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Variable selection for multiply-imputed
data with application to dioxin
exposure study
Qixuan Chena*†‡ and Sijian Wangb‡

Multiple imputation (MI) is a commonly used technique for handling missing data in large-scale medical and
public health studies. However, variable selection on multiply-imputed data remains an important and long-
standing statistical problem. If a variable selection method is applied to each imputed dataset separately, it may
select different variables for different imputed datasets, which makes it difficult to interpret the final model
or draw scientific conclusions. In this paper, we propose a novel multiple imputation-least absolute shrinkage
and selection operator (MI-LASSO) variable selection method as an extension of the least absolute shrinkage
and selection operator (LASSO) method to multiply-imputed data. The MI-LASSO method treats the estimated
regression coefficients of the same variable across all imputed datasets as a group and applies the group LASSO
penalty to yield a consistent variable selection across multiple-imputed datasets. We use a simulation study to
demonstrate the advantage of the MI-LASSO method compared with the alternatives. We also apply the MI-
LASSO method to the University of Michigan Dioxin Exposure Study to identify important circumstances and
exposure factors that are associated with human serum dioxin concentration in Midland, Michigan. Copyright
© 2013 John Wiley & Sons, Ltd.
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1. Introduction

Dioxins are a class of chemical contaminants that are highly toxic and persist in the environment. Studies
of highly exposed populations show that dioxins can cause excessive cases of cancer, diabetes, immune
system suppression, and skin problems [1–5]. Because dioxins are very difficult to resolve once they
enter the human body, it is important to investigate the site-specific exposure factors and pathways
by which people accumulate body burdens of dioxins. This information can aid the development of
regulations to reduce the risk of exposure.

The work of this article is motivated by analyzing the University of Michigan Dioxin Exposure Study
(UMDES) data. The UMDES is the first population-based dioxin exposure study of residents living in
the Midland, Michigan, area, one of the largest and best characterized dioxin contamination sites in
North America [6–8]. In the UMDES, adults older than 18 years who had lived in their current residence
for at least 5 years were eligible to participate. Eligible subjects were selected from the populations of
five counties in Michigan, and were invited to complete an interview, donate an 80-mL whole blood
sample, and have their household dust and soil sample collected. The study generated an unprecedented
dataset with an extensive collection of information on demographics, health, residence, activities, work
history, lifetime food consumption, current diet, and measurements of dioxins in participants’ household
dust, soil, and serum.

As often encountered in large epidemiological studies, the statistical analysis of the UMDES was hin-
dered by missing data, which were caused by item nonresponse in survey questionnaire, and missing dust
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and soil values from subjects who refused to provide samples. Although the nonresponse rate is small
for each individual variable, the missing values are dispersed throughout the data in a haphazard pattern.
Thus, ignoring missing data by deleting incomplete cases is wasteful of the costly collected data and can
lead to biased statistical inferences. Alternatively, the multiple imputation (MI) framework suggested by
Rubin [9] can be used to address the problem of missing data. MI refers to a procedure of replacing
each missing value with a plausible value multiple times to generate multiple complete datasets. MI
has a practical advantage of allowing standard complete-data methods of analysis to be used. Thus, the
complete-data inferences from each imputed dataset can be combined to form one inference that prop-
erly reflects the uncertainty of imputation due to the missing data. Compared with maximum-likelihood
estimates calculated directly from incomplete data, MI is more attractive for data with general miss-
ing patterns and for multiple-purpose analysis with many estimands like the UMDES data. Unless the
rate of missing information is high, in most situations only 3 to 10 imputations are needed to yield an
excellent efficiency [9]. For the UMDES data, Olson et al. [10] used a sequential regression imputation
procedure [11] with five imputations to generate values for missing items. Our analysis is based on these
five imputed datasets. Our goal is to identify important exposure factors that are associated with human
population’s serum dioxin concentration in Midland, which is a variable selection problem.

Variable selection has been extensively studied in statistical literature. Some classical methods includ-
ing stepwise selection or best subset selection search for the best model based either on significance tests
or on a certain information-based criterion, such as Akaike information criterion [12] and Bayesian infor-
mation criterion (BIC) [13]. Penalized likelihood-based methods have drawn a lot of attention in recent
literature, including the least absolute shrinkage and selection operator (LASSO) [14], smoothly clipped
absolute deviation [15], smooth integration of counting and absolute deviation [16], minimax concave
penalty [17], truncated L1 penalty [18], group LASSO [19], composite absolute penalties [20], and
grouping pursuit [21], among others. Bayesian variable selection strategies [22–24] have also become
popular in many applications. However, these variable selection methods may have inadequate perfor-
mance if they are directly applied to multiply-imputed data, because the selection may not be consistent
across the multiple datasets generated by imputation. Specifically, if a variable selection method is
applied to each imputed dataset separately, it will probably identify different important variables in each
imputed dataset. This makes it difficult to produce the overall parameter estimates across all imputed
datasets and hence makes it difficult to interpret the model or draw scientific conclusions.

When MI is used to handle missing data, some naïve variable selection strategies, such as conduct-
ing variable selection with complete cases only, that is, discarding cases with any missing values, or
with a single imputed dataset, are often used. These naïve strategies are easy to implement, but they
ignore either possible differences between the complete cases and incomplete cases or uncertainty of
imputation caused by missing information. To incorporate the missing-data uncertainty, we can conduct
variable selection in each imputed dataset separately and claim a variable to be important if it is selected
with a frequency greater than some subjective threshold (say 60%), which is one popular approach [25]
in epidemiological literature. Obviously, this approach may identify different important variables with
different thresholds, but there is no clear guide on how to choose a proper threshold. Two studies in statis-
tical literature have addressed the variable selection problem for multiply-imputed data. Yang, Belin, and
Boscardin [26] proposed a Bayesian variable selection method for multiply-imputed data, by applying
Rubin’s rules (RR) [9,27] to synthesize different sets of Markov chain Monte Carlo estimates into a final
summary. Wood, White, and Royston [28] described a stepwise variable selection method by repeated
use of RR. They also proposed a ‘stacked’ method that combines the multiply-imputed datasets and uses
a weighting scheme to account for the fraction of missing data in each covariate. They then concluded
that the RR approach was recommended for performing stepwise selection in multiply-imputed data as
it is the only approach to preserve the type I error.

In this paper, we extend the LASSO method to multiply-imputed data by treating the estimated regres-
sion coefficients associated with the same variable across different imputed datasets as a group and by
selecting or removing the whole group together. We call this method the multiple imputation-least abso-
lute shrinkage and selection operator (MI-LASSO). The MI-LASSO method incorporates imputation
uncertainty in the variable selection procedure and yields a consistent selection across multiple-imputed
datasets. The rest of the paper is organized as follows. In Section 2, we review imputation strategies
and RR for MI inference. We introduce the MI-LASSO method in Section 3. In Section 4, we show the
performance of the MI-LASSO method in multiply-imputed data by using simulations. In Section 5, we
apply the MI-LASSO method to the UMDES data to identify important factors that are associated with
human serum dioxin concentration in Midland, Michigan. We conclude the paper with Section 6.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013



Q. CHEN AND S. WANG

2. Multiple imputation

2.1. Imputation

Multiple imputation can be summarized into three steps: imputation, analysis, and combination
[9, 29–33]. In the first step, missing data are imputed D times to generate D imputed complete datasets.
Imputations are often created under Bayesian arguments by specifying a model for the variables with
missing data given observed variables, prior distributions for parameters, and a model for the missing
data mechanism if missing data are non-ignorable. Imputated values are then the draws from the poste-
rior predictive distributions of the missing data conditional on the observed data. The imputation model
should be chosen as general as possible to accommodate potential different data analysis purposes [34].
Although MI does not require the missing at random (MAR) assumption in the sense defined by Rubin
[27, 35], most of current MI techniques assume that the missing data are MAR.

Two general multivariate techniques for multiply imputing missing data with general missing pat-
tern are joint modeling and sequential regression imputation strategies. Schafer [36] used Markov chain
Monte Carlo methods to jointly model multivariate continuous data using the multivariate normal dis-
tribution, multivariate categorical data using loglinear models, and mixed continuous and categorical
data using the general location model. These joint modeling approaches were implemented in the
S-PLUS/R packages ‘norm’, ‘cat’, and ‘mix’, respectively. The use of the joint modeling strategy can
be challenging for large datasets with hundreds of variables of varying types [37]. In contrast, sequential
regression imputation specifies separate conditional models for each variable given other variables. It is
flexible in allowing variables in the data to have varying types, including but not limited to continuous,
dichotomous, polytomous, and counts. It is capable of handling imputations with restrictions, such as
survey skip pattern and logical or consistency bounds in questionnaires [11]. The sequential regression
MI is also known as ‘multivariate imputation by chained equations’ [38], and was implemented in the
R(R Development Core Team, Vienna, Austria) packages ‘mice’ [38] and ‘mi’ [39], and in the SAS(SAS
Institute Inc., Cary, NC) callable software IVEware [11].

At each step of the sequential regression imputation, the conditional distribution of each variable is
modeled using an appropriate regression model given the other variables. The imputed values are then
the draws from the posterior predictive distribution of the missing data given the observed data. The
imputed variables are then used in the imputation of the next variables until all variables with missing
values are imputed. This process repeats until it converges. Often only a small number of iterations are
needed to reach the convergence for problems with moderate fraction of missing data [38]. Thus, instead
of modeling the multivariate data by a joint distribution, the sequential regression imputation models
conditional distributions, which are much easier to accommodate. Specifically, linear regression models
can be used for continuous variables, logistic regression models for dichotomous variables, generalized
logit regression models for polytomous variables, and Poisson regression models for count variables.
Despite the lack of theoretical justification, the sequential regression imputation algorithm works well in
real application settings and has been widely used to handle missing data in large survey data [40, 41].
The sequential regression imputation was used by Olson et al. [10] to handle the missing data in the
UMDES data and also was used in our simulation study in Section 4.

2.2. Rubin’s rules for multiple imputation inference

The analysis of a multiply-imputed data is straightforward [9, 27]. Each dataset completed by imputa-
tion is first analyzed by a same complete-data method. RR are then used to obtain a combined estimate
from the D estimates calculated from the D imputations. Specifically, let O�d and Vd , d D 1; : : : ;D,
and be D estimates and their associated variances for a scalar parameter � , calculated from the d th
imputation. The combined estimate of � is the average N� D 1

D

PD
dD1
O�d . The variance of N� has two

components: the average within-imputation variance NV D 1
D

PD
dD1 Vd , and the between-imputation

variance B D 1
D�1

PD
dD1

�
O�d � N�

�2
. The combined variance associated with N� is T D NV C DC1

D
B .

When sample size is large,

�
N� � �

�
T �1=2 � t� ;

where the degrees of freedom � D .D � 1/
�
1C 1

DC1

NV
B

�2
[9, 42].
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Notice that RR cannot be applied to obtain combined coefficient estimates if covariates of regression
models in each imputation are different. Thus, it is desired to have a variable selection method that yields
a consistent selection across all imputed datasets. After a model is selected, this same regression model
can be fitted on each of D imputations, and RR can be applied to obtain combined coefficient estimates
and variances.

3. Multiple imputation-least absolute shrinkage and selection operator method

Suppose that we have n subjects and p candidate covariates,X1; : : : ; Xp . Let Yi be the outcome variable
and Xij be the j th candidate covariate (j D 1; : : : ; p) for the i th subject. We assume that missing data
can occur in either Y or Xj . The observation indicators for Yi and Xij are denoted by Riy and Rij ,
respectively. If Riy D 1, Yi is observed and, if Riy D 0, Yi is missing. Similarly, if Rij D 1, Xij is
observed and, if Rij D 0, Xij is missing. MI is used to handle missing data in Y and Xj . We denote
each of the D imputed datasets as .yd;i I xd;i1; : : : ; xd;ip/niD1, d D 1; : : : ;D, where yd;i and xd;ij are
the values of Y and Xj for the i th subject in the d th imputed dataset, respectively. If Rij D 1, we have
x1;ij D � � � D xD;ij D xij , and if Rij D 0, xd;ij can take different values in each imputation. We assume
that the complete data are generated from the following linear regression model:

Yi D ˇ0C

pX
jD1

ˇjXij C �i ; i D 1; : : : ; n; (1)

where ˇj ’s are regression coefficients, and terms �i
i:i:d:
� N.0; �2/ are error terms. We are interested in

selecting important covariates Xj that predict Y .
Variable selection based on penalized likelihood estimation has become popular in recent statistical

research. In particular, the LASSO method [14] has gained much attentions. It penalizes the L1 norm of
the regression coefficients to achieve a sparse model:

min
ˇj

nX
iD1

0
@yi � ˇ0 � pX

jD1

ˇjxij

1
A
2

C �

pX
jD1

jˇj j; (2)

where � is a non-negative tuning parameter that controls the amount of shrinkage. Because of the sin-
gularity at ˇj D 0 of the L1-norm penalty, some estimated Ǒj will be exactly zero, which realizes the
variable selection. The theoretical properties of the LASSO method have been thoroughly studied in
literature, say in [15, 43–45] and references therein.

When multiply-imputed data are present, if LASSO is applied to each imputed dataset separately,
it is possible that it selects different variables in different imputed datasets. This inconsistency in the
selection is due to fitting the model on each dataset separately, which motivates us to consider fitting
models on all imputed datasets jointly to yield a consistent variable selection across all imputed datasets.
Denote Ǒ1;j ; : : : ; ǑD;j be the D estimated coefficients for covariate Xj on the D imputed datasets. If
Xj is unimportant, Ǒ1;j ; : : : ; ǑD;j should all be zero and ifXj is important, Ǒ1;j ; : : : ; ǑD;j should all be
nonzero. Motivated by this desired consistency, we treat Ǒ1;j ; : : : ; ǑD;j as a group and apply the group
LASSO penalty [19]. To be specific, we consider the following optimization approach:

min
ˇd;j

DX
dD1

nX
iD1

0
@yd;i � ˇd;0 � pX

jD1

ˇd;jxd;ij

1
A
2

C �

pX
jD1

rXD

dD1
ˇ2
d;j
; (3)

where
Pp
jD1

qPD
dD1 ˇ

2
d;j

is called the group LASSO penalty. It was originally proposed by Yuan
et al. [19] for linear regression when the covariates can be separated into several groups. Its theoretical
property was studied in [46] and references therein. We will talk about how to tune � in Section 4.

We call the resulting variable selection procedure the MI-LASSO. We can see that, because of the
group LASSO penalty, Ǒd;j , the estimated regression coefficient for Xj on the d th imputed dataset
depends on all imputed datasets instead of the d th imputed dataset only. In other words, the proposed
method fits D models on all imputed datasets jointly instead of fitting models separately. Furthermore,
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because of the nature of the group LASSO penalty [19], the estimated coefficients
�
Ǒ
1;j ; : : : ; ǑD;j

�
for

each covariate Xj will either be all exactly zero or be all nonzero. This property guarantees the desired
consistency of variable selection across all imputed datasets.

It is not trivial to get the solution to the optimization problem (3), because the group LASSO penalty
function is singular at the origin point. To overcome this optimization difficulty, we apply the local
quadratic-approximation method as proposed by Fan and Li [15]. To be specific, we iteratively solve
the optimization problem (3). Suppose we already have the estimates Ǒ.t/

d;j
, d D 1; : : : ;D, at the t th

iteration. As long as

rPD
dD1

�
Ǒ.t/
d;j

�2
> 0, we have the following approximation:

rXD

dD1
ˇ2
d;j
�

PD
dD1 ˇ

2
d;jrPD

dD1

�
Ǒ.t/
d;j

�2 :

Correspondingly, the optimization problem (3) can be approximated by

min
ˇd;j

DX
dD1

8̂<
:̂

nX
iD1

0
@yd;i � ˇd;0 � pX

jD1

ˇd;jxd;ij

1
A
2

C �

pX
jD1

cjˇ
2
d;j

9>=
>; ; (4)

where cj D 1=

rPD
dD1

�
Ǒ.t/
d;j

�2
. We can see that in the optimization problem (4), the estimated regres-

sion coefficients Ǒ.tC1/
d;j

’s can be obtained by solving D separate ridge regressions, which is easy to
implement in practice. The iterations continue until the convergence is claimed. One possible limitation
for this approximation is that once a group of coefficients are shrunken to zero, they will stay at zero. To

avoid this inflexibility, we propose to fix Ǒ.t/1;j D � � � D
Ǒ.t/
D;j D ı when

PD
dD1

�
Ǒ.t/
d;j

�2
6 Dı2. In our

algorithm, we choose ı D 10�10, and our numerical studies show that the algorithm performs well.

4. Simulation study

4.1. Design

In this section, we perform a simulation study to evaluate the finite sample performance of the MI-
LASSO method and compare the results with four existing methods: (i) LASSO, the LASSO method
applied to the full data before generating any missing data; (ii) stepwise, the stepwise selection method
applied to the full data before generating any missing data; (iii) CC-LASSO, the LASSO method applied
to the complete cases by discarding observations with any missing data; and (iv) RR-stepwise, the step-
wise selection method by repeated use of RR applied to the multiply-imputed data proposed in [28]. To
make our paper self contained, we present the details of RR-stepwise selection procedure in Appendix.

We considered three examples. In the first two examples, all covariates are continuous. In the third
example, all covariates are dichotomous. In each example, the outcome variable Y in the complete data
are generated from the following linear regression model:

Y DXˇC �;

where ˇ D .ˇ1; ˇ2; : : : ; ˇp/T and �
i:i:d:
� N.0; �2/. We chose the � value so that ˇT†ˇ= �2 D 1, where

† is the population covariance matrix of X .
In each example, we let Y be fully observed and generated missing data inX . We considered ignorable

missing data mechanisms: missing completely at random (MCAR) and MAR. The missing data were
then multiply imputed using the ‘mice’ package in R [38], where the default predictive mean matching
method was used to impute continuous covariates and the logistic regression imputation method was
used for dichotomous covariates. In the imputation model for each incomplete candidate covariate, all
the other candidate covariates and Y were used as predictors. Five imputations were completed for each
incomplete data.

For stepwise and RR-stepwise, denote ˛1 and ˛2 to be the P -value thresholds for including
and removing a variable, respectively. We considered two sets of thresholds in our simulations:

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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.˛1 D 0:05; ˛2 D 0:06/ and .˛1 D 0:20; ˛2 D 0:21/. For the LASSO, CC-LASSO and MI-LASSO
methods, the tuning parameter � was selected by minimizing BIC.

For the LASSO method, BIC has the following formula:

BICD log

0
B@ nX
iD1

0
@yi � Ǒ0 � pX

jD1

Ǒ
jxij

1
A
2

=n

1
CAC df1 � log.n/=n;

where df1 is the degrees of freedom of the fitted model. Zou and Hastie [47] proved that df1 can
be estimated by the number of nonzero fitted coefficients. For the MI-LASSO method, we define the
corresponding BIC as

BICD log

0
B@ DX
dD1

nX
iD1

0
@yd;i � Ǒd;0 � pX

jD1

Ǒ
d;jxd;ij

1
A
2

=.Dn/

1
CAC df2 � log.Dn/=.Dn/: (5)

Following Yuan and Lin [19], it can be shown that the degrees of freedom of our fitted model, df2, can
be estimated by

df2 D

pX
jD1

I

 rXD

dD1
Ǒ2
d;j

> 0

!
C

pX
jD1

qPD
dD1
Ǒ2
d;jqPD

dD1
Q̌2
d;j

.D � 1/;

where Ǒd;j and Q̌d;j are the MI-LASSO estimate and the ordinary least square estimate for the j th
covariate on the d th dataset, respectively. The first term of df2 is equal to the number of nonzero fitted
coefficients. The details of derivations are provided in Appendix.

To compare the performance of variable selection among different methods, we considered three
criteria: sensitivity of selection (SEN)

SEND
# of selected important variables

# of true important variables
;

specificity of selection (SPE)

SPED
# of removed unimportant variables

# of true unimportant variables
;

and mean-squared error (MSE) [14]

MSED
�
Ǒ � ˇ

�T
†
�
Ǒ � ˇ

�
:

A higher value of sensitivity and specificity and a lower value of MSE are desirable.

4.2. Simulation one: Continuous candidate covariates with compound symmetry covariance structure

In this example, we have the sample size n D 100 and the number of candidate covariates p D 20. For
the true regression coefficient ˇj ’s, we let ˇj D 1 for j D 1; 2; 5; 11; 12; 15 and ˇj D 0 otherwise.
The covariates X were generated from a multivariate normal distribution with zero mean, unit variance,
and a compound symmetry correlation structure, that is, cov.Xi ; Xj / D �; 8i ¤ j . The correlation
� takes a value of 0:1 for low correlation and a value of 0:5 for high correlation among covariates. We
generated missing data in X11-X20. For MCAR, we independently dropped 5% of data in X11 �X20 to
yield datasets with about 60% complete cases. For MAR, the missing data indicatorsRij were generated
using the following logistic regression model:

logitfPr.Rij D 0jXi.j�10/; Yi /g D ˛0C 0:5Xi.j�10/C 0:5Yi ;

where ˛0 was chosen to yield around 60% complete cases.
Table I shows that the MI-LASSO method has similar or slightly higher sensitivity but lower speci-

ficity of selection and similar or slightly larger MSE compared with the LASSO method applied to
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Table I. Mean sensitivity (SEN) and specificity (SPE) of selection
and median mean-squared error (MSE) in simulation one: continuous
candidate covariates with compound symmetry covariance structure
(�D 0:1 or 0:5).

�D 0:1 �D 0:5

SEN SPE MSE SEN SPE MSE

Full data
LASSO 95.2 82.9 1.6 75.5 78.5 2.7
stepwise (˛1 D 0:05) 87.0 93.8 1.8 44.6 92.7 4.5
stepwise (˛1 D 0:20) 95.3 78.4 2.0 61.7 78.7 4.9

MCAR
MI-LASSO 96.0 82.1 1.5 79.9 74.0 2.6
CC-LASSO 76.5 84.4 3.6 59.9 81.0 4.6
RR-stepwise (˛1 D 0:05) 83.9 94.6 1.9 42.8 93.3 4.7
RR-stepwise (˛1 D 0:20) 94.3 79.3 2.1 59.2 78.6 5.2

MAR
MI-LASSO 94.7 80.0 1.8 76.9 72.6 3.2
CC-LASSO 46.5 91.7 7.4 34.6 89.3 15.0
RR-stepwise (˛1 D 0:05) 79.7 94.4 2.3 38.2 92.3 5.3
RR-stepwise (˛1 D 0:20) 91.8 79.1 2.4 54.7 78.6 5.9

MCAR, missing completely at random; MAR, missing at random.

the full data before generating any missing data. This indicates that the use of MI-LASSO on multiply-
imputed data can identify important covariates in a linear regression model as well as the LASSO method
would have achieved if the data were complete. By deleting incomplete observations, CC-LASSO has
lower sensitivity of selection and much larger MSE than MI-LASSO, especially when missing data are
MAR. Compared with MI-LASSO, RR-stepwise has lower sensitivity but higher specificity when using
0.05 as the P -value to enter, and lower sensitivity and lower specificity when using 0.2 as the P -value to
enter. Both RR-stepwise procedures yield models with larger MSE than MI-LASSO. Furthermore, as �
increases from 0.1 to 0.5, the mean sensitivity drops to a half, and the MSE doubles in RR-stepwise, but
the deterioration is less severe in the use of MI-LASSO. This poor performance of the stepwise strategies
when multicollinearity is present is also evident in complete-data analysis using the full data.

4.3. Simulation two: Continuous candidate covariates with first-order autoregressive (AR(1))
covariance structure

In this example, we considered three n and p combinations: .n D 100; p D 20/, .n D 200; p D 20/,
and .n D 100; p D 40/. We generated X from a multivariate normal distribution with zero mean, unit
variance, and an AR(1) correlation with �D 0:5. For the true regression coefficients ˇj ’s, when p D 20,
we let ˇj D 1 for j D 1; 2; 5; 11; 12; 15 and ˇj D 0 otherwise. When p D 40, we let ˇj D 1 for
j D 1; 2; 5; 11; 12; 15; 21; 22; 25; 31; 32; 35 and ˇj D 0 otherwise. For missing data generation, when
p D 20, we generated missing data inX11�X20. When p D 40, we generated missing data inX11�X20
and X31 �X40. The procedure of missing data generation was the same as presented in simulation one.
For the case with .n D 100; p D 40/ and the case with .n D 200; p D 20/, the yielded datasets have
around 60% complete cases. For the case with .n D 100; p D 20/, we considered both 60% complete
cases and 35% complete cases.

Table II presents the simulation results. Overall MI-LASSO has similar sensitivity and specificity of
selection and similar MSE compared with LASSO applied to the full data, and performs better than CC-
LASSO and RR-stepwise. As p increases from 20 to 40, the sensitivity of selection decreases, and the
MSE increases for all approaches. Increasing n from 100 to 200, both the sensitivity of selection and the
MSE are largely improved, especially for the stepwise strategies. In the scenario of p D 20 and nD 200,
the sensitivity of selection is close to perfect for all approaches, except CC-LASSO, and MI-LASSO and
RR-stepwise (˛1 D 0:05) yield the same MSE. This suggests that MI-LASSO has a greater advantage
than RR-stepwise when number of candidate covariates relative to sample size is large. Finally, the sen-
sitivity of selection decreases, and the MSE increases as the percentage of complete cases drops from

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Table II. Mean sensitivity (SEN) and specificity (SPE) of selection and median mean-squared error (MSE)
in simulation two: continuous candidate covariates with AR(1) covariance structure under varying sample
sizes (n) and numbers of candidate covariates (p). Incomplete data contain 35% complete cases in the
high-missing proportion (HM) scenario and 60% complete cases in the other scenarios.

p D 20; nD 100 p D 40; nD 100 p D 20; nD 200 p D 20; nD 100 (HM)
SEN SPE MSE SEN SPE MSE SEN SPE MSE SEN SPE MSE

Full data
LASSO 92.6 82.3 1.5 58.9 88.6 8.4 99.8 84.0 0.6 92.6 82.3 1.5
stepwise (˛1 D 0:05) 77.6 92.8 2.0 50.2 92.6 8.9 98.1 94.9 0.6 77.6 92.8 2.0
stepwise (˛1 D 0:20) 89.5 79.8 2.0 66.3 78.9 9.5 99.2 80.9 0.8 89.5 79.8 2.0

MCAR
MI-LASSO 93.6 82.2 1.5 64.8 86.9 7.7 99.9 82.1 0.6 93.2 80.0 1.6
CC-LASSO 75.4 84.1 3.2 36.5 89.2 14.4 96.3 81.9 1.2 58.6 76.8 8.2
RR-stepwise (˛1 D 0:05) 74.6 93.5 2.1 48.1 92.9 9.2 97.1 95.5 0.6 72.4 93.2 2.3
RR-stepwise (˛1 D 0:20) 88.5 80.8 2.0 65.3 78.8 9.8 99.2 81.2 0.8 86.2 80.6 2.2

MAR
MI-LASSO 91.8 79.6 1.7 65.1 83.2 8.3 99.7 80.1 0.7 90.7 69.0 2.6
CC-LASSO 47.3 91.4 6.8 12.6 96.7 23.0 86.2 85.5 3.3 25.3 87.5 37.0
RR-stepwise (˛1 D 0:05) 70.5 93.1 2.4 43.4 93.0 10.3 95.2 94.8 0.7 60.1 92.6 3.2
RR-stepwise (˛1 D 0:20) 84.9 79.1 2.3 60.2 78.6 11.1 98.4 81.0 0.9 76.7 78.5 3.2

MCAR, missing completely at random; MAR, missing at random.

60% to 35% for the case with (n=100, p=20). Not surprising, the performance of CC-LASSO is most
affected by the increase in the proportion of missing data when missing data are MAR, where the MSE
increases from 6.8 to 37.0.

4.4. Simulation three: Dichotomous candidate covariates

In this example, we have n D 100 and p D 20. To generate dichotomous covariates, we first simulated
X from a multivariate normal distribution with zero mean, unit variance, and an AR(1) correlation with
� D 0:5. We then dichotomized the simulated continuous variables into 0/1 variables using 0 as the
cut-off value. For the true regression coefficient ˇj , we let ˇj D 1 for j D 1; 2; 5; 11; 12; 15 and ˇj D 0
otherwise. We generated missing data in X11 � X20 to have around 60% complete cases. The missing
data generation procedures are the same as described in simulation one.

Simulation results are shown in Table III, and the findings are similar to what we observed in the
scenarios with continuous covariates.

5. Real data application

The data in this example come from the UMDES. Detailed description of the UMDES study design and
a report of study findings using data of all study participants can be found elsewhere [6,7]. In this appli-
cation, we used the data of the 448 residents who resided in or near the flood plain of the Tittabawassee
between the Dow Chemical Company plant in Midland and the confluence of the Tittabawassee and
Shiawassee rivers in Saginaw. Our goal was to identify important circumstances and exposure pathways
that predict serum concentration of the most toxic dioxin compound, 2,3,7,8-tetrachlorodibenzop-dioxin
(TCDD). Candidate covariates we considered here include health and demographics (age, sex, body mass
index (BMI), BMI change, pregnancy and breast-feeding history among women, smoking, education,
income, and race/ethnicity), region of current residence, soil and household dust TCDD concentrations,
recreational activities in the contaminated areas (fishing, hunting, and water activities), occupations
(focused on those with potential dioxin exposure), diet (especially sport-caught fish, game meat, eggs,
poultry, dairy, and vegetables raised in contaminated soil), and property-use factors (e.g., backyard burn-
ing). We converted categorical/nominal variables into separate dichotomous variables. The final data
for analysis contain 63 continuous and 68 dichotomous candidate covariates, most of which are mildly
correlated with a mean absolute correlation coefficient of 0.06 (95% CI: [0.00,0.20]). However, a few
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Table III. Mean sensitivity (SEN) and speci-
ficity (SPE) of selection and median mean-
squared error (MSE) in simulation three:
dichotomous candidate covariates.

SEN SPE MSE

Full data
LASSO 95.0 82.1 0.4
stepwise (˛1 D 0:05) 87.3 93.1 0.4
stepwise (˛1 D 0:20) 95.4 78.4 0.5

MCAR
MI-LASSO 96.2 82.0 0.4
CC-LASSO 74.6 83.6 1.1
RR-stepwise (˛1 D 0:05) 85.3 93.9 0.5
RR-stepwise (˛1 D 0:20) 95.2 79.1 0.5

MAR
MI-LASSO 95.7 81.4 0.4
CC-LASSO 60.5 87.2 1.1
RR-stepwise (˛1 D 0:05) 83.6 93.6 0.5
RR-stepwise (˛1 D 0:20) 94.0 78.9 0.6

MCAR, missing completely at random; MAR, miss-
ing at random.
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Figure 1. Profiles of MI-LASSO coefficients and BIC value, as tuning parameter � changes. Average regression
coefficients across five imputations are plotted versus shrinkage factor s using black curves. The vertical dashed
line represents the selected model with s D 0:141 chosen by the smallest BIC, where the profile of BIC is plotted
using a gray curve. Five selected covariates in Table IV (months of breast-feeding, lifetime pack-years smoking,
years of using wood-burning stoves in 1960-1979, years of living in Midland in 1940-1959, and years of working
in paper industry after 1980) are not labeled because of their small absolute values of coefficients. BMI, body

mass index.

covariates are highly correlated with the correlation as high as 0.85. We also included the age and gen-
der interaction, because previous study showed its importance in predicting serum TCDD concentration
[7, 48]. The outcome serum TCDD concentration was log-10 transformed.

Our analysis was based on the five imputations completed by Olson et al. [10] using sequential regres-
sion MI strategy implemented in IVEware [11]. We specified a series of tuning parameter � values and
showed the profiles of MI-LASSO coefficients and BIC values as � changes in Figure 1. The y-axis on
the left is the average regression coefficient estimate, 1

5

P5
dD1
Ǒ
d;j , for j D 1; : : : ; 131, calculated from

the MI-LASSO optimization equation (3). The y-axis on the right is the BIC value defined in equation
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(5). The coefficient estimates and BIC are displayed using black and gray curves, respectively. The x-axis
is the standardized shrinkage factor s, defined as

s D

P131
jD1

qP5
dD1
Ǒ2
d;jP131

jD1

qP5
dD1
Q̌2
d;j

;

where Q̌d;j is the ordinary least square estimate for the j th covariate on the d th dataset. When s D 0, the
null model is selected, and when s D 1, no shrinkage is applied, and Ǒd;j D Q̌d;j . Here, we only present

Table IV. Comparison of RR-stepwise and MI-LASSO in selecting important factors that predict log10
serum 2,3,7,8-tetrachlorodibenzop-dioxin concentration in the University of Michigan Dioxin Exposure
Study flood plain and near-flood plain sample

RR-stepwise MI-LASSO

Covariate Estimate 95% CI Covariate Estimate 95% CI
(0) Intercept 0.426 (0.290, 0.562) Intercept 0.374 (0.180, 0.570)
(1) Age 0.015 (0.011, 0.018) Age 0.013 (0.010, 0.017)
(2) Female 0.161 (0.087, 0.235) Female 0.147 (0.078, 0.216)
(3) Age� female 0.006 (0.002, 0.009) Age� female 0.006 (0.002, 0.010)
(4) Months of -0.006 (-0.009, -0.003) Months of -0.006 (-0.008, -0.003)

breast-feeding breast-feeding
(5) Lifetime pack-years -0.002 (-0.004, -0.001) Lifetime pack-years -0.002 (-0.004, 0.0004)

smoking smoking
(6) Current smoker -0.155 (-0.264, -0.046) Current smoker -0.139 (-0.252, -0.025)
(7) BMI change -0.022 (-0.031, -0.013) BMI change -0.018 (-0.027, -0.009)
(8) Years of living in 0.011 (0.006, 0.016) Years of living in 0.008 (0.003, 0.013)

Midland: 1960-79 Midland: 1960-79
(9) Fishing in Saginaw 0.165 (0.044, 0.286) Fishing in Saginaw 0.195 (0.075, 0.316)

river and bay after river and bay after
1980 (> 1/moth) 1980 (> 1/month)

(10) White -0.190 (-0.351, -0.030) White -0.213 (-0.415, -0.011)
(11) Years of using wood 0.008 (0.002, 0.013) Years of using wood 0.009 (0.003, 0.014)

burning stoves burning stoves
in 1960-1979 in 1960-1979

(12) Years of working in 0.010 (0.003, 0.017) Years of working in 0.008 (0.003, 0.014)
paper industry paper industry
after 1980 after 1980

(13) BMI 0.006 (0.002,0.011) Ever smoke -0.051 (-0.129, 0.027)
(14) Years of living in -0.006 (-0.012, -0.0002) Years of living in 0.003 (-0.002, 0.008)

Midland: after 1980 Midland: 1940-59
(15) Years of living in a 0.008 (0.001,0.015)

property with crops
livestock or poultry
after 1980

(16) Years of spraying -0.034 (-0.059, -0.009)
chemicals to kill
plants: 1940-59

(17) Years of spraying 0.024 (0.011, 0.038)
chemicals to kill
plants: 1960-79

(18) Years of working in -0.008 (-0.016, -0.0005)
foundry after 1980

(19) Eating meat raised in 0.115 (0.020, 0.210)
Saginaw river and bay
(> 0, <1/month)

BMI, body mass index.
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the profiles when s lies between 0.08 and 0.18. We used a vertical dashed line in Figure 1 to represent
the selected model at s D 0:141, where the BIC achieves the smallest value. The covariates with nonzero
coefficients are age, female, age and female interaction, BMI change, months of breastfeeding, whether
a current smoker or ever smoke, lifetime pack-years smoking, white, years of living in Midland county
in 1940-1959 and 1960-1979, fishing in Saginaw river and bay after 1980 more than once per month,
using wood burning stoves in 1960-1979, and years of working in paper industry after 1980.

We refitted the selected model by using least square estimation and used RR to obtain combined
regression coefficient estimates and 95% CIs (Table IV). This is similar to the approach suggested in
Efron et al. [49]. For comparison, we also included the coefficients and 95% CIs of the model selected,
by using the RR-stepwise method, with ˛1 D 0:05 and ˛2 D 0:06. The top part of Table IV lists the
12 covariates that were selected by both methods, and the bottom part shows the covariates that were
selected by one method but not the other. The 12 covariates selected by both methods have similar coef-
ficients and are all statistically significant at the significance level of 0.05. The analysis suggests that the
effect of age on serum TCDD concentration differs by gender – the serum TCDD concentration cumu-
lates more among females than males as they age. In addition, serum TCDD concentration is negatively
associated with white ethnicity, months of breast-feeding among women, smoking, and weight gain in
the past year. These findings are consistent with previous reports [50, 51]. Furthermore, we also iden-
tified some important residence, local recreational activity, occupation, and property-use factors, which
can be important to local residents, government agencies, and policy makers. Specifically, the serum
TCDD concentration is higher among people living more years in Midland county in 1960-1979, fishing
frequently in Saginaw river and bay after 1980, using wood burning stoves in 1960-1979, or working
in paper industry after 1980. In addition to the 12 common selected covariates, another two covariates
(whether ever smoke or years of living in Midland county in 1940-1959) were selected by the use of MI-
LASSO. Effects of these two covariates are in the same direction as we expected, although they are not
statistically significant. The RR-stepwise method also identified another seven covariates, but it is hard
to interpret the coefficients of some of these variables. For example, it cannot be true that spraying chem-
icals to kill plants in 1940-1959 is negatively associated with serum TCDD concentration. Moreover, we
observed the instability in the selection of models obtained using the RR-stepwise method. Analyses
not shown here found that some of the seven covariates selected by RR-stepwise but not MI became
insignificant when we dropped or added a few unimportant candidate covariates. Thus, the importance
of these seven covariates requires further investigation.

6. Discussion

Missing data arise in almost all research problems and can cause difficulties in data analysis. MI has
become one of the most popular methods to deal with missing data because of its generality, ease of
implementation, and availability of relevant software. In this paper, we propose an MI-LASSO method
for variable selection with multiply-imputed datasets. The MI-LASSO method jointly fits models across
multiple-imputed datasets by applying a group LASSO penalty on the regression coefficients of the same
covariate in different imputed datasets. It has an important feature of consistency in the selection of vari-
ables across MIs. That is, the coefficients of the same covariate estimated by MI-LASSO are either all
zero or all nonzero in different imputations. Our simulation study shows that MI-LASSO can identify
important covariates in a linear regression model similar to LASSO would have achieved if the data
were complete, and consequently, the selected models have similar MSEs. By discarding incomplete
observations, the use of LASSO on complete-cases results in models with poor sensitivity of selection
and much larger MSE than MI-LASSO, especially when proportion of complete-cases is low or missing
data are MAR. Furthermore, as proportion of missing information increases, the sensitivity, specificity,
and mean-squared error are much worse by the use of LASSO on complete cases but do not differ
much by the use of MI-LASSO. This suggests against conducting variable selection on complete cases,
which may fail to identify important covariates, but recommends the use of MI-LASSO, especially when
proportion of missing information is moderate to high.

The MI-LASSO method is superior to the stepwise variable selection method by repeated use of
RR (RR-stepwise). The MI-LASSO method results in models with better sensitivity and MSE than the
RR-stepwise method, and the advantage is especially pronounced for small sample size data with a
large number of covariates and for data with the presence of multicollinearity. The MI-LASSO method
also yields more stable selection of models than the RR-stepwise method as evident in the UMDES
data application. Moreover, the MI-LASSO method is easy to implement, and the computation is fast.
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By applying the local quadratic-approximation method, the coefficients of MI-LASSO can be easily
estimated by iteratively solving ridge regressions. Both SAS macro and R code for implementing the
MI-LASSO method are available upon request. This makes MI-LASSO more attractive to practitioners
than alternative computationally intensive methods, such as the Bayesian variable selection method for
multiply-imputed data [26].

In practice, we often assume that missing data are ignorable when MI is used to handle missing data.
In the simulation study, we assumed that missing data are MCAR or MAR and studied the performance
of MI-LASSO under varying sample sizes, varying numbers of candidate covariates, varying correla-
tions between candidate covariates, varying types of data, and varying proportions of missing data. All
scenarios of simulation show the good performance of MI-LASSO when missing data are ignorable.
MI in non-ignorable missing data is challenging. There is no general MI method or software program
available that can be used to handle non-ignorable missing data. However, it is important to note that
MI paradigm and the use of RR do not require missing data mechanism to be ignorable, nor does MI-
LASSO. MI-LASSO will perform well in non-ignorable missing data if imputations are well conducted
and missing data mechanism is correctly modeled. On the other hand, with a large proportion of missing
data, a misspecified imputation model may distort the observed relationship between the outcome and
covariates, so that MI-LASSO may lead to a poor selection of models based on bad imputations using
naïve imputation methods.

In this paper, we mainly focus on the methodology development and computation aspect of the MI-
LASSO method. The corresponding theoretical properties of our proposed method are under exploration.
We expect to show the sign consistency of our method for variable selection by assuming some condi-
tions similar to irrepresentative condition for LASSO [44]. The challenging part of the development of
the theoretical properties is to assess the effect of uncertainty in imputation on the variable selection.
Our proposed method can be also straightforwardly extended to generalized linear models.

Appendix

A.1. Stepwise selection method for multiply-imputed data using Rubin’s rules

Wood, White, and Royston [28] described a stepwise variable selection method for multiply-imputed
data by repeated use of RR and referred to it as the RR approach. We present in the following the
detailed RR-stepwise selection procedure:

Step 0: Choose ˛1, the P -value to enter, and ˛2, the P -value to remove. Specify the initial model M0,
the model with no covariates. Set t D 0.

Step 1: Let t D t C 1. For each covariate X that is not included in Mt�1, fit D regressions with the
model fMt�1; Xg onD imputed datasets. Calculate the combinedP -value for each newly added
covariate X by using RR. Let Xa be the covariate with the smallest combined P -value pa. If
pa 6 ˛1, update the model Mt to be fMt�1; Xag; otherwise, Mt D Mt�1, and the procedure
terminates.

Step 2: Fit D regressions with the model Mt on D imputed datasets. Calculate the combined P -values
for covariates in the model. Let Xb be the covariate with the largest combined P -value pb . If
pb > ˛2, update the model Mt to be fMt ;�Xbg, where the minus sign means removing Xb
from Mt .

Step 3: Repeat step 2 until the largest combined P -value pb is smaller than or equal to ˛2.
Step 4: Go back to step 1, and iterate until the procedure terminates.

When the RR-stepwise iteration terminates, the combined P -values for all the covariates in the model
are not bigger than ˛2, and none of the covariates not in the model has combined P -value smaller than
or equal to ˛1 if it is added into the model. To avoid endless iteration, we need the condition of ˛1 6 ˛2.

A.2. Degrees of freedom estimation for multiple imputation-least absolute shrinkage and
selection operator

We re-represent our MI-LASSO method as a group LASSO regression problem and derive its degrees
of freedom for the fitted model. For the i th subject, let wij be a square diagonal matrix with the diago-
nal entries be xij D .x1;ij ; : : : ; xD;ij /T . Denote ´i D .y1;i ; : : : ; yD;i /T , ˇ0 D .ˇ1;0; : : : ; ˇD;0/

T , and
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ˇj D .ˇ1;j ; : : : ; ˇD;j /
T for j D 1; : : : ; p. Given �, the optimization problem (3) is equivalent to the

following group LASSO regression estimation:

min
ˇj

nX
iD1

k´i � ˇ0 �

pX
jD1

wTijˇj k
2
2C �

pX
jD1

kˇj k2;

where kˇj k2 D
qPD

dD1 ˇ
2
d;j

. This equivalence can be verified using matrix calculation straightfor-
wardly, and the details are omitted here.

Following the degrees of freedom for group LASSO regression, which is derived in Yuan and Lin
(Equation 6.3) [19], we estimate the degrees of freedom for the fitted model by the MI-LASSO method
as

df2 D

pX
jD1

I
�
k Ǒ j k2 > 0

�
C

pX
jD1

k Ǒ j k2

k Q̌ j k2
.D � 1/;

or

df2 D

pX
jD1

I

 rXD

dD1
Ǒ2
d;j

> 0

!
C

pX
jD1

qPD
dD1
Ǒ2
d;jqPD

dD1
Q̌2
d;j

.D � 1/;

where Ǒ j D
�
Ǒ
1;j ; : : : ; ǑD;j

�T
and Q̌ j D

�
Q̌
1;j ; : : : ; Q̌D;j

�T
with Ǒd;j and Q̌d;j as the MI-LASSO

estimate and the ordinary least square estimate for the j th variable on the d th dataset, respectively.
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