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a b s t r a c t

To handle missing data one needs to specify auxiliary models such as the probability of
observation or imputation model. Doubly robust (DR) method uses both auxiliary mod-
els and produces consistent estimation when either of the model is correctly specified.
While the DR method in estimating equation approaches could be easy to implement in
the case of missing outcomes, it is computationally cumbersome in the case of missing
covariates especially in the context of semiparametric regression models. In this paper,
we propose a new kernel-assisted estimating equation method for logistic partially linear
models withmissing covariates. We replace the conditional expectation in the DR estimat-
ing function with an unbiased estimating function constructed using the conditional mean
of the outcome given the observed data, and impute the missing covariates using the so
called link-preserving imputationmodels to simplify the estimation. The proposedmethod
is valid when the response model is correctly specified and is more efficient than the
kernel-assisted inverse probabilityweighting estimator by Liang (2008). The proposed esti-
mator is consistent and asymptotically normal.We evaluate the finite sample performance
in terms of efficiency and robustness, and illustrate the application of the proposedmethod
to the health insurance data using the 2011–2012 National Health and Nutrition Examina-
tion Survey, in which data were collected in two phases and some covariates were partially
missing in the second phase.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently generalized partially linear models (GPLM) draw a lot of attention (Severini and Staniswalis, 1994; Carroll et al.,
1997; Liang et al., 2004). The GPLMs include a nonparametric covariate effect in an otherwise generalized linear model. The
logistic partially linear models (LPLM), as a special case of the GPLM for binary data, relax the structure of the mean in a
logistic regression to be partially linear. Specifically, let Y be the binary outcome, X be parametrically modeled covariates
and Z be a nonparametrically modeled covariate. The conditional mean of Y is assumed to be a twice differentiable function
of linear predictor XTβ + ν(Z) where β are unknown parameters and ν(.) is a smooth unknown function of Z . In this paper,
we investigate the estimation of the LPLM when Y and Z are fully observed but some of X are partially missing.

When there are missing data, a likelihoodmethod can naturally handle the problem by integrating over the missing data
and maximizing the integrated marginal likelihood function. However for non-likelihood methods, the same technique
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cannot be used. There are two paradigms in handling missing data in estimating equation approaches to construct unbiased
estimating functions, namely, imputation (e.g. Reilly and Pepe, 1995; Paik, 1997) and inverse probability weighting (IPW,
e.g. Robins et al., 1994, 1995). The imputationmethod fills inmissing statistics by its ‘best’ guess, the conditional expectation.
The IPW weights the observed records by the inverse of the observation probability to properly represent the whole data,
and has been very popular in various settings since it is easy to implement. Validity of the inference in both paradigms
depends on correctness of assumptions on auxiliary models, the imputation model in the case of the imputation approach
or the response model in the case of the IPW approach. The imputation method is generally more efficient than the IPW
especially when there is a potent predictor for missing data (Wang and Paik, 2006). The efficiency of the IPW method
can be effectively improved by subtracting projection onto the nuisance tangent space (Robins et al., 1994, 1995), but the
projection term involves the conditional mean of the estimating function. The projection method requires assumptions on
both auxiliary models but the inference is valid when either one of the assumptions is correct. Because of this property, this
method is called doubly robust (DR) method. In the case of missing outcomes, simple implementation of the DR method is
discussed in Bang and Robins (2005), Scharfstein et al. (1999), and Little and An (2004). Although the same principles apply
for missing outcomes and missing covariates, the imputation method and the DR method, in the case of missing covariates,
require evaluation of the conditional expectation of the product ofmissing covariates and the conditional mean of outcomes
given observed data, which is a main hurdle for computation.

Missing data problem becomes even more computationally demanding in the context of semiparametric regression
models. When outcomes are missing, Chen et al. (2006) and Wang et al. (2010) proposed weighted kernel estimating
equations for the GPLMs. Wang et al. (1998) is one of the first work tackling missing covariate problem in a nonparametric
regression model using the IPW approach. Liang et al. (2004) considered estimation of a partially linear model with missing
covariates using the IPW-type kernel based method. Liang (2008) proposed a kernel-assisted IPW method for the GPLMs
with missing covariates and derived asymptotic properties of the DR estimator, but discouraged using the DR estimator due
to the complexity of implementation. Qin et al. (2012) also considered an IPW-type approach for robust GPLMs in the sense
of Huber with missing covariates using a regression spline.

In this paper we propose a new kernel-assisted estimating equation approach to handlemissing covariates in the context
of LPLMs. The proposed method modifies the DR estimating function by replacing the conditional expectation with an
unbiased estimating function constructed using the mean of the outcome conditioning on the observed covariates but
marginalizing out themissing covariates. Thismarginalmean usually is not easy to evaluate. To overcome this, we introduce
the concept of link-preserving imputation. We call imputation models link-preserving if the part of the linear predictor
concerning completely observed covariates is preserved under the same link function. Under link-preserving imputation, the
marginal mean can be easily obtained by replacing the missing covariate with some imputation value, which allows simple
implementation of the proposed method via data augmentation. Use of the marginal mean coupled with link-preserving
imputation greatly reduces the computational difficulty in solving the estimating equations for both the parametric and the
nonparametric parts. The proposed estimator is more efficient than the kernel-assisted IPW estimator by Liang (2008).

The rest of the paper is organized as follows. In Section 2, we briefly describe the notation and framework. We propose
newmethods in Section 3. Simulation studies follow in Section 4. In Section 5, we show application to the health insurance
coverage problem using the data of the 2011–2012 National Health and Nutrition Examination Survey. Concluding remarks
follow in Section 6.

2. Notation and framework

Suppose that there are n independently identically distributed observations {(Yi,XT
i , Zi)

T , i = 1, . . . , n}. Let Yi denote a
binary outcome variable for the ith subject, Zi denote a single nonparametrically modeled covariate associated with the ith
subject, and Xi = (XT

i1,X
T
i2)

T where Xi1 and Xi2 denote a vector of parametrically modeled covariates for the ith subject with
p and q elements, respectively. We consider the following logistic partially linear model,

logit {E(Yi|Xi, Zi)} = log
P(Yi = 1|Xi, Zi)
P(Yi = 0|Xi, Zi)

= XT
i1β1 + XT

i2β2 + ν(Zi), (1)

where β = (βT
1, β

T
2)

T are unknown parameters of interest associated with parametrically modeled covariates Xi1 and Xi2,
respectively, and ν(.) is an unknown smooth function of Zi. Suppose that Xi2 and Zi are fully observed, but Xi1 are missing
for some cases. We assume that all elements of Xi1 are observed or missing together, with applications in such as two-phase
studies whereX1i are collected only among the sub-sample of the second phase. The observation indicator forXi1 is denoted
by Ri; if Ri = 1, Xi1 are observed and, if Ri = 0, Xi1 are missing. We assume that Xi1’s are missing at random (MAR), i.e.,
P(Ri = 1|Yi,Xi, Zi) = P(Ri = 1|Yi,Xi2, Zi) ≡ πi(Yi,Xi2, Zi; α) ≡ πi(α).

Liang (2008) proposed an IPW estimator in the context of GPLMs by solving
n

i=1

Ri

πi(α)
QiV−1

i {Yi − E(Yi|Xi, Zi)} = 0, (2)

where Qi ≡
∂
∂β

E(Yi|Xi, Zi) and Vi ≡ Var(Yi|Xi, Zi), coupled with kernel method for estimating ν(Zi), and showed that the
resulting estimator for β is consistent.
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The IPW estimator can be improved to have a smaller variance by subtracting the projection term. The DR estimating
equation has a form of

n
i=1

Ri

πi(α)
QiV−1

i {Yi − E(Yi|Xi, Zi)} −

n
i=1

Ri − πi(α)

πi(α)
E[QiV−1

i {Yi − E(Yi|Xi, Zi)}|Yi,Xi2, Zi].

Note that the first term is the IPW estimating function, but if πi(α) is replaced by 1, the above estimating function reduces
to that of the imputation method (Reilly and Pepe, 1995; Paik, 1997). When the outcome is missing and covariates are
completely observed, the second term is linear in Y , which makes implementation simple by replacing missing Y with its
conditional expectation given all available information. However in the missing covariate case, the second term is not a
linear function of X1. Under the canonical link, the conditional expectation E[QiV−1

i {Yi − E(Yi|Xi, Zi)}|Yi,Xi2, Zi] requires
estimating E{Xi1E(Yi|Xi, Zi)|Yi,Xi2, Zi} as well as E(Xi1|Yi,Xi2, Zi). In partially linear models, Liang et al. (2004) estimated
the conditional mean of XiXT

i as well as Xi. In the GPLM, the approach of Liang et al. (2004) cannot be directly applied since
it requires modeling Xi1E(Yi|Xi, Zi) where E(Yi|Xi, Zi) is a nonlinear function of Xi, β and ν(Zi). Liang (2008) derived the
asymptotic properties of the DR estimator for GPLMs with missing covariates but stated that ‘we do not recommend this
alternative (DR) because its implementation is complex’.

Our goal of this paper is to propose an alternative estimator to the kernel-assisted IPW estimator by Liang (2008) for
GPLMswithmissing covariates that is easier to implement than the DRmethod but is more efficient than the IPW estimator.
We focus on binary outcomeswith logit link function. As in the IPWmethod, we assume that the responsemodel is correctly
specified. Our strategy to achieve easy implementation is by facilitating link-preserving imputation models, which are
defined in Section 3.1. We first present a motivating easy-to-implement estimator in Section 3.2. In Section 3.3 we extend
the proposed method so that the asymptotic variance is guaranteed to be smaller than that of the IPW estimator.

3. Method

3.1. Link-preserving imputation model

The main idea of the proposed method starts from the simple fact that we can still estimate E(Y |X2, Z) even when X1 is
missing in the context of LPLMs. Evaluating E(Y |X2, Z) is not always straightforward, but under certain class of imputation
models it could be manageable. We define link-preserving imputation models as follows. Let η = logit{E(Y |X, Z; β, ν)} =

XT
1β1 +XT

2β2 + ν(Z). We call that imputation models for X1 are link-preserving if they produce a form of E(Y |X2, Z; β, ν, γ)

such that η∗
= logit{E(Y |X2, Z; β, ν, γ)} = X∗T

1 β1 + XT
2β2 + ν(Z), where X∗

1 is a function of X2, Y , Z , and the imputation
model parameters γ . Under link-preserving imputation models, the part of the linear predictors involving the completely
observed covariates, XT

2β2 + ν(Z), is preserved when the same link function, logit(.), is applied to the marginal mean,
E(Y |X2, Z; β, ν, γ).

The idea of link-preserving imputations was explored before in a parametric setup by Paik and Sacco (2000). We show
below the derivation of the link-preserving imputations in the setting of LPLMs (1). Using the Bayes’ rule, we have

log
P(Yi = 1|Xi2, Zi)
P(Yi = 0|Xi2, Zi)

= log
P(Yi = 1|Xi1,Xi2, Zi)
P(Yi = 0|Xi1,Xi2, Zi)

− log
f (Xi1|Xi2, Zi, Yi = 1)
f (Xi1|Xi2, Zi, Yi = 0)

. (3)

Let p = 1, we assume that f (Xi1|Xi2, Zi, Yi) belongs to an exponential family with the canonical parameter θ(Y ,X2, Z):

f (Xi1|Xi2, Zi, Yi = y) = exp


θ(y,Xi2, Zi)Xi1 − b(θ(y,Xi2, Zi))
ϕ

+ c(ϕ, Xi1)


, (4)

and obtain

log
f (Xi1|Xi2, Zi, Yi = 1)
f (Xi1|Xi2, Zi, Yi = 0)

=
θ(1,Xi2, Zi) − θ(0,Xi2, Zi)

ϕ
Xi1 −

b(θ(1,Xi2, Zi)) − b(θ(0,Xi2, Zi))
ϕ

. (5)

From (3) and (5) we can derive the following identity,

exp(β1x) =
P(Yi = 1|Xi1 = x,Xi2, Zi)P(Yi = 0|Xi1 = 0,Xi2, Zi)
P(Yi = 0|Xi1 = x,Xi2, Zi)P(Yi = 1|Xi1 = 0,Xi2, Zi)

=
f (Xi1 = x|Xi2, Zi, Yi = 1)f (Xi1 = 0|Xi2, Zi, Yi = 0)
f (Xi1 = x|Xi2, Zi, Yi = 0)f (Xi1 = 0|Xi2, Zi, Yi = 1)

= exp [(θ(1,Xi2, Zi) − θ(0,Xi2, Zi)) x/ϕ] ,

which gives β1 = (θ(1,Xi2, Zi) − θ(0,Xi2, Zi)) /ϕ. Plugging this identity into (5), we obtain

log
f (Xi1|Xi2, Zi, Yi = 1)
f (Xi1|Xi2, Zi, Yi = 0)

= β1Xi1 − β1
b (θ(1,Xi2, Zi)) − b (θ(0,Xi2, Zi))

θ(1,Xi2, Zi) − θ(0,Xi2, Zi)
. (6)
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Combining (1), (3) and (6) we have

η∗

i = log
P(Yi = 1|Xi2, Zi)
P(Yi = 0|Xi2, Zi)

= β1X∗

i1 + XT
i2β2 + ν(Zi),

where

X∗

i1 =
b (θ(1,Xi2, Zi)) − b (θ(0,Xi2, Zi))

θ(1,Xi2, Zi) − θ(0,Xi2, Zi)
.

As an example, when X1 is a binary variable, according to (4) the canonical parameter θ(Y ,X2, Z) = logit{Pr(X1 =

1|Y ,X2, Z)} and b(θ(Y ,X2, Z)) = log(1 + eθ(Y ,X2,Z)). With logit{Pr(X1 = 1|Y ,X2, Z)} = γ0 + XT
2γ1 + γ2Y + γ3Z , we

can obtain X∗

1 = γ −1
2 {log(1 + eγ0+XT

2γ1+γ2+γ3Z ) − log(1 + eγ0+XT
2γ1+γ3Z )}. The derivation is also valid when p > 1. When

f (X1|Y ,X2, Z) is multivariate normal with mean µ(Y ,X2, Z), we can obtain X∗

1 =
1
2 {µ(1,X2, Z) + µ(0,X2, Z)}. With the

link-preserving imputationmodels, we can easily calculate η∗ and thus E(Y |X2, Z), which can then be used in the estimating
equations for LPLMs in Section 3.2.

3.2. Easy-to-implement estimation procedure

As in the doubly robust method, we specify three models in the proposed estimating function: (i) the analysis model,
E(Y |X, Z; β, ν), (ii) the response model, π(α), and (iii) the imputation model, f (X1|Y ,X2, Z; γ), which is link-preserving.
Note that (i) is the analysis model, which we need to specify even if data are fully observed, and (ii) and (iii) are auxiliary
models, whose specification is required to handle missing data. As for the IPW method, we assume that (i) and (ii) are
correctly specified, while (iii) can be subject to model misspecification. Estimation of the two auxiliary models are not
intertwined with estimation of the analysis model. Given the estimate of the auxiliary models, the proposed estimating
procedure alternates estimating β and ν(Z). For β, the estimating equation has a form of

0 = Un =

n
i=1

Ri

πi(α)
sA(Yi,Xi, Zi) −

n
i=1

Ri − πi(α)

πi(α)
sB(Yi,Xi2, Zi), (7)

where

sA(Yi,Xi, Zi; β, ν) = (Xi − µX)
∂

∂ηi
E(Yi|Xi, Zi)V−1

i {Yi − E(Yi|Xi, Zi)},

sB(Yi,Xi2, Zi; β, ν) = (X∗

i − µX)
∂

∂η∗

i
E(Yi|Xi2, Zi)V ∗−1

i {Yi − E(Yi|Xi2, Zi)},

with X∗

i = (X∗T
i1 ,XT

i2)
T , Vi = Var(Yi|Xi, Zi), and V ∗

i = Var(Yi|Xi2, Zi). The kth element of µX is µXk =

E{w(X, Z)Xk}/E{w(X, Z)} with w(X, Z) =


∂E(Y |X,Z)

∂η

2
Var(Y |X, Z)−1, and can be estimated as follows:

µ̂Xk =

n
i=1

RiXikŵ(Xi, Zi)/πi(α̂)

n
i=1

Riŵ(Xi, Zi)/πi(α̂)

.

We can show that centering X around µX renders orthogonality between the estimators of β and ν(Z).
For ν(Z), we can set µi(z0) = logit−1(XT

i β + ν(z0)) and µ∗

i (z0) = logit−1(X∗T
i β + ν(z0)), and solve the following

Nadaraya–Watson kernel-assisted estimating equation for ν(z0),

0 =

n
i=1

Kh(Zi − z0)
Ri

πi(α)

∂µi(z0)
∂ηi

Vi(µi(z0))−1(Yi − µi(z0))

−

n
i=1

Kh(Zi − z0)
Ri − πi(α)

πi(α)

∂µ∗

i (z0)
∂η∗

i
V ∗

i (µ∗

i (z0))
−1(Yi − µ∗

i (z0)), (8)

where Kh(·) = K(·/h)/h is a kernel function and h is the bandwidth. The subtracted term on the right hand side of (8)
leads to an improved estimation. The advantage of the Nadaraya–Watson estimator lies in its ease in the implementation
using built-in functions of the statistical software. Alternatively, we also consider local linear kernel estimator below, which
requires more intensive computation. We setµi(z0) = logit−1(XT

i β+ c0 + c1(Zi − z0)/h) andµ∗

i (z0) = logit−1(X∗T
i β+ c0 +
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c1(Zi−z0)/h), and solve the following local linearweighted kernel estimating equation for c = (c0, c1)T = (ν(z0), hν ′(z0))T ,

0 =

n
i=1

Kh(Zi − z0)
Ri

πi(α)


1

(Zi − z0)/h


∂µi(z0)

∂ηi
Vi(µi(z0))−1(Yi − µi(z0))

−

n
i=1

Kh(Zi − z0)
Ri − πi(α)

πi(α)


1

(Zi − z0)/h


∂µ∗

i (z0)
∂η∗

i
V ∗

i (µ∗

i (z0))
−1(Yi − µ∗

i (z0)). (9)

Bandwidth selection is required to solve (8) and (9). The optimal bandwidth that minimizes the conditional mean
integrated squared error of ν(Z) is of order n−1/5 excluding the boundary points. In the simulation study, we use a fixed
bandwidth h = n−1/5, and conduct sensitivity analyses using different bandwidths around this choice but the results are
similar. This is expected because bandwidths with the same rate of convergence lead to the same limit distribution (Liang
et al., 2004, 2009). In the application to the health insurance data, we use both the method of empirical bias bandwidth
selection (Ruppert, 1997) and the method of n−1/5, which yield similar bandwidth selection and similar estimates of ν(Z).

We can easily show that estimating functions in (7), (8) and (9) are unbiased when all models are correctly specified. If
the imputation model (iii) is misspecified, we obtain an incorrect form of E(Y |X2, Z), but unbiasedness is retained as long
as (i) and (ii) are correct. On the other hand, when (ii) is misspecified but (iii) is correctly specified, the estimating equations
are unbiased only when R does not depend on (Y ,X1) given (X2, Z) or when β1 = 0. This suggests that the test statistic
under the null hypothesis H0 : β1 = 0 has correct Type I error although the estimator is not doubly robust.

Estimation of the auxiliarymodels can be conducted in the usual manner. To estimate α, we assume thatπ(α) is a known
function indexed by unknown parameter α, and

√
n-consistent estimator α̂ can be obtained by solving

0 =

n
i=1

9i(α) =

n
i=1

∂πi(α)

∂α
{πi(α)(1 − πi(α))}−1(Ri − πi(α)).

To estimate γ , we specify link-preserving imputation model f (X1|Y ,X2, Z; γ), where γ can be consistently estimated
using completely observed data alone due to R


X1|(Y ,X2, Z) as follows:

0 =

n
i=1

Ri
∂E(Xi1|Yi,Xi2, Zi)

∂γ
Var(Xi1|Yi,Xi2, Zi)−1(Xi1 − E(Xi1|Yi,Xi2, Zi)).

By examining the estimating equations for β, we observe that for records with Ri = 0, contribution to the estimating
function is just sB(Yi,Xi2, Zi), but for records with Ri = 1, contribution comes from both sA(Yi,Xi, Zi) and sB(Yi,Xi2, Zi). This
suggests that solving Eqs. (7)–(9) can be implemented via the following data expansion. We first start by estimating α then
γ and obtain X̂∗

1 , and computing µ̂X using the records with Ri = 1. We then estimate β and ν(Z) using the following four
steps:

STEP 1 : Fill in X̂∗

1 for record with R = 0.
STEP 2 : Expand the dataset by duplicating records with R = 1. In the duplicated record, replace X1 with X̂∗

1 .
STEP 3 : Create weights: for original records with R = 1, weight is π−1; for duplicated record with R = 1, weight is

1 − π−1; and for records with R = 0, weight is 1.
STEP 4 : With the expanded dataset, conduct LPLM analysis using X− µ̂X or X̂∗

− µ̂X as the parametric terms and Z as the
nonparametric term.

Asymptotic properties of β̂ and ν̂(Z) are given in Section 1 of the SupplementaryMaterials (see Appendix A). The variance
estimation of β̂ can be computed either using the asymptotic variance estimation or the jackknife estimate of variance. Both
are shown in the simulation study. The method proposed in this section can be extended to the scenario with monotone
missing covariates, by expanding the estimating equation (7) to allow multiple summations with one summation for each
monotone missing-data pattern, in which the mean of the outcome is modeled conditioning on the observed covariates but
marginalizing out the missing covariates of that missing-data pattern.

3.3. Improving efficiency under the alternative

The asymptotic variance of the proposed estimator β̂ is guaranteed to have a smaller variance than that of the IPW
estimator when β1 = 0. However there is no guarantee that the asymptotic variance is smaller than that of the IPW in
general, although it tends to be smaller in practical cases. In this section we propose an estimator of β guaranteed to have a
smaller variance than that of the IPWestimator. This approach is described inWang et al. (2010) and van der Laan and Robins
(2003). As in Section 3.2, we first introduce the improved estimator, say, β̂π,κ as the solution of the following equationwhen
all other quantities are known:

0 = Uκ
n =

n
i=1

Ri

πi(α)
sA(Yi,Xi, Zi) − κ

n
i=1

Ri − πi(α)

πi(α)
sB(Yi,Xi2, Zi), (10)
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where

κT
= E


1 − π(α)

π(α)
sBsTB

−1

E

1 − π(α)

π(α)
sBE{sA|Y ,X2, Z}

T


.

The difference between (7) and (10) is that we multiply κ to the second term. Due to κ, the covariance between the first
and the second terms in (10) equals to the variance of the second term, which guarantees that the variance of the estimating
function is smaller than that of the IPW estimator.

We can show that Uκ
n = Uκ

n{β, µX, ν, α, γ, κ, Y,X, Z,R} has the same asymptotic distribution with Uκ
n{β, µ̂X, ν̂, α, γ̂, κ,

Y,X, Z,R}. We can also show that estimating κ and α does not affect the asymptotic distribution of Uκ
n . Let β̂π̂ ,κ̂ be the

solution of Uκ
n{β, µ̂X, ν̂, α̂, γ̂, κ̂, Y,X, Z,R} = 0. Section 2 of the Supplementary Materials shows the asymptotic property

of β̂π̂ ,κ̂ (see Appendix A).
Computation of β̂π̂ ,κ̂ can be carried out by adding an extra step from computing β̂.We can regress Ri

π̂i
ŝA on Ri−π̂i

π̂i
ŝB through

the origin to obtain κ̂. Then we can solve for βπ,κ by plugging in κ̂ and other estimates obtained in Section 3.2.

4. Simulation study

4.1. Design

We perform a simulation study to evaluate the finite sample performance of the proposed methods. We generate data
frommodel (1) with ν(Z) = Z or ν(Z) = cos(2πZ), and generate Z ∼ Uniform(0, 1) and X2 ∼ Bernoulli(0.3). Note that X∗

1
can be computed from X2 and Z as described in Section 3.1. Given X∗

1 , X2 and Z , Y is generated. We consider two scenarios:

(S1): p = 1; β1 = 1; β2 = −0.7; and logit{E(X1|X2, Y , Z)} = −1 − 0.2X2 + Y + 0.5Z .
(S2): p = 2; β1 = (−1, 0.2)T ; β2 = 0.75; and (X1|X2, Y , Z) ∼ MVN2(µ(X2, Y , Z), 6), where

µ(X2, Y , Z) =


0.5 − 0.5X2 − Y + 0.5Z

−1 − 0.2X2 + 0.2Y − 0.5Z


and 6 =


1 0
0 1


.

We assume that X2 is fully observed but X1 is missing at random. The missing data indicator for X1 is denoted by RX1 and
is generated from the following response model

logit{E(RX1 |X2, Y , Z)} = 1 − X2 − 0.5Y + 0.75Z .

The missingness in X1 results in a dataset with about two thirds of complete cases.
We denote our easy-to-implement robust estimating equation estimator in Section 3.2 and the improved estima-

tor in Section 3.3 using REE and REEκ , respectively. We consider the kernel-assisted estimating equation (8) using a
Nadaraya–Watson local constant approximation of ν(Z), which can be easily implemented using the built-in package ‘‘gplm’’
in R for GPLMs. For comparison, we also consider the kernel estimating equation (9) using a local linear approximation of
ν(Z), which requires more intensive computation and is only implemented in S1. To examine the performance of REE and
REEκ in the scenario when the response model is correct but the imputation model is misspecified, we also estimate X∗

1 in
S1 using the following two misspecified imputation models:

(S1-M1): logit{E(X1|X2, Y , Z)} = −1 + Y + 0.5Z .
(S1-M2): log [− log{1 − E(X1|X2, Y , Z)}] = −1 − 0.2X2 + Y + 0.5Z .

Five hundred replicates of simulation are performed with a sample size of n = 500. REE and REEκ are compared to:
(i) FULL, LPLMs applied to the full data before imposing any missingness; (ii) COMP, LPLMs applied to the complete cases by
discarding observations with missing covariates; and (iii) IPW, Liang’s IPW method for GPLMs (Liang, 2008). We compare
our proposed estimators and the IPW estimator with π(α) known or estimated, using subscript π or π̂ to indicate whether
π(α) is estimated.

For each method and each β coefficient, we compute empirical bias, mean squared error (MSE), average estimated
standard errors (SE) using asymptotic variance estimation, and the associated nominal 95% confidence coverage rate. For
comparison, we also calculate the average estimated SE using Jackknife resampling when ν(Z) is estimated using the local
constant approximation (8). To compare the performance in estimating ν(Z), we first calculate the mean squared error of
ν(Z) across all n observations in a single replicate of simulation,

1
n

n
i=1


ν̂(Zi) − ν(Zi)

2
,

and then take an average of the above MSE estimates across the 500 replicates of simulation.
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Table 1
Simulation results of S1: β coefficients of the parametrically modeled covariates, with ν(Z) estimated using both the Nadaraya–Watson kernel regression
and local linear kernel regression (n = 500). All results are multiplied by 100.

Nadaraya–Watson kernel Local linear kernel
Ave. Ave. Asymp. Ave. Asymp.
Asymp. Jackk. Cov. Asymp. Cove.

Method β Bias MSE SE SE Rate Bias MSE SE Rate

ν(z) = z

FULL X1 1.4 4.5 21.6 21.1 95.2 1.5 4.5 20.8 94.6
X2 −0.3 4.3 21.4 21.5 95.6 −0.4 4.3 21.2 95.2

COMP X1 0.9 6.4 26.4 25.8 96.2 1.0 6.4 25.2 94.4
X2 −11.8 9.8 27.9 28.6 90.8 −12.1 9.9 27.9 91.0

IPWπ
X1 1.4 6.5 27.8 26.1 97.6 1.5 6.6 25.6 95.6
X2 −1.2 8.5 28.3 28.8 94.0 −1.4 8.6 27.9 93.4

IPWπ̂
X1 1.3 6.5 27.8 26.4 97.8 1.4 6.6 25.7 95.8
X2 −0.8 8.1 28.3 28.9 94.2 −1.1 8.1 27.9 94.0

REEπ
X1 1.6 6.6 27.9 26.2 97.6 1.8 6.7 25.7 96.0
X2 −0.5 4.6 22.2 22.2 95.8 −0.6 4.6 21.9 94.8

REEπ̂
X1 1.4 6.6 27.7 26.2 97.4 1.6 6.6 25.6 95.8
X2 −0.6 4.6 22.1 22.2 95.8 −0.7 4.6 21.8 95.2

REEκ
π

X1 1.8 6.6 27.8 26.4 97.0 1.3 6.8 25.1 94.4
X2 −1.4 4.8 22.0 22.8 95.6 −2.3 4.2 21.7 96.4

REEκ
π̂

X1 1.6 6.6 27.7 26.4 97.2 1.6 6.6 25.6 95.8
X2 −1.0 4.7 22.0 22.6 95.6 −1.0 4.7 21.7 94.6

ν(z) = cos(2πz)

FULL X1 0.02 4.2 20.4 20.0 94.2 0.5 4.3 20.1 93.8
X2 0.7 4.1 20.9 21.3 95.6 0.4 4.2 21.4 95.6

COMP X1 −0.3 6.5 24.9 24.5 93.6 0.4 6.6 24.4 92.6
X2 −11.2 8.8 27.6 28.8 94.4 −11.7 9.1 28.5 93.8

IPWπ
X1 0.1 6.7 25.6 24.7 94.2 0.7 6.8 24.6 92.4
X2 −0.8 7.6 27.1 29.0 96.2 −1.2 7.8 28.0 96.4

IPWπ̂
X1 0.03 6.8 25.6 25.0 93.8 0.6 6.9 24.7 92.8
X2 −0.3 7.5 27.0 29.1 96.2 −0.7 7.6 28.0 96.6

REEπ
X1 0.20 6.7 25.6 24.9 94.4 0.8 6.8 24.6 92.2
X2 0.7 4.3 21.0 21.9 95.6 0.4 4.3 21.8 95.8

REEπ̂
X1 0.1 6.8 25.6 24.9 93.8 0.7 6.9 24.6 93.0
X2 0.7 4.3 20.8 21.9 95.8 0.3 4.3 21.6 96.4

REEκ
π

X1 0.4 6.8 25.6 25.1 94.2 0.7 6.8 24.6 92.2
X2 −1.0 4.5 20.9 22.9 95.4 −0.5 4.5 21.6 96.0

REEκ
π̂

X1 0.2 6.8 25.5 25.1 94.0 0.6 6.9 24.6 92.8
X2 −0.4 4.4 20.7 22.6 95.0 −0.2 4.5 21.5 96.2

4.2. Simulation results

Tables 1 and 2 present the simulation results in estimating β for scenarios S1 and S2, respectively, where both the
imputation model and the response model are correctly specified. For β1, the regression coefficients of the covariates that
are partially observed, the two REE estimators perform similarly to the IPW and the COMP estimators. However, for β2,
the regression coefficient of the covariate that is fully observed, the REE estimators yield smaller MSE and SE than the
IPW counterparts. The REE and the IPW estimators also yield much smaller bias than the COMP estimator. Compared to
the estimates from the full data, when ν(z) = z and is estimated using the local constant approximation, the relative
efficiency of the IPWπ for β2 is 57% (=21.362/28.342) in S1 and 60% (=24.372/31.562) in S2, while the relative efficiency
of the REEπ for β2 is 93% (=21.362/22.182) in S1 and 85% (=24.372/26.392) in S2. The average SE is similar between the
asymptotic and jackknife variance estimators. The MSE and average SE are similar between the two REE estimators. This
suggests that the easy-to-implement method performs closely as well as the improved method in finite sample examples,
although theoretically only the improvedmethod is guaranteed to be more efficient than the IPW. By estimating π(α), both
the IPWand the REE estimators yield reducedMSE and SE as anticipated, although the reduction is small. The performance of
the REE estimators in estimating β is similar regardless of the choice of ν(Z) possibly because of the orthogonality between
the estimators ofβ and ν(Z). Using the local linear approximation to estimate ν(Z) yields similar estimates ofβ as compared
to the local constant approximation.

Table 3 shows the simulation results for S1 using the misspecified imputation models S1-M1 and S1-M2. The findings
are similar to those in Tables 1 and 2. This suggests that the REE estimators are valid when the response model is correct
even if the imputation model is misspecified.
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Table 2
Simulation results of S2: β coefficients of the parametrically modeled covariates, with ν(Z) estimated using the Nadaraya–Watson kernel regression
(n = 500). All results are multiplied by 100.

ν(z) = z ν(z) = cos(2πz)
Ave. Ave. Asymp. Ave. Ave. Asymp.
Asymp. Jackk. Cov. Asymp. Jackk. Cov.

Method β Bias MSE SE SE Rate Bias MSE SE SE Rate

FULL X1
−2.2 1.3 11.6 12.1 94.8 −0.8 1.3 11.8 12.1 94.4
0.2 1.2 10.6 10.9 95.0 −0.6 1.2 10.8 11.0 95.6

X2 1.1 6.5 24.4 25.9 95.0 −2.6 5.9 23.9 24.6 95.0

COMP X1
−3.0 2.1 14.2 14.8 94.6 −1.8 2.2 14.6 15.0 95.0
−0.03 1.7 13.0 13.3 96.0 −0.1 1.9 13.4 13.6 96.4

X2 −8.6 12.3 32.2 34.6 92.4 −12.6 12.2 31.6 32.7 92.8

IPWπ
X1

−3.2 2.2 14.5 15.0 95.2 −1.9 2.2 14.7 15.3 94.2
0.1 1.7 13.3 13.5 96.0 0.05 2.0 13.5 13.8 96.4

X2 2.1 11.7 31.6 34.8 94.8 −2.0 10.6 31.0 33.0 95.0

IPWπ̂
X1

−3.2 2.2 14.5 15.0 94.8 −2.0 2.2 14.7 15.3 94.4
0.1 1.7 13.3 13.5 96.2 0.1 2.0 13.5 13.9 97.0

X2 2.0 11.3 31.6 34.9 94.4 −2.3 10.1 31.0 33.0 95.0

REEπ
X1

−3.3 2.2 14.5 15.1 94.2 −2.1 2.3 14.7 15.3 94.4
0.2 1.7 13.3 13.4 95.6 0.01 2.0 13.5 13.8 96.2

X2 0.8 7.5 26.4 28.5 94.0 −2.6 7.1 26.2 27.3 94.6

REEπ̂
X1

−3.3 2.2 14.5 15.1 95.0 −2.2 2.3 14.7 15.3 94.2
0.1 1.7 13.3 13.5 96.2 0.03 2.0 13.5 13.8 96.4

X2 0.7 7.6 26.3 28.6 93.8 −2.6 7.2 26.0 27.4 94.6

REEκ
π

X1
−3.6 2.3 14.2 15.2 93.6 −2.4 2.3 14.3 15.4 93.6
0.2 1.7 12.8 13.6 93.6 0.05 2.0 12.9 13.9 94.6

X2 3.5 8.2 27.6 30.1 94.0 −1.0 7.1 25.7 28.2 94.4

REEκ
π̂

X1
−3.5 2.3 14.2 15.2 92.6 −2.2 2.3 14.3 15.4 93.8
0.1 1.7 12.8 13.6 94.2 0.04 2.0 12.9 13.9 95.2

X2 2.9 7.9 27.4 29.2 93.8 −1.7 7.1 25.6 27.8 94.2

Table 4 shows the average MSE of the ν(Z) estimates. Similar to the β estimates, the REE estimators perform better than
the IPW estimator under both ν(Z) functions. The local linear approximation results in smaller MSE than the local constant
approximation when ν(z) = cos(2πz), while the local constant approximation works better when ν(z) = z.

5. Analysis of the health insurance data

In this application, we study the association between ethnicity and health insurance coverage while controlling for the
effect of age, gender, country of birth, and general health condition using the 2011–2012 National Health and Nutrition
Examination Survey data (NHANES, Centers for Disease Control and Prevention). Our study sample contains individuals who
were 18 years or older at screening, where individuals 80 and over were topcoded at 80 years of age. Survey participants
were asked in questionnaires their age, gender, race, country of birth, health insurance status, and general health condition.
Health insurance is a binary outcome variable, with 1 for individuals with ‘‘health insurance obtained through employment
or purchased directly as well as government programs like Medicare and Medicaid that provide medical care or help pay
medical bills’’ and 0 for those without any kind of health insurance (NHANES 2011–2012 Questionnaire). Age is measured in
years. Race is a categorical variable, with 1 for ‘‘Mexican American’’, 2 for ‘‘Other Hispanic’’, 3 for ‘‘Non-Hispanic White’’,
4 for ‘‘Non-Hispanic Black’’, and 5 for ‘‘Other Race’’. We combine the categories 1–2 and 3–5 to create a new ethnicity
variable with 1 for Hispanic and 0 for non-Hispanic. Country of birth is a binary variable, with 1 for ‘‘Born in 50 US states
or Washington, DC’’ and 0 for ‘‘others’’. Current general health condition is a 1–5 scale variable: ‘‘excellent’’, ‘‘very good’’,
‘‘good’’, ‘‘fair’’, and ‘‘poor’’. A new health condition dummy variable is created by combining the first two categories with 1
for healthy individuals and the last three categories with 0 for less healthy individuals. To simplify the analysis, we remove
11 individuals who either refused to answer or did not know whether they had health insurance and 5 individuals without
information on country of birth, which results in a dataset of 5848 observations. Among the 5848 participants, 1381 (24%)
reported no health insurance, and 1199 (21%) were Hispanics.

The NHANES data were collected in two phases. The health insurance coverage and demographic information were
collected in the home interview phase by trained interviewers and were fully observed for our study sample. Upon
completion of the home interview, the interviewed persons were requested to report to the Mobile Examination Center
(MEC) for physical examination. The Current Health Status questionnaire was administered in the examination phase and
only individuals who reported to the MEC answered this question, which resulted in 870 (15%) lines of missing data for the
health condition question. For demonstration purpose, we ignore the complex survey design feature of the study and treat
the sample participated in the home interview phase as our target population of interest.
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Table 3
Simulation results of S1 with the misspecified imputation models S1-M1 and S1-M2: β coefficients of the parametrically modeled covariates, with ν(Z)

estimated using the Nadaraya–Watson kernel regression (n = 500). All results are multiplied by 100.

ν(z) = z ν(z) = cos(2πz)
Ave. Ave. Asymp. Ave. Ave. Asymp.
Asymp. Jackk. Cov. Asymp. Jackk. Cov.

Method β Bias MSE SE SE Rate Bias MSE SE SE Rate

(S1-M1)

FULL X1 0.8 4.3 21.5 20.9 95.0 −1.0 4.1 20.3 19.9 95.0
X2 −0.3 4.5 21.5 21.6 95.4 0.8 4.2 20.9 21.3 94.8

COMP X1 0.3 6.7 26.3 21.1 94.6 −0.6 6.5 24.8 20.2 93.8
X2 −11.9 10.3 28.0 23.5 90.6 −11.2 9.1 27.6 23.8 93.4

IPWπ
X1 0.7 6.9 27.9 26.2 95.0 −0.4 6.8 25.6 24.9 94.6
X2 −1.3 9.3 28.6 29.0 93.8 −0.8 7.9 27.1 29.0 95.8

IPWπ̂
X1 0.5 6.9 27.9 26.3 94.8 −0.4 6.9 25.6 24.9 93.8
X2 −0.9 8.8 28.5 29.0 94.6 −0.3 7.8 27.1 29.0 95.8

REEπ
X1 0.9 6.9 27.9 26.1 95.0 −0.3 6.8 25.6 24.8 94.8
X2 −0.7 5.1 22.4 22.3 95.0 0.7 4.4 21.1 22.0 95.0

REEπ̂
X1 0.7 7.0 27.8 26.1 95.0 −0.4 6.9 25.6 24.8 94.6
X2 −0.7 5.1 22.3 22.3 95.2 0.6 4.4 20.9 22.0 95.0

REEκ
π

X1 1.2 7.0 27.9 26.3 95.2 −0.1 6.9 25.6 25.0 94.2
X2 −1.5 5.4 22.3 23.0 94.2 −0.9 4.6 20.9 22.9 94.2

REEκ
π̂

X1 0.9 7.0 27.8 26.3 94.8 −0.2 6.9 25.5 25.0 93.8
X2 −1.1 5.3 22.2 22.7 94.8 −0.4 4.6 20.8 22.6 94.2

(S1-M2)

FULL X1 3.3 4.0 21.8 20.9 96.6 2.4 3.9 20.5 19.9 95.6
X2 −0.05 4.5 21.7 21.8 96.6 1.5 4.3 20.9 21.4 94.4

COMP X1 3.3 6.5 26.7 21.1 96.6 3.2 6.3 25.1 20.2 95.8
X2 −11.7 10.1 28.2 23.7 90.4 −10.5 9.1 27.6 23.8 93.6

IPWπ
X1 2.9 6.8 28.7 26.2 96.0 2.8 6.6 26.3 24.8 96.2
X2 −1.0 8.9 29.0 29.1 93.8 0.0 8.1 27.1 29.1 95.4

IPWπ̂
X1 2.8 6.8 28.7 26.2 96.2 2.7 6.6 26.3 24.9 95.8
X2 −0.7 8.4 28.9 29.2 94.8 0.5 7.9 27.1 29.1 95.4

REEπ
X1 3.1 6.9 28.8 26.0 96.6 2.9 6.6 26.3 24.7 95.8
X2 −0.4 5.0 22.8 22.4 95.6 1.3 4.6 21.2 22.0 95.2

REEπ̂
X1 3.0 6.9 28.6 26.1 96.8 2.8 6.6 26.3 24.8 96.0
X2 −0.5 5.0 22.7 22.4 96.2 1.3 4.6 21.0 22.0 95.2

REEκ
π

X1 3.3 6.9 28.7 26.3 96.4 3.1 6.6 26.2 25.0 96.0
X2 −1.4 5.2 22.6 23.2 95.4 −0.3 4.7 21.0 22.9 94.4

REEκ
π̂

X1 3.1 6.9 28.6 26.3 96.4 2.9 6.6 26.2 25.0 96.2
X2 −0.9 5.1 22.6 22.9 95.6 0.3 4.8 20.9 22.7 94.0

Table 4
Simulation results: average mean squared errors of the ν(z) estimates (n = 500) using the Nadaraya–Watson local approximation (N–W) and the local
linear approximation (linear). All results are multiplied by 100.

Scenario Kernel ν(z) FULL COMP IPWπ IPWπ̂ REEπ REEπ̂ REEκ
π REEκ

π̂

S1 N–W z 4.3 3.7 5.4 5.0 4.4 4.3 4.3 4.3
cos(2πz) 10.7 9.7 11.5 11.2 10.7 10.7 10.7 10.7

S1 Linear z 5.3 9.1 7.8 7.4 5.7 5.7 5.8 5.7
cos(2πz) 7.6 9.4 10.2 10.0 8.2 8.2 8.2 8.2

S2 N–W z 8.1 21.1 9.3 9.0 8.6 8.5 8.7 8.6
cos(2πz) 10.2 16.3 11.3 10.0 10.6 10.4 10.6 10.5

S1-M1 N–W z 4.8 3.9 6.0 5.6 4.9 4.9 4.9 4.9
cos(2πz) 11.1 9.9 11.9 11.7 11.2 11.1 11.2 11.1

S1-M2 N–W z 6.0 4.7 7.3 6.8 6.1 6.1 6.1 6.1
cos(2πz) 12.8 10.8 13.5 13.3 12.8 12.8 12.8 12.8

We assume that the general health condition data were missing at random. To allow a flexible age effect on the health
insurance coverage, we fit a logistic partially linear model with ethnicity, gender, country of birth, and general health
condition as parametrically modeled covariates and age as a nonparametrically modeled covariate, with bandwidth of 0.15
selected using the method of empirical bandwidth selection (Ruppert, 1997). We compare the COMP, the IPWπ̂ , the REEπ̂

and the REEκ
π̂
estimators. In the link-preserving imputation model, the general health condition is modeled using a logistic
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Table 5
Health insurance coverage application: regression coefficient estimates and 95% confidence intervals of the parametrically modeled covariates.

X1 = Health Condition X2 = Hispanic X3 = Female X4 = US Born

COMP 1.430 (1.213, 1.685) 0.468 (0.392, 0.558) 1.422 (1.213, 1.666) 1.742 (1.472, 2.063)
IPWπ̂ 1.434 (1.194, 1.722) 0.457 (0.383, 0.546) 1.417 (1.191, 1.686) 1.726 (1.421, 2.096)
REEπ̂ 1.432 (1.198, 1.713) 0.438 (0.374, 0.513) 1.397 (1.196, 1.632) 1.668 (1.407, 1.978)
REEκ

π̂
1.436 (1.201, 1.717) 0.439 (0.374, 0.514) 1.394 (1.194, 1.627) 1.670 (1.408, 1.979)

Fig. 1. Log-odds estimates and 95% confidence intervals (CIs) of health insurance coverage as a non-linear function of age using the 2011–2012 National
Health and Nutrition Examination Survey. Circles denote the observed log-odds of health insurance coverage in each of the twenty equally-spaced age
groups. The solid and dashed gray are the estimates of ν(age) using the complete cases and IPW method with point-wise CIs respectively, and the solid
and dashed black curves are the estimates using the easy-to-implement and the improved REEs with point-wise CIs respectively.

regression on age, gender, race, country of birth, and health insurance coverage. A Nadaraya–Watson kernel regression
is considered. Table 5 shows that all four methods yield similar point estimates of β1 associated with the general health
condition, although the REE estimators yield a slightly shorter 95% confidence interval (CI) than the IPW. For β2 to β4, the
coefficients for ethnicity, gender, and country of birth, the REEmethods estimate a slightly larger ethnicity effect but smaller
gender and country of birth effects. The REE estimators also yield shorter 95% CIs than the COMP and the IPW. Our analysis
shows that non-Hispanic, female, healthy, and born in US people had a higher health insurance coverage rate than Hispanic,
male, and people born in other countries with poor general health condition.

To check the model fit of ν(age), we create 20 equally-sized age groups and calculate the observed log-odds of having
health insurance for each age group. Fig. 1 shows that the four methods yield similar estimates of ν(age) and 95% CIs except
when age is older than 75, where the estimates of log-odds are lower using the REEs than the COMP and the IPW. It also
shows that the odds of health insurance coverage reach the lowest level at 25–35 years and increase dramatically after
65. This significant increase in the proportion of health insurance coverage after 65 might be explained by the eligibility
of Medicare after that age. However, ethnic disparity in health insurance coverage exists, and this disparity is significant.
The R code together with a complete documentation that illustrates the application of the proposed methods to the health
insurance data are in Section 3 of the Supplementary Materials (see Appendix A).

The assumption of MAR or nonignorable missingness cannot be verified. Instead, we conduct a sensitivity analysis to
examine how the coefficient estimates in Table 5 change as the degree of nonignorableness changes.We consider a response
model logit(πi) = DT

i α + α∗x1i, with Di = (1, x2i, x3i, x4i, yi, zi)T . We fix α∗ to be a value in (−3, 3). At each fixed value of
α∗, we first estimate α by solving

n
i=1 Di(Ri/πi − 1) = 0 and then estimate β in the LPLM using the REE estimators.

When α∗
= 0, the missing mechanism corresponds to MAR. A larger absolute value of α∗ indicates more severe degree of

nonignorable missingness. Fig. 2 shows that the β coefficient estimates are robust with respect to severity of nonignorable
missingness, and thus are robust against the MAR assumption.

6. Conclusion

We propose two kernel-assisted estimating equation estimators using link-preserving imputation for logistic partially
linear models with missing covariates. The first estimator under this approach is easy to implement by modifying built-in



184 Q. Chen et al. / Computational Statistics and Data Analysis 101 (2016) 174–185

Fig. 2. Health insurance coverage application: Sensitivity analysis to examine how the estimates of the β coefficients in the LPLM change as the degree
of nonignorableness changes. We consider a response model logit(πi) = DT

i α + α∗x1i , with Di = (1, x2i, x3i, x4i, yi, zi)T . At each fixed value of α∗ , we first
estimate α by solving

n
i=1 Di(Ri/πi − 1) = 0 and then estimate β in the LPLM.

functions for complete data in statistical software via data augmentation. The second estimator is an extension of the first
estimator but is guaranteed to be more efficient than the IPW. Our proposed estimators are valid when the response model
is correct, no matter if the imputation model is correctly specified. When the missingness of X1 is independent of (X1, Y )
given (X2, Z) or the parametrically modeled missing covariates have no effects on the outcome variable, i.e. β1 = 0, the
proposed estimators are also doubly robust.

Our simulation study shows that the proposed estimating equation approach can greatly improve the efficiency of the
regression coefficients estimates of fully observed covariates, parametrically or nonparametrically modeled, upon the IPW.
The easy-to-implement approach performs closely as well as the improved approach in finite sample examples, although
the improved estimator tends to yield slightly smaller asymptotic standard errors. We show the application of our proposed
methods to NHANESwhere data were collected in two phases, with demographics and insurance data collected in the home
interview phase and the health condition collected in the examination phase. Although in our application only the general
health condition collected in the examination phase was considered, the logistic partially linear model can be extended to
include multiple covariates collected in the examination phase that are missing together for persons who did not report
to the MEC. The proposed methods have important applications to missing covariate problems in logistic partially linear
models especially for those arise in two-phase sampling designs.
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