

These traders can be thought of as liquidity traders with potentially, but not necessarily,

rational reasons for buying and selling the contract. For example, fans of a sports team could

wish to hedge against their team losing. Or, they might want to splurge on a celebration

party if their team wins.

Explicit modeling of these complex trading motives is outside the scope of this paper, but

the model summarizes these considerations by allowing contract prices to fluctuate randomly

within the arbitrage bounds according to the whims of complex traders. To express this

intuition, define a random variable uit that satisfies the relationship:

uit ≡ pit −Et(xiT ) (10)

I assume uit follows a first-order auto-regressive process that satisfies the arbitrage restric-

tions in equations (8) and (9). Thus, uit = ρui,t−1 + vit, where 0 ≤ ρ < 1. The vit are

distributed independently and identically over time with mean 0 and variance σ2vi. All re-

alizations of vit conform to the restrictions (8) and (9).11 In the empirical tests in the next

section, I allow price innovations to be correlated across contracts. As explained in detail

11The set of assumptions on vit imply that price innovations have a truncated distribution with a po-
tentially strange shape when price nears the arbitrage bounds. The more realistic assumption that price
innovations follow some heteroscedastic process complicates the calculations below without changing the
qualitative conclusions of the analysis.
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later, the TradeSports exchange lists its contracts in such a way that I am able to identify

unrelated contracts and explicitly adjust for interdependencies in contract prices.

As a counterpart to the mispricing variable uit defined above, I define another random

variable �it ≡ pit−Et−1(pit) that represents the unexpected change in the fundamental value

of contract i. By construction, this variable has a mean of 0 and is independent across

contracts and time. I also assume the change in contract i’s fundamentals is identically

distributed with variance σ2� .

These assumptions lead to a statistical characterization of returns on TradeSports con-

tracts. First, it is interesting to look at the (unconditional) expected squared pricing error

for different contracts. From equation (10), one can interpret E (u2it) as a measure of the

degree of mispricing. Straightforward calculations show that the expected squared pricing

error is proportional to the variance in mispricing innovations σ2vi. Thus, the model predicts

that the empirically observed mean squared pricing error should be higher for contracts in

which traders have complex motivations for placing bets.

Second, the model makes predictions concerning the time-series behavior of contracts. A

regression of future single-period returns on past single-period returns for contract i yields

a coefficient βRi
that satisfies:

−0.5 < βRi
≈ −

(1− ρ)σ2vi
(1 + ρ)σ2� + (2 + ρ)σ2vi

< 0 (11)

There are slight return reversals within the arbitrage bounds arising from price pressure from

complex traders. Because the price pressure is not completely permanent, prices eventually

regress toward the middle of the arbitrage bounds defined by fundamentals and transaction

costs. Arbitrage ensures that these reversals never become large enough to imply profit

opportunities. Empirically, the model predicts larger return reversals (βRi
) for contracts in

which complex traders play an important role.

4 Measures of Exchange Efficiency

This section evaluates the efficiency of the TradeSports exchange in light of the predictions of

financial theory derived above. Nonparametric tests of market efficiency show that mispricing

in sports game contracts is significantly greater, in both statistical and economic terms, than

mispricing in financial contracts. This suggests traders with non-monetary motives play a
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much more important role in sports game contract pricing than they do in financial contract

pricing.

Tests of the time-series behavior of prices reveal that some contract prices overreact in

equilibrium. The overreaction phenomenon applies only to the contracts on the exchange

that are based on sporting events and does not admit profitable trading strategies. The

future returns of financial contracts on the exchange are not significantly predictable from

past returns. These findings provide further support for the simple model of arbitrage in the

previous section.

Because most contracts on the TradeSports exchange are exposed only to idiosyncratic

risk, it is easy to calculate their fundamental values. For an event futures contract with only

idiosyncratic risk, fundamental value is equal to the probability that the underlying event

occurs conditional on all publicly available information. The current price of a contract is

the most obvious piece of public information. The model in the previous section predicts

the current price will be approximately equal to the conditional probability that the event

will occur. Unfortunately, a researcher cannot directly measure this conditional probability,

thereby precluding a perfect assessment of a contract’s fundamental value. However, by

aggregating contracts into groupings based on their current price, one can estimate the

fundamental value of groups of contracts as the observed frequency that the underlying

groups of events occur. Comparing this theoretical portfolio value to the observed portfolio

prices yields a test of whether portfolios of “riskless” contracts are mispriced.

4.1 Portfolio Formation

This idea lies behind the following procedure. I form ten portfolios by simulating ten trading

strategies that buy specified contracts after publicly known events occur. These strategies

create ten portfolios corresponding to ten pricing categories with ranges of 10 ticks each.

The kth portfolio purchases a contract (and holds it until expiration) whenever a contract

meets all of the following four criteria:

1. the average of the contract’s current bid and ask prices is between 10k and 10(k − 1)
ticks;

2. the underlying contract event is sports-related or the contract has a duration of less

than one week;

3. the spread between the contract bid and ask prices is less than or equal to 10 ticks;
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4. and the portfolio does not yet contain the contract.

The first requirement divides contract prices into ten pricing categories with equal size.

The first category includes contracts priced between 0 and 10 ticks and the last category

includes contracts priced between 90 and 100 ticks. The decision to form categories based

on pricing ranges of equal size reflects this study’s interest in making inferences about the

whole spectrum of agents’ probability assessments. To ensure that prices do not reflect stale

information, I measure the current price of a contract as the average of the highest bid price

and the lowest ask price listed in the active order book. By comparison, the most recent

transaction price captures information older than the current price.

The second criterion identifies contracts with only idiosyncratic risk, by selecting those

that depend on sporting events and those that expire within one week or less.12 Clearly,

the outcomes of sporting events are unrelated to major macroeconomic shocks; and, in most

weeks, the equilibrium price of holding a week’s worth of macroeconomic risk is very close

to zero.13

The third requirement excludes price observations that are potentially contaminated

by measurement error. When the bid-ask spread is high, a researcher cannot accurately

determine the current price with a reasonable degree of certainty. By contrast, low spreads

imply the contract is (or will soon be) actively traded and that the active bid and ask orders

are not just cheap talk. In other words, the expected stakes from submitting an order are

high.

The fourth and final criterion ensures that no portfolio selects the same contract more

than once. The trading algorithm defined by the four criteria generates a portfolio of distinct

riskless contracts for each pricing category. Still, portfolios formed from different pricing

categories will likely contain overlapping sets of contracts, implying that portfolio return

realizations will be positively correlated. I address this issue later.

I consider two subsets of the contracts in the ten portfolios. The first subset contains

sports game contracts, which yield payoffs contingent on whether a specific team wins a

sporting event. Previous research has focused on these contracts under the implicit assump-

tion that they are analogous to contracts based on financial events. I test the validity of this

assumption by examining a second subset of contracts that are based on financial events.

12I have used many alternative criteria to test the robustness of the results and reached similar conclusions.
13The only contracts exposed to macroeconomic risk that comprise a significant fraction of the sample

are contracts based on the close of daily and weekly financial index prices. Most of these contracts serve no
obvious hedging function and they appear to be priced according to the model from the prior section.
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4.2 Nonparametric Estimates of Mispricing

For each subset, I estimate the returns from holding a contract until expiration, conditioning

on current contract prices. I use a locally weighted least squares algorithm that estimates

the derivative of the conditional expectation at each contract price. The derivative equals

the slope of the weighted least squares line through data from contracts with “neighboring”

prices. I define neighboring prices to lie within an interval centered around the current price

with a bandwidth equal to half the sample. I adopt a standard tricube weighting function,

following Cleveland (1979). This procedure provides a nonparametric description of the

returns from the sports game contracts and financial contracts in the ten portfolios.

Figure I presents the nonparametrically “smoothed” estimates of expiry returns condi-

tional on current prices and contract type. Two patterns emerge from the table. First, on

average, the estimates of expiry returns from sports contracts lie further from the horizontal

axis, suggesting there is more mispricing in the market for sports game contracts than the

market for financial contracts. Second, the shapes of conditional expiry returns for financial

and sports game contracts are quite different, implying that distinct pricing patterns coexist

in the two markets.

To measure the degree of mispricing in financial and sports game contracts, I calculate

the mean squared pricing error for each set of contracts using the fitted values from the two

series of smoothed expiry returns. It is useful to decompose each mean squared error (MSE)

into a bias component and a variance component. For sports game contracts, the MSE is 4.06

ticks2, the squared bias is 2.17 ticks2, and the variance is 1.89 ticks2. For financial contracts,

the MSE is 1.59 ticks2, the squared bias is 0.02 ticks2, and the variance is 1.57 ticks2 In other

words, financial contracts have an MSE that is 60% lower, a squared bias that is 99% lower,

and a variance that is 16% lower than sports game contracts. All three comparisons suggest

financial contracts are more accurately priced than sports game contracts.

Next, I assess whether the difference in mispricing between the two types of contracts

is statistically significant. The idea behind the test is to compute the difference in squared

pricing errors between financial and sports game contracts over different pricing intervals.

If these differences in squared errors are consistently negative, then it is likely that financial

contracts are less mispriced than sports game contracts.

Following Künsch (1989), I employ the moving block bootstrap (MBB) procedure to

generate a sampling distribution for the difference in squared pricing errors. The MBB

differs from a conventional bootstrap, because it accounts for the dependence in the squared

error data by repeatedly sampling observations from consecutive pricing intervals, rather
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Figure I
Mispricing in Sports and Finance Contracts

Source: Author’s database based on TradeSports.com web sites from March 17, 2003 to
October 4, 2003. To be included in this figure, a contract must meet all four of the portfolio
criteria described in section 4.1. Each data point represents the fitted value from a locally
weighted least squares regression of expiry returns on current prices. In each regression,
I apply local weightings from the standard tricube weighting function to only neighboring
current prices. The neighborhood for each data point is centered around the data point and
includes one half of the sample. The original unsmoothed data come from the ten portfolios
described in the text. There are 7,647 observations from sports game contracts and 6,127
observations from financial contracts in the portfolios.

than randomly selecting individual observations. In the MBB, I assume a block size equal to

one-tenth of the total financial contract sample size (619 observations). I randomly sample

consecutive blocks with this size from the distribution of financial squared pricing errors and

sample the sports game squared pricing errors over a matching interval.

The average difference between these two sets of squared errors provides a measure of

whether the sports game block or the financial block is more accurately priced. I average

this average difference from 10 randomly sampled consecutive pricing blocks to obtain a
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bootstrap estimator of the mean difference in squared errors of financial and sports game

contracts. I repeat the estimation 1,000 times to find an empirical distribution for the

bootstrap estimator. In 953 out of the 1,000 replications of the bootstrap estimator, the

difference in squared error between financial and sports game contracts is negative. Thus,

a one-tailed test of the hypothesis that the squared errors for sports game contracts and

financial contracts on TradeSports are the same rejects the null at the 5% level. I conclude

that the difference in mispricing between the two contracts is statistically significant and

economically large.

Figure I also reveals that expiry returns to sports game contracts fall sharply as price

increases within the 45 to 70 tick range. This phenomenon is closely related to the so-called

reverse favorite-longshot (RFL) bias. Woodland andWoodland (1994 and 2003) find that the

returns to betting on baseball teams to win decline monotonically with the probability that

the team will win. Woodland and Woodland (2001) replicate this result for hockey teams.

These studies estimate that the gross returns (without commissions) to betting on the teams

with lower probabilities of winning are 1.5% for baseball games and 5.2% for hockey games.

To test for this regularity in the TradeSports data, I follow a procedure similar to the one

used to create Figure I. Instead of using portfolios of contracts with prices designed to span

the full range from 0 to 100 ticks, I focus on the returns to contracts that are purchased before

any major news about the event has transpired. Thus, I use only the first observations on

sports game contracts and financial contracts that meet criteria (2) through (4) listed above.

This procedure yields a very uneven distribution of contract prices with many observations

in the middle and very few near the extremes.

I employ a lowess algorithm based on only the observations on the initial contract prices

rather than observations over the lifetime of the contract. This lowess algorithm differs from

the earlier lowess algorithm in two significant ways. First, I select smoothing bandwidths

for the two sets of contracts that contain the same number of observations.14 The benefit

of using bandwidths with equal numbers of observations is that the two smoothed estimates

have approximately the same precision. The cost of this choice is that the bandwidths are not

based on the same pricing ranges.15 Second, I do not apply weightings to the observations

in each local regression. Figure II displays the smoothed data from this lowess procedure for

both types of contracts.

14Both bandwidths are based on half of the total number of financial contracts (770 contracts), because
there are fewer observations on financial contracts.

15Adopting a lowess procedure with bandwidths based on the same pricing ranges generates similar
qualitative results to those presented here.
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Figure II
The (Reverse?) Favorite-Longshot Bias

Source: Author’s database based on TradeSports.com web sites from March 17, 2003 to
October 4, 2003. To be included in this figure, a contract must meet the last three of the
four portfolio criteria described in section 4.1. Each data point represents a locally weighted
regression of expiry returns conditional on current prices. In each least squares regression, I
apply equal weight to all neighboring current prices. The neighborhood for each data point is
centered around the data point and includes 770 contracts (half of the total financial contract
sample). The original unsmoothed data come from the one large portfolio described in the
text. In this portfolio, there are 4,133 observations from sports game contracts and 1,739
observations from financial contracts.

The figure reveals that there is a pronounced RFL bias in sports contracts initially priced

between 45 ticks and 75 ticks. The maximum amplitude of the bias from the peak return

to the trough return is 4.6 ticks. Most of the data lies in the pricing range where the RFL

bias prevails, because the TradeSports exchange lists the majority of sports game contracts

from the perspective of the favored team.16 It is interesting to note that the sports game

16A few “favorites” become slight underdogs before the initial price has been recorded, which explains
why there are some sports game contracts with initial prices less than 50 ticks.
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contracts on the web site with prices straying substantially from 50 ticks follow the pattern

of the favorite-longshot bias. In other words, the returns to betting on a team increase as

the probability of the team winning increases, as long as this probability is not near 50%.17

Both the favorite-longshot bias and the reverse favorite-longshot bias in Figure II are

consistent with findings from earlier studies. Researchers have found the RFL bias in sports

game contracts that are based on one team winning the game. By their nature, these con-

tracts have prices near 50%, because most sports games feature two teams with comparable

ability. The favorite-longshot bias has been observed in gambles at horsetracks. Because

there are typically ten or so horses in each race, the vast majority of bets at the horsetrack

yield payoffs less than 25% of the time. A simple interpretation of prior studies is that the

favorite-longshot bias applies only to contracts based on unlikely events, whereas the RFL

bias applies to events that are moderately likely to occur. Of course, contracts that depend

on unlikely events also implicitly depend upon likely events (the negation of the unlikely

event), so it is not surprising that the favorite-longshot bias applies to both unlikely and

likely events.

From Figure II, it appears that framing does not have much of an impact on sports

game contract pricing. Reframing contracts in terms of the other team winning is equivalent

to rotating the plot of the conditional expectation function 180 degrees along an axis that

points into the figure and is centered at expiry returns of 0 ticks and an initial contract price

of 50 ticks. Because the sports game conditional expectation function has a slanted z-shape,

this 180-degree rotation has little impact on the qualitative features of the function. Both

the favorite-longshot bias and the reverse favorite-longshot bias remain prominent in similar

ranges of the reframed version of the sports game conditional expectation function.

The financial contracts do not show the same regularities as sports game contracts. There

is no reverse favorite-longshot bias for financial contracts priced near 50 ticks. And the con-

ditional expectation function for financial contracts does not have any notable symmetry.

With the exception of a minor positive bias in returns, financial contracts are approximately

correctly priced. Although most of the financial contracts appear to be priced below funda-

mental value, this bias is not statistically or economically significant. A comparison of the

results in Figure I and Figure II suggests that any positive return bias in financial contracts

goes away over time.

To summarize the results from Figures I and II, the prices of sports game contracts

17This regularity has been noted, but largely ignored, by other authors such as Woodland and Woodland
(1994).
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appear more biased and less precise than the prices of financial contracts on the TradeSports

exchange. There are also more psychologically motivated patterns in the sports game data.

These patterns include both the reverse favorite-longshot bias and some evidence of the

favorite-longshot bias. The next section adopts a parametric framework to assess the ability

of behavioral theory to explain the sports game and financial contract pricing patterns. The

functional form estimated embeds both rational and behavioral models.

4.3 Estimating a Parametric Probability Weighting Function

One of the most prominent and well-respected behavioral theories of probability assessment

comes directly from Kahneman and Tversky’s (1979) prospect theory. Based on a substan-

tial body of experimental evidence, Kahneman and Tversky hypothesize that agents tend to

overweight the likelihood of low probability events and underweight the likelihood of high

probability events. Prelec (1998) posits a specific functional form that describes the rela-

tionship between actual probabilities and agents’ perceptions of these probabilities. He finds

that the one-parameter version of this probability weighting function captures the most im-

portant features of extant experimental evidence on agents’ beliefs. Prelec (2000) provides

an axiomatic justification for the weighting function:

w(p) = exp [− (− ln p)α] , α > 0 (12)

The α parameter controls the degree of curvature in the function. Except when α = 1, the

Prelec probability weighting function has a unique fixed point at p = 1/e ≈ 0.37. It is also
regressive when α < 1, meaning it overweights low likelihood events and underweights high

likelihood events as in prospect theory. These features are all consistent with experimental

empirical estimates. Also, note that the Prelec probability weighting function nests the

expected utility model as a special case (α = 1). Gonzalez and Wu (1996) and Prelec (2000)

estimate α = 0.65 and α = 0.74, respectively, from their experimental data.18 Both studies

18Other studies have estimated a probability weighting function that is linear in log odds (Lattimore,
Baker and Witte, 1992), which possesses the same qualitative properties as the Prelec weighting function:

w(p) =
pγ

[pγ + (1− p)γ ]
1/γ

, γ > 0 (13)

In fact, this function’s curvature parameter γ is quantitatively similar to the curvature parameter α in
Prelec’s specification. Gonzalez and Wu (1999) argue: “For typical values of probability used in most
empirical studies..., it will not be possible to distinguish the linear in log odds function from the Prelec
function because both functions can be linearized, and these linearized forms themselves are closely linear
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statistically reject the EU restriction on α, finding it is significantly less than 1.

Of course, experimental investigations of the probability weighting function use individual

choice data whereas each data point in this study represents a market equilibrium resulting

from the interaction of many traders. Under the assumption that all market participants be-

have according to the same probability weighting function, analyzing the two different data

sources will produce identical conclusions. On the other hand, if certain traders behave ratio-

nally and exert a disproportionate influence on market prices, market-based field estimates

of α will be much closer to 1 than will individual-choice-based experimental estimates.

The predictions of prospect theory for the TradeSports data can only be tested jointly

with a theory of how many behavioral traders are present in the market and how those

traders affect prices. Implicitly, this study is testing prospect theory under the assumption

that arbitrageurs use the theory’s probability weighting function and that the model in the

previous section accurately describes their influence on prices. All the equations in the

previous section still apply when expected dividends are calculated using traders’ perceived

probabilities rather than objective probabilities.

One paper that has used real market-based data to estimate α from the Prelec weighting

function is Jullien and Salanie (2000). The authors arrive at mixed conclusions from their

data set, which contains horse track odds and results. They statistically reject the expected

utility hypothesis in favor of the two-parameter Prelec specification. But the authors estimate

α = 0.879, which they consider to be a small departure in economic terms from the EU

restriction of α = 1.19 A simple interpretation of this result is that some, but not all, traders

in the Jullien and Salanie data use the prospect theory weighting function.

Thus, the jury is still out on the ability of behavioral theories to predict probability

weighting functions derived from real market data. Using the data from Figure II, this study

attempts to estimate α in the Prelec weighting function. Whereas Prelec (2000) and most

other experimental studies that estimate α are able to observe (or even manipulate) the

true event probability (p) agents’ face, this study must infer true probabilities from data

on observed event frequencies. To estimate α, Prelec (1998, 2000) suggests transforming

the equation for the weighting function by taking logarithms of each side twice. In double-

for the probability range (0.01, 0.99)” (p.140). With this similarity in mind, one can infer estimates of α
from studies that have estimated the linear in log odds weighting function. Tversky and Kahneman (1992),
Camerer and Ho (1994), and Gonzalez and Wu (1996) find estimates of between 0.56 and 0.71 for the
curvature parameter in the linear in log odds specification, which is quantitatively similar to the values of α
estimated from other studies.

19The data in Jullien and Salanie (2000) follow the well-known pattern of the favorite-longshot bias. The
expected return to betting on a horse increases monotonically with the probability of the horse winning.
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log space, the relationship between probability perceptions and true probabilities is linear,

allowing Prelec estimate the weighting function with classic OLS techniques.

Unfortunately, simply tweaking Prelec’s estimation methodology to accommodate fre-

quency data by replacing true probabilities with event frequencies is fraught with difficul-

ties. First, events must be aggregated into pricing categories to use frequencies as estimates

of probabilities.20 This categorization process does not efficiently use all the information

about contract prices available in this data set. Second, category frequencies are imprecise

measures of true category probabilities. This measurement error in the independent variable

causes attenuation bias in the OLS estimates.21

Maximum likelihood estimates of α based on contract prices and event dummy variables

(indicating event success or failure) overcome these limitations. I base the maximum likeli-

hood estimates on the data from Figure II, which contains 3, 538 independent observations

on contract prices and the success or failure of underlying contract events. This number

is substantially smaller than the 5, 818 raw observations included in Figure II, because the

figure contains some related contracts.22 The TradeSports exchange groups these related con-

tracts into sets called subcategories.23 To ensure independence across contracts, I use only

one contract per sports game and one financial contract per subcategory in the maximum

likelihood estimates.

I separately test whether contract prices equal fundamental values for sports games and

financial contracts traded on TradeSports. Please refer to the appendix for a complete

description of the estimation procedure and the algorithm use to solve for the maximum

likelihood estimators.

20Specifically, events must be grouped into categories in which all category frequencies are positive to
avoid taking the logarithm of zero.

21I have performed an OLS regression of double log portfolio prices on double log portfolio event frequen-
cies. Despite the attenuation bias, estimates of α from this regression closely match the maximum likelihood
estimates described below.

22Specifically, Figure II contains multiple financial contracts whose outcomes depend on the same or
related financial indices. The figure also contains multiple sports contracts based on one team winning by
different margins of victory.

23The top layer of the TradeSports grouping hierarchy is the contract type (e.g., financial), the next layer
is the contract category (e.g., indices), the next layer is the contract subcategory (e.g., daily indices close for
March 19), and the final layer is the contract itself (e.g., Dow Jones index to close higher than the previous
day on March 19). For example, the following contracts are listed in the subcategory “daily indices close for
March 19”: Dow Jones to close higher; Dow Jones to close more than 100 points higher; Dow Jones to close
more than 100 points lower; S&P to close higher; and Nasdaq to close higher.
The event outcomes underlying contracts from the same subcategory are obviously related. But event

outcomes from different subcategories, such as “daily indices close for March 19” and “daily indices close
for March 20,” are approximately uncorrelated. The weighting procedure is designed to account for this
correlation.
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Table IV
Maximum Likelihood Estimates of the Prelec Probability

Weighting Function
Parameter Games Contracts Financial Contractsbα 0.921 0.960
Std Error 0.052 0.085
ln L -641.3 -232.3
ln L (EU) -642.3 -232.4
LR p-value 0.164 0.656

Source: All estimates are based on the independent observations from Figure II. The one-
parameter Prelec weighting function is given by equation (12). ln L denotes the unrestricted
maximum of the log likelihood function; and ln L (EU) denotes the maximum of the log
likelihood function under the expected utility parameter restriction on the Prelec weighting
function (α = 1). The LR p-value is the likelihood ratio p-value from testing the expected
utility restriction.

By themselves, the estimates in Table IV suggest that both types of contracts are quite

efficient. Of the two estimates, the estimates of bα based on sports game contracts most closely
resemble experimental evidence and the Jullien and Salanie (2000) estimates. But drawing

inferences from Table IV alone can be somewhat misleading. The nonparametric analysis of

sports game contracts in section 4.2 suggests that the parametric weighting function has a

difficult task in trying to fit both the reverse favorite-longshot bias and the favorite-longshot

bias. The appropriate interpretation of the estimated value of bα < 1 for sports game contracts

is that the favorite-longshot bias slightly dominates the reverse favorite-longshot bias.

Because the parametric tests impose an inappropriate functional form on the mispricing

relationship, they do not reveal significant differences in mispricing between sports game and

financial contracts. By contrast, the nonparametric tests that let the data speak show that

financial contracts are more accurately priced than sports game contracts by a statistically

and economically significant margin. In cross-sectional estimates, the mean squared pricing

error is over 60% lower for financial contracts. It is still possible, however, that time-series

tests of efficiency tell a different story. The next subsection tests whether the prices of sports

games contracts and financial contracts on TradeSports follow a random walk over time.

4.4 The Market Response to Information

Many financial models predict asset market prices will follow a random walk–i.e., they will

not be predictable based on past information. As explained section 3, however, a reasonable
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model of trading behavior on TradeSports implies a small degree of negative serial correlation

between returns. If some traders are motivated by non-monetary concerns, such as devotion

to their favorite sports team or direct utility from gambling, they can exert pressure on

contract prices. Still, the rational traders in the model ensure that prices do not stray beyond

the arbitrage bounds from equations (8) and (9). Despite the negative serial correlation in

equilibrium prices, the model in section 3 predicts no trading strategies based on past returns

will generate excess returns in equilibrium.

Equation (11) predicts negative serial correlation in contracts in which there is a lot of

“complex” trading–i.e., trading motivated by non-monetary concerns. Presumably, sports

games meet this criterion, because some sports fans prefer to bet on their favorite team or

derive utility from the excitement of gambling on sporting events. Based on the assumption

that these motives do not generalize to other contexts, such as financial markets, equation

(11) predicts smaller return reversals in financial contracts.

This theory of overreaction differs from behavioral theories of overreaction that are based

on mistaken beliefs. For example, Avery and Chevalier (1999) argue that investor sentiment

leads to overreaction of betting lines in the professional football market. Most psychological

theories of overreaction posit that salient news provokes overreaction from traders. Some

events underlying contracts on the TradeSports exchange attract a great deal of media cov-

erage, suggesting they are salient in the minds of traders that receive their information from

the media. According to behavioral theory, traders overreact to positive contract returns

when these returns are accompanied by salient news. This phenomenon generates excessive

buying activity in salient contracts with positive past returns, thereby pushing the prices

of these contracts above their fundamental values and leading to negative expected returns

for these contracts.24 Thus, the behavioral theory of overreaction suggests return reversals

should be greatest for contracts based on events with a lot of media coverage.

First, I test the central prediction from the rational model of return reversals. Figure

III compares the magnitude of reversals in contracts based on sports games and financial

events. All of the observations in Figure III describe contracts that are within one day of

expiration and have been traded in the past 30-minutes.

Each sports game contract yields payouts when one team wins the game. Each financial

contract yields payouts when a financial measure, such as the Dow Jones Industrial Average,

falls within a certain range of values at the end of the trading day. This is directly analogous

24Because all contracts on TradeSports expire at fundamental value, contracts with prices greater than
fundamental value have negative expected future returns.
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to a sports contract whose outcome depends on whether the difference between two teams’

scores falls within a certain range at the end of a sporting event. For each of the two

contract types, I perform a locally weighted regression of future 30-minute returns on past

30-minute returns. The local regressions are linear least squares estimates of the relationship

between future and past returns in the neighborhood of each past return. Again, I employ

a smoothing bandwidth equal to half the sample. I only count the contracts that could be

sold 30 minutes after portfolio formation.25

Figure III suggests reversals on the TradeSports exchange are largely confined to contracts

based on sporting events. For example, for sports contracts, the difference between future

returns following past returns of -20 and +20 ticks is 6.29 ticks. The difference in future

returns is 3.14 ticks after past returns of -10 and +10 ticks. For financial contracts, the

corresponding differences in future returns are just 0.61 ticks and 1.53 ticks; both of these

values are statistically and economically insignificant. The sports game contract reversals

are four to five times greater in magnitude.

The rational theory of overreaction advanced in section 3 accurately predicts this effect.

Members of the TradeSports exchange that trade contracts based on sports games probably

have non-monetary motivations. However, the salience-based theory of overreaction also

predicts this effect under the assumption that sports games capture trader attention better

than financial events. Without additional information, one cannot distinguish between the

rational and behavioral interpretations of the evidence in Figure III.

To better understand the cross-section of return reversals, I examine linear regressions

of future returns on past returns. Because the nonparametric estimates in Figure III ap-

proximately lie in a straight line, I prefer to use classic linear regression methods for their

ease of interpretation. By interacting past returns with environmental variables, I measure

how the magnitude of overreaction varies across different situations. The rational theory of

overreaction suggests it should be strongest when traders with non-monetary motives play

a large role in price determination, whereas the behavioral theory of overreaction predicts

return reversals will be strongest when events are most salient.

Contracts based on sports games provide an opportunity to distinguish the two theories,

because they provide separate measures of traders’ non-monetary motives and the salience

25In practical terms, it might be impossible to sell a contract 30 minutes after portfolio formation if either
no traders bid on the contract or the contract expires within 30 minutes of portfolio formation. I censor
such observations for the purpose of brevity, but including these observations does not substantially alter
the results. In fact, under the alternative assumption that each portfolio includes contracts that cannot be
sold until they expire, the results become slightly stronger.
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Figure III
Return Reversals in Different Types of Contracts

Source: Author’s database based on TradeSports.com web sites from March 17, 2003 to
October 4, 2003. To be included in this figure, a contract must have been traded in the
past 30-minutes. Each data point represents a locally weighted regression of expiry returns
conditional on current prices. In each least squares regression, I apply local weightings from
the standard tricube weighting function to only neighboring current prices. The neighbor-
hood for each data point is centered around the data point and includes one half of the
sample. There are 25,602 observations from sports game contracts and 4,222 observations
from financial contracts in the original unsmoothed data.

of contract events. Because fans of specific sports teams have compelling non-monetary

motives to trade, the rational theory predicts contracts based on sports games will exhibit

greater return reversals than other contracts. By contrast, the salience-based theory predicts

overreaction will be most pronounced for well-publicized sporting events, such as “featured”

sports games. The rational theory makes no obvious prediction about featured games as

opposed to non-featured games. If anything, fans probably represent a smaller proportion of

viewers in featured games, because truly devoted fans are more likely to watch non-featured

games than are casual fans.
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To measure the magnitude of return reversals in different environments, I regress future

30-minute returns (FUT.RET) on past 30-minute returns (LAG.RET), four interaction terms

with past returns, and control variables. I separately measure reversals for contracts based

on “featured” events in the media, contracts based on sports games, contracts with greater

volume, and contracts with greater bid-ask spreads.

The TradeSports exchange categorizes its sports games by whether or not they are fea-

tured on a major television network, such as ESPN or Fox. I create a dummy variable equal

to 1 for observations on featured contracts and equal to 0 for observations on non-featured

contracts. Multiplying this dummy variable by past returns creates an interaction term

(FEAT.INT) that equals past returns only for observations on contracts based on featured

games and equals zero otherwise. I create an analogous interaction term (GAME.INT) by

multiplying past returns by a dummy variable that equals 1 only for observations on contracts

based on sports games.

Because differences in liquidity across contracts could affect the magnitude of return re-

versals, I create an additional interaction term to capture this effect. The variable SPRD.INT

is the interaction of the contract’s bid-ask spread and past 30-minute returns (LAG.RET).

I also attempt to measure the impact of increases in stakes by measuring how overreaction

varies with the volume of transactions. The interaction variable VOL.INT is the product of

the log of demeaned contract volume and past 30-minute returns (LAG.RET).

To control for the influence of temporary price pressure, I construct a variable called

BID.RAT, which equals the contract’s bid ratio (or net bids divided by the total interest

for a given contract).26 This variable ranges from -1 to 1. When BID.RAT equals zero,

the number of bids and asks are equal, indicating the contract price is not influenced by

temporary price pressure. If BID.RAT is positive, the contract price is likely to increase

in the short-term, because there are more offers to buy than offers to sell at the current

prevailing price.

In the final specification, I regress future 30-minute returns (FUT.RET) on past 30-

minute returns (LAG.RET), the four interaction terms described above (GAME.INT, FEAT.INT,

VOL.INT, and SPRD.INT), and the contract bid ratio (BID.RAT):

FUT.RETit = α+ β1LAG.RETit + β2GAME.INTit + β3FEAT.INTit (14)

+β4V OL.INTit + β5SPRD.INTit + β6BID.RATit + �it

26The net bids are equal to the difference between the total quantity of offers to buy and the total quantity
of offers to sell. The total interest is the sum of these two quantities.
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I estimate equation (14) using standard OLS techniques. I employ the Huber-White formula

for estimating standard errors in the presence of heteroscedasticity, because future returns are

typically more volatile after past returns with a large absolute value. The Huber-White robust

standard errors are much larger than the traditional standard error estimators, confirming

the presence of heteroscedasticity.

Table V reports the results from the OLS regression based on equation (14). The coef-

ficient on past returns (LAG.RET) is almost exactly equal to zero, suggesting that there is

no return reversal in contracts based on events other than sports games. The negative coef-

ficient on the interaction term GAME.INT suggests the presence of fans with non-monetary

motives that trade contracts based on sports games, as hypothesized in the rational model

The magnitude of this coefficient shows that, on average, price movements in sports games

contracts are followed by return reversals equal to 13.8% of the original movement. On

the other hand, the approximately zero (and statistically insignificant) coefficient on the

featured games interaction term (FEAT.INT) contradicts the salience-based overreaction

model’s central prediction. There is almost no additional return reversal in well-publicized,

featured sports games.

Table V
OLS Regressions of Future Returns on Past Information

LAG.RET GAME.INT FEAT.INT VOL.INT SPRD.INT BID.RAT
Coefficient 0.001 -0.138 -0.003 -0.011 -0.002 0.419
Std Error (0.027) (0.068) (0.080) (0.009) (0.006) (0.183)
t-statistic 0.03 -2.04 0.55 -1.15 -0.33 2.29

Source: Author’s database based on TradeSports.com web site. The regression is based on
51,650 observations of future and past returns at 30-minute horizons. The regression only
includes observations in which the contract was actively traded over the past 30 minutes.
The R-squared statistic is 0.0100. The dependent variable is FUT.RET (the future return
for a contract). LAG.RET is the past return. The coefficients on all interaction effects
with LAG.RET are additive; GAME.INT is the interaction of a dummy variable indicating
a sports game contract and LAG.RET; FEAT.INT is the interaction between a dummy
variable indicating a featured game contract and LAG.RET; VOL.INT is the interaction of
the log of demeaned contract volume and LAG.RET; and SPRD.INT is the interaction of the
contract’s bid-ask spread and LAG.RET. BID.RAT is the ratio of net bids to total interest
for a contract. “Std Error” is the Huber-White heteroscedasticity consistent estimate of each
coefficient’s standard error.

Interestingly, there appears to be no difference in the magnitude of return reversals for

games with greater liquidity or greater stakes. Both the spread and volume interaction terms
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are statistically and economically insignificant. Finally, the positive coefficient on BID.RAT

implies that temporary price pressure exerts a strong effect on future returns.

Statistical tests based on Table V cannot reject the hypothesis that the coefficient on the

LAG.RET variable is equal to zero. In other words, prices in non-sports contracts follow a

time-series process that is statistically indistinguishable from a random walk, as predicted

by the rational model. The preponderance of evidence from cross-sectional and time-series

tests points toward the rational model of the TradeSports exchange.

4.5 Testing the Profitability of Trading Strategies on TradeSports

Nevertheless, if overreaction in sports games presents profit opportunities in equilibrium,

then the rational model requires some modification. To look for these opportunities, I assume

that traders have access to the results from Table V and use these results to predict future

returns. In other words, I use 20-20 hindsight to look for abnormal returns to trading

strategies in contracts based on sporting events “near” their expiry (when overreaction is

strongest).

I consider trading strategies that hold contracts based on sports games until the outcome

of the game is known, because other strategies must incur bid-ask spread costs twice and

require that markets for contracts remain liquid until expiry (a condition not always met in

practice). Because the precise ending time of a sporting event is rarely known in advance,

traders cannot implement trading strategies that condition on the exact amount of time

left to expiry. In practice, however, I must use the information on time left until expiry to

identify when games start. The trading strategy buys (sells) a contract at the lowest current

ask price (highest current bid price) whenever it meets the following criteria:

1. the contract is based on a sports game;

2. the contract is within 4 hours of expiry;

3. the contract has experienced bad (good) news within the last data recording period,

defined as a past 30-minute return of less than 5 ticks (greater than 5 ticks);

4. and the current bid-ask spread is less than or equal to 3 ticks.

Over the 6-month data recording period, this strategy buys 340 contracts and sells 412

contracts and closes each contract position when the contract expires. The average gross re-

turn from the strategy is only 1.29 ticks, while the standard deviation of the strategy is 40.79
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ticks.27 After subtracting the round-trip commission cost of 0.8 ticks, this trading strategy

yields 0.49 ticks per trade. This small expected profit is somewhat surprising considering

the data mining and research required to implement such a strategy. The slightly positive

return to betting on return reversals in sports game contracts could be ascribed to chance.

Perhaps combining the results from both the time-series and cross-section tests of effi-

ciency allows an improvement upon the simple overreaction-based trading strategy. Specif-

ically, I consider a trading strategy based on both the reverse favorite-longshot bias (RFL)

and overreaction.28 The RFL bias suggests betting on underdogs should be more profitable

than betting on favorites. The overreaction bias suggests it should be even more profitable

to bet on underdogs that were, at some point in the past, favorites.

I search for this bias in contracts based on sports games on the TradeSports exchange.

I identify favorites as those contracts that yield payouts contingent upon one team winning

and have a price equal to or exceeding 50 ticks; underdogs are contracts with prices below

50 ticks. I form a portfolio of new underdogs that selects contracts as soon as their prices

fall below 50 ticks and they have positive volume. I also create an analogous portfolio of

contracts that are new favorites.

Note that these portfolio definitions could apply to any contract, including financial con-

tracts. Because the authors of previous studies on sports wagering markets have emphasized

their similarities to financial markets, one could expect that the reverse favorite-longshot bias

and overreaction generalize to financial contracts when these contracts have a similar struc-

ture to sports contracts. Just like sports contracts, all the financial contracts on TradeSports

in my sample yield payouts of 100 ticks or 0 ticks depending on the outcome of the event.

Thus, I create two portfolios consisting of contracts based financial events that have become

underdogs (price fell below 50 ticks) and financial events that have become favorites (price

rose above or is equal to 50 ticks) to see whether these portfolios differ from the portfolios

of sports game new favorites and new underdogs.

27The standard deviation of the average gross return to the strategy is 1.49 ticks, implying that the 95%
confidence interval for the average gross return is -1.69 ticks to 4.27 ticks.

28Even though the favorite-longshot bias appears in certain regions of the TradeSports sports game
contract data, I consider a trading strategy that does not account for this third bias. This decision is based
on many reasons. First, the favorite-longshot bias is less robust and based on less data than the RFL and
overreaction biases. Second, the favorite-longshot bias is strongest when contracts are first listed on the
exchange (see Figures I and II). But I cannot apply the overreaction bias to contracts that have no past
trading history. Third, I did not expect to find the favorite-longshot bias in sports games, so using this
bias in a trading strategy would be data mining. Fourth, conditioning the trading strategy on a third bias
reduces the number of observations in each portfolio created by the trading strategy, thereby decreasing the
statistical power of the tests that follow.
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Table VI reports all four portfolio returns under the assumption that each portfolio holds

its contracts until they expire (i.e., the underlying events occur). The table shows that the

RFL and overreaction biases are present for contracts based on sports games. This result is

consistent with previous studies and the results from earlier in this paper.

Table VI
The RFL and Overreaction Biases in Different Types of Contracts

Sports Games Finance
New Favorites Return 0.45 2.00
New Underdogs Return 5.36 1.05
Difference in Returns -4.91 0.95
t-statistic -3.71 0.37

Source: Author’s database based on TradeSports.com web site. The portfolios of new fa-
vorites for sports game and financial contracts include 3,017 and 1,023 observations respec-
tively. The new underdog portfolios for sports games and financial contracts include 790 and
1,366 contracts respectively. The standard errors on portfolio returns assume independence
across sports games and correlations of 0.5 for financial contracts.

However, there is no analog to these results in financial contracts. If anything, the

opposite effect prevails: financial “bets” that have become likely to occur (new favorites)

offer slightly higher returns than financial bets that have become unlikely (new underdogs).

Also, both groups of financial contracts have positive returns on average. Neither the slight

favorite-longshot bias nor the positive returns effect is statistically or economically signifi-

cant.29 This evidence lends additional support to the hypothesis that the prices of financial

contracts do not suffer from the same biases as the prices of sports game contracts on Trade-

Sports. In fact, in all of the parametric and nonparametric tests in this study, I cannot reject

the hypothesis that financial contracts are priced according to their fundamental values.

The reverse favorite-longshot bias in sports contracts potentially admits profitable trading

strategies. To investigate this possibility, I simulate a trading strategy that purchases the

731 contracts in the new underdog portfolio for sports games that have bid-ask spreads less

than or equal to 5 ticks. After incurring the bid-ask spread cost and round-trip transaction

costs, this strategy yields average returns of 3.79 ticks on invested capital of only 37.13 ticks.

Moreover, a trader obtains this 10.2% expected return to betting on new underdogs over a

horizon of only one day for the typical sports game.
29The returns from many of the financial and other contracts included in this test are correlated with

one another, because they depend on related underlying events. The results in Table VI are robust to any
reasonable estimate of this correlation, including the assumption of independence. I calculate the standard
errors in the table under the assumption that this correlation is equal to 0.5.
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The statistical inefficiency in sports games is extremely unlikely to arise from data mining,

because the p-value for the t-statistic on new underdog returns is only 0.0002. To assess the

impact of data mining, I employ the Bonferroni adjustment to the p-value. I would have

had to consider 250 trading strategies in this paper to inflate the original p-value of 0.0002

to 0.05. A truly upper bound on the number of trading strategies considered in this paper

would be 128. This number equals 4 ways to partition the data into pricing groups times 4

potential time horizons for trading strategies times 2 categories of contracts times 2 potential

cross-section biases (reverse and normal favorite-longshot bias) times 2 potential time-series

biases (overreaction and underreaction). Of course, many of the strategies just described

have positively correlated returns and I had strong priors about which way to partition the

data, so 128 is indeed an upper bound on the appropriate Bonferroni adjustment factor.

Even this extreme upward adjustment of the p-value does not alter the conclusion that

sports game contracts are mispriced by a statistically significant margin.

Nevertheless, it is important to mention the possibility that the economic inefficiency (the

profitable trading strategy) in sports game contracts did arise from chance. The t-statistic

for the estimated expected net return of 3.79 ticks (after commission and spread costs) could

be attributable to chance. The standard deviation of the estimated new underdog return

is 1.66 ticks, so the true expected return from this trading strategy could turn out to be

as low as 0.54 ticks (the lower end of the 95% confidence interval). Very little data mining

is required to find an economic return of this magnitude. Perhaps it is not surprising that

one trading strategy out of all those implicitly considered in this paper yields “significantly”

profitable returns.

Even if one supposes betting on new underdogs in sports game contracts yields positive

profits, this finding is not necessarily inconsistent with a broad interpretation of the efficient

markets doctrine. In the Grossman and Stiglitz (1980) model of costly information acqui-

sition, traders with private signals about fundamental value earn positive economic rents

in equilibrium. A trader implementing the new underdog strategy on TradeSports could

only buy an average of 180 underdog contracts per transaction, because TradeSports is not

a perfectly liquid market. Over the sample period of 6 months, the new underdog trading

strategy would have produced at most $700 per day. This is not an outrageous amount

of money for a Wall Street professional, because implementing the new underdog strategy

requires constant monitoring and research.
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5 Conclusions

A large body of research on betting markets attempts to measure the implied expecta-

tions of economic agents in the hope that these measurements generalize to real financial

markets. The results above suggest future researchers should proceed with caution before

drawing analogies between wagering markets and real financial markets. Inefficiencies that

are present in wagering markets for sports games do not necessarily have counterparts in

financial markets.

The nonparametric tests of market efficiency reveal that mispricing in sports game con-

tracts is significantly greater, in both statistical and economic terms, than mispricing in

financial contracts. The systematic patterns of mispricing in sports game contracts are

consistent with findings from earlier studies, but these patterns do not appear in financial

contracts on the exchange. For example, there is a significant reverse favorite-longshot bias

in contracts based on sports games on TradeSports; but there is no such bias in financial

contracts. I also find some support for the finding that sports bettors overweight the likeli-

hood of longshots winning and underweight the likelihood of favorites winning (Thaler and

Ziemba, 1986; and Jullien and Salanie, 2000), but this bias does not apply to the financial

markets on TradeSports.

Furthermore, nonparametric and parametric time series tests of efficiency show overre-

action in contracts based on sports games listed on the TradeSports exchange, but not in

contracts based on financial events. This evidence suggests overreaction in wagering markets

(Avery and Chevalier, 1999) is a different phenomenon from overreaction in financial markets

(e.g., De Bondt and Thaler, 1985; and Huberman and Regev, 2002). Taken collectively, this

set of results reveals that conclusions from sports wagering market data may not apply to

real financial markets.

The presence of inefficiencies in sports game markets and the absence of these same

inefficiencies in financial markets is somewhat surprising. Financial and sports contracts are

traded using the exact same mechanism. The two markets have similar liquidity and volume;

and the contracts themselves are structured almost identically. There is even anecdotal

evidence that suggests many of the same traders participate in both markets. Yet one

market appears efficient while the other does not.

The efficiency of the financial contracts is perhaps more remarkable than the inefficiency

of the sports contracts. The financial contracts have very low liquidity and low stakes

(volume) relative to traditional financial markets, such as those conducted on the NYSE. But

the results from time series tests show that return reversals do not occur even in the financial
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contracts with the lowest liquidity and lowest stakes (volume). Furthermore, the financial

contracts on TradeSports are fundamentally speculative—i.e., these contracts do not finance

capital investments and they serve no obvious hedging purpose. Such speculative contracts

could attract traders with non-standard preferences or expectations, thereby diminishing

market efficiency.

Finally, based on the observed inefficiencies in sports game markets, it is reasonable

to assume that at least some traders on the TradeSports exchange conduct trades based

on non-standard preferences or expectations. Considering all these potential pitfalls, it is

quite surprising that the financial markets on TradeSports are so robust. The TradeSports

data demonstrate that financial markets that merely aggregate information can be quite

efficient even at small scales and in the presence of irrational behavior. Specifically, financial

markets for short-term contracts based on objective fundamentals (such as the occurrence of a

verifiable event—e.g., a particular dividend payment) are relatively efficient despite numerous

obstacles to arbitrage.
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Appendix
Maximum Likelihood Estimates of the Prelec Weighting Function

Recall that the maximum likelihood estimates of the Prelec function are based on con-

tracts with independent underlying events. Let pi be the unobserved true probability that

the underlying event i occurs. Let si denote a dummy variable for event i; so si = 1 when

event i “succeeds” and si = 0 when event i “fails” to occur. The total number of contracts

is given by n.

Assuming contract events are independent, the likelihood function L for contract real-

izations is proportional to:

L ∝
nY
i=1

psii (1− pi)
1−si (15)

Note that market equilibrium predicts specific values for pi in the equation above. As argued

in section 3, the true probabilities pi should approximately satisfy:

wi ≡ w(pi)⇒ pi = w−1(wi) (16)

The form of the probability weighting function is determined by the theory of interest to the

researcher. In this study, I estimate the Prelec weighting function in equation (12), which

nests the EU and prospect theory models. Inverting the Prelec function to solve for pi gives:

pi = exp[−(− lnwi)
1
α ] = w−1(wi, α) (17)

Next, I take the logarithm of the likelihood function and substitute the inverted Prelec

weighting function above to obtain the maximization problem:

max
α,β

lnL(α, s1, ..., sn)

⇒ max
α

nX
i=1

si[−(− lnwi)
1
α ] + (1− si) ln[1− exp[−(− lnwi)

1
α ]] (18)

The likelihood function satisfies all the regularity conditions required for the maximum

likelihood estimators to be consistent, asymptotically normal and asymptotically efficient.

Although the first-order conditions for the maximization problem in (18) have no analytic

solution for α, standard numerical optimization techniques approximate the solution with

arbitrary precision. Let bα be approximate solution to the maximization problem in (18).
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To obtain an estimate of the standard errors for bα, I numerically evaluate the observed
second derivative of the log likelihood function at the maximum likelihood estimator. This

computation provides a consistent estimate of the (negative) information matrix, which can

be inverted to yield an estimate of the asymptotic variance of the maximum likelihood

estimators:

I(bα) ≡ −∂2L
∂α2

(bα) (19)
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