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Bayesian inference for finite population  
quantiles from unequal probability samples 

Qixuan Chen, Michael R. Elliott and Roderick J.A. Little 1 

Abstract 
This paper develops two Bayesian methods for inference about finite population quantiles of continuous survey variables 
from unequal probability sampling. The first method estimates cumulative distribution functions of the continuous survey 
variable by fitting a number of probit penalized spline regression models on the inclusion probabilities. The finite population 
quantiles are then obtained by inverting the estimated distribution function. This method is quite computationally 
demanding. The second method predicts non-sampled values by assuming a smoothly-varying relationship between the 
continuous survey variable and the probability of inclusion, by modeling both the mean function and the variance function 
using splines. The two Bayesian spline-model-based estimators yield a desirable balance between robustness and efficiency. 
Simulation studies show that both methods yield smaller root mean squared errors than the sample-weighted estimator and 
the ratio and difference estimators described by Rao, Kovar, and Mantel (RKM 1990), and are more robust to model 
misspecification than the regression through the origin model-based estimator described in Chambers and Dunstan (1986). 
When the sample size is small, the 95% credible intervals of the two new methods have closer to nominal confidence 
coverage than the sample-weighted estimator. 
 
Key Words: Bayesian analysis; Cumulative distribution function; Heteroscedastic errors; Penalized spline regression; 

Survey samples. 
 
 

1. Introduction  
We consider inference for finite population quantiles of a 

continuous variable from a sample survey with unequal in-
clusion probabilities. The finite-population quantiles are 
usually estimated by the sample-weighted quantiles, a 
Horvitz-Thompson type estimator. Often in sample surveys 
the design variable (here, the inclusion probability) or a 
correlated auxiliary variable is measured on the non-
sampled units, and this information can be used to improve 
the efficiency of the sample-weighted estimators (Zheng 
and Little 2003; Chen, Elliott, and Little 2010).  

Methods for using auxiliary information in estimating 
finite-population distribution functions have been exten-
sively studied. Chambers and Dunstan (1986) proposed a 
model-based method, illustrating their approach for a zero 
intercept linear regression superpopulation model. We refer 
to this estimator from now on as the CD estimator. Dorfman 
and Hall (1993) applied the CD approach, replacing the 
linear regression model with a non-parametric model. 
Lombardía, González-Manteiga, and Prada-Sánchez (2003, 
2004) proposed a bootstrap approximation to these esti-
mators based on resampling a smoothed version of the 
empirical distribution of the residuals. Kuk and Welsh 
(2001) also modified the CD approach to address departures 
from the model by estimating the conditional distribution of 
residuals as a function of the auxiliary variable. Rao, Kovar, 
and Mantel (RKM 1990) demonstrated advantages of 

design-based ratio and difference estimators over the CD 
estimator when the model is misspecified. Wang and 
Dorfman (1996) suggested a weighted average of the CD 
and the RKM estimators. Kuk (1993) proposed a kernel-
based estimator that combines the known distribution of the 
auxiliary variable with a kernel estimate of the conditional 
distribution of the survey variable given the value of the 
auxiliary variable. Chambers, Dorfman, and Wehrly (1993) 
proposed a kernel-smoothed model-based estimator, and 
Wu and Sitter (2001) and Harms and Duchesne (2006) 
proposed calibration type estimators. 

Research on using auxiliary information for inference 
about finite population quantiles (defined as the inverse of 
the distribution function) is more limited. Chambers and 
Dunstan (1986) discussed estimation by inverting the CD 
estimator of the distribution function, but did not compare 
the performance of this quantile estimator with alternatives. 
Rao et al. (1990) proposed simple ratio and difference 
quantile estimators that were considerably more efficient 
than the sample-weighted estimator when the survey out-
come was approximately proportional to the auxiliary 
variable.  

We assume here unequal probability sampling with 
inclusion probabilities that are known for all the units in the 
population. We develop two Bayesian spline-model-based 
estimators of finite population quantiles that incorporate the 
inclusion probabilities. The first method is to estimate the 
distribution function at a number of sample values using 
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Bayesian penalized spline predictive estimators (Chen et al. 
2010). The finite population quantiles are then estimated by 
inverting the predictive distribution function. The second 
method is a Bayesian two-moment penalized spline 
predictive estimator, which predicts the values of non-
sampled units based on a normal model, with mean and 
variance both modeled with penalized splines on the inclu-
sion probabilities. We compare the performance of these 
two new methods with the sample-weighted estimator, the 
CD estimator, and the RKM’s ratio and difference esti-
mators, using simulation studies on artificially generated 
data and farm survey data.  

2. Estimators of the quantiles   
Let s  denote an unequal probability random sample of 

size ,n  drawn from the finite population of N  identifiable 
units according to inclusion probabilities { , 1, ..., },i i N   
which are assumed to be known for all the units before a 
sample is drawn. Let Y  denote a continuous survey vari-
able, with values 1 2{ , , ..., }ny y y  observed in the random 
sample .s  The finite-population - quantile of Y  is defined 
as: 

               1

1
( ) inf ; ( ) ,

N
ii

t N t y


        (1) 

where ( ) 1u   when 0u   and ( ) 0u   elsewhere. 
The ( )   is often estimated using the sample-weighted -
quantile ˆ ˆ( ) inf{ , ( ) },wt F t      where ˆ ( )wF t  is the 
sample-weighted distribution function given by  

1 1ˆ ( ) ( ) .w i i i
i s i s

F t t y 

 

       

Woodruff (1952) proposed a method of calculating confi-
dence limits for the sample weighted - quantile. First, a 
pseudo-population is obtained by weighting each sample 
item by its sampling weight; the standard deviation of the 
percentage of items less than the estimated - quantile is 
estimated; and the estimated standard deviation is multiplied 
by the appropriate z  percentile and is added to and sub-
tracted from   to construct the confidence limits for the 
percentage of items less than the estimated - quantile. Fi-
nally, the values of the survey variable corresponding to the 
confidence limits of the percentage of items less than the 
estimated - quantile are read-off the weighted pseudo-
population arrayed in order of size. Variance estimation of 
the percentage of items in the pseudo-population less than 
the estimated - quantile is discussed in Woodruff (1952). 
Sitter and Wu (2001) showed that the Woodruff intervals 
perform well even in moderate to extreme tail regions of the 
distribution function. An alternative variance estimate was 
derived by Francisco and Fuller (1991) using a smoothed 
version of the large-sample test inversion.  

2.1 Bayesian model-based approach, inverting the 
estimated CDF  

The finite population quantile function is the inverse of 
the finite population cumulative distribution function 
(CDF), defined as 1

1( ) ( ),N
i iF t N t y
    where 

( ) 1x   when 0x   and ( ) 0x   elsewhere. We 
can estimate the finite population quantiles by first building 
a continuous and strictly monotonic predictive estimate of 

( ),F t  by treating ( )t y   as a binary outcome variable 
and applying methods for estimating finite population 
proportions.  

In particular, Chen et al. (2010) proposed a Bayesian 
penalized spline predictive (BPSP) estimator for finite popu-
lation proportions in unequal probability sampling. They 
regress the binary survey variable z  on the inclusion 
probabilities in the sample, using the following probit 
penalized spline regression model (2) with m  pre-selected 
fixed knots:  

1
0

1 1

2

( ( | , , )) ( ) ,

~ (0, ).

p m
k p

i i k i l i l
k l

l

E z b b k

b N




 

          



 

(2)

 

Self-representing units are included by setting 1.i   
Assuming non-informative prior distributions for   and 2,  
they simulated draws of z  for the non-sampled units from 
their posterior predictive distribution. A draw from the 
posterior distribution of the finite population proportion is 
then obtained by averaging the observed sample units and 
the draws of the non-sample units. This is repeated many 
times to simulate the posterior distribution of the finite 
population proportion. Simulation studies indicated that the 
BPSP estimator is more efficient than the sample-weighted 
and generalized regression estimators of the finite popu-
lation proportion, with confidence coverage closer to 
nominal levels. 

We employ the BPSP approach n  times to estimate
( )F t  at each of the sampled values of ,y t  1{ ,y  

2, ..., }.ny y  This estimator does not take into account the 
fact that we are estimating a whole distribution function, and 
is not necessarily a monotonic function. In addition, linear 
interpolation of the n  estimated distribution functions may 
lead to a poorly-estimated CDF. To overcome these two 
problems, we fit a smooth cubic regression curve to the n  
estimated distribution functions with monotonicity con-
straints (Wood 1994). We denote the resulting estimated 
distribution function as ˆ ( ).F t  The Bayesian model-based 
estimator of ( ),   obtained by inverting the estimated 
CDF, is then defined as follows: 

                     inv-CDF
ˆ ˆ( ) inf{ ; ( ) }.t F t      (3) 
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We also fit two other monotonic smooth regression curves 
to the upper and lower limits of the 95% credible intervals 
(CI) of these estimated distribution functions, denoted as 
ˆ ( )UF t  and ˆ ( ).LF t  To reduce computation time in our 

simulation studies, we only estimate the CDF at k n  
pre-selected sample points.  

The basic idea behind this approach is shown graphically 
in Figure 1. Suppose a sample of size 100 is drawn from a 
finite population. We pick 20 observations from the sample 
and estimate their corresponding distribution functions and 
associated 95% CI using the BPSP estimator. In Figure 1(a) 
we plot the BPSP estimates of these 20 points with black 
dots and the upper and lower limits of 95% CI with “-” 
signs, and connect the upper and lower limits with solid 
lines. In Figure 1(b) we add three monotonic smooth predic-
tive curves using black solid curve for the point estimate and 
black dash curves for the upper and lower limits of the 95% 
CI.  

In Figure 1(c) we draw a horizontal line across the graph 
with   as the y- axis value. We read , ,Ax x  and Bx  
respectively from the x- axis such that ˆ ( ) ,L AF x    
ˆ ( ) ,F x    and ˆ ( ) .U BF x    Then x  is the inverse-CDF 

Bayesian estimate of ( ).   If the 95% CI of the distribution 
function ( )F   is formed by splitting the tail areas of the 
posterior distribution equally, the interval formed by Ax  and 

Bx  is a 95% CI of ( ).   The proof is as follows: If   is 
the lower limit of the 95% CI of ( ),AF x  only 2.5 percent of 
the draws of ( )AF x  in the posterior distribution are smaller 
than .  That is,  

1 1Pr( ( ) ( ( ))) Pr( ( ) ) 0.025.A AF F F x x         

Similarly with   as the upper limit of the 95% CI of 
( ),BF x Pr( ( ) ) 0.975.Bx     Therefore, there is 95% 

probability that ( )   is within Ax  and Bx  in the posterior 
distribution, given the sample. 

This inverse-CDF Bayesian model-based approach 
avoids strong modeling assumptions, and can be applied to 
normal or skewed distributions. Estimating the distribution 
function at all n  sample units makes full use of the sample 
information, but is computationally intensive; estimating the 
distribution function at k n  values reduces computation 
time at the expense of some loss of efficiency. In the 
traditional approach, the population quantiles are estimated 
by inverting the unsmoothed empirical CDF. We recom-
mend fitting a smooth cubic regression curve to the esti-
mated distribution functions before inverting the estimated 
CDF. The resulting quantile estimates are more efficient, 
because the smooth curve exploits information from all the 
data. Simulations not shown here suggest that the estimated 
CDF distribution function curve estimated based on a well-
chosen subset of the k  sample units is similar to the curve 
estimated based on all sample units, but the computation 
time is significantly reduced.  

We suggest choosing the subset of k  data points at 
evenly spaced intervals in the middle of the distribution, and 
more frequent intervals in the extremes to improve the 
estimate of the CDF in the tails. For instance, in our 
simulation study with a sample size of 100, we estimated the 
distribution functions at 20 points: the 3 smallest, the 3 
largest, and 14 other equally spaced points in the middle of 
the ordered sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1 Inverse-CDF Bayesian model-based approach in estimating finite population distribution functions and associated 
quantiles illustrated using a sample of size 100 drawn from a finite population. (a) BPSP method is used to estimate the 
finite population distribution functions at 20 sample points; the dots denote BPSP estimators and the minus signs denote 
the upper and lower limits of the 95% CI. (b) Three monotonic smooth cubic regression models are fit on the BPSP 
estimators, upper limits, and lower limits; the solid curve is the predictive continuous distribution functions and the two 
dash curves are the 95% CI of the distribution functions. (c) The point estimate and 95% CI of population - quantile 
are obtained by inverting the estimated CDF; x is the point estimate, and x(B) and x(A) are the lower and upper limits of 
the 95% CI       
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2.2 Bayesian two-moment penalized spline 
predictive approach  

We consider alternative estimators of finite population 
quantiles of the form: 

  1

( )

ˆinf ; ( ) ( ) ,i j
i s j s

t N t y t y

 

  

       



 
(4)

 

where ˆ jy  is the predicted value of the thj  non-sample unit 
based on a regression on the inclusion probabilities { }.i  A 
basic normal model for a continuous outcome assumes a 
mean function that is linear in { },i  that is: 

                            
ind

2
0 1~ ( , ),i i iY N c      (5) 

with known constants ic  to model non-constant variance. 
This leads to a biased estimate of ( )   when the relation-
ship is not linear. For estimating finite population totals, 
Zheng and Little (2003, 2005) replaced the linear mean 
function in (5) with a penalized spline, and assumed 

2k
i ic    with some known value of .k  Simulations sug-

gested that their model-based estimator of the finite popu-
lation total outperforms the sample-weighted estimator, 
even when the variance structure is misspecified.  

For estimation of quantiles rather than the total, correct 
specification of the variance structure is important in order 
to avoid bias. Therefore, we extend the penalized spline 
model in Zheng and Little (2003) by modeling both the 
mean and the variance using penalized splines. The two-
moment penalized spline model can be written as (Ruppert, 
Wand, and Carroll 2003, page 264): 

1

2

ind

1 2

1 0
1 1

iid
2

2 0
1 1

iid
2

~ (SPL ( , ), exp(SPL ( , ))),

SPL ( , ) ( ) ,

~ (0, ),

SPL ( , ) ( ) ,

~ (0, ).

i i i

p m
k p

i k i l i l
k l

l b

p m
k p

i k i l i l
k l

l

Y N k k

k b k

b N

k k

N


 


 



 

        



          

 

 

 

 

(6)

 

In (6), the mean and the logarithm of the variance are 
modeled as penalized splines 1(SPL )  and 2(SPL )  on { }.i  
Modeling the logarithm of the variance ensures positive 
estimates of the variance. We allow different numbers 

1 2( , )m m  and locations ( , )k k   of the knots for the two 
splines.  

Ruppert et al. (2003) suggested an iterative approach to 
estimate the parameters in (6). They first assumed that 

2SPL  was known and fitted a linear mixed model to esti-
mate the parameters in 1SPL .  They calculated the square of 
the difference between Y  and 1SPL ,  which followed a 
Gamma distribution with the shape parameter as ½ and the 
scale parameter of 22SPL .  They then fitted a generalized 
linear mixed model for the squared differences to estimate 
the parameters in 2SPL .  They iterated the above procedures 
until the parameter estimates converged. This iterative 
approach is simple to implement. However, our goal here is 
not to estimate the parameters but to obtain Bayesian 
predictions of Y for the non-sample units so that we can use 
(4) to estimate the quantiles.  

Crainiceanu, Ruppert, Carroll, Joshi, and Goodner (2007) 
developed Bayesian inferential methodology for (6). They 
noted that the implementation of MCMC using multivariate 
Metropolis-Hastings steps is unstable with poor mixing 
properties. They suggested adding error terms to the second 
spline to make computations feasible, replacing sampling 
from complex full conditionals by simple univariate 
Metropolis-Hastings steps. This idea can be expressed as  

ind
2

1

iid
2 2

2

~ (SPL ( , ), ( )),

log( ( )) ~ (SPL ( , ), ).

i i i

i i A

Y N k

N k





  

   

 

We used a prior distribution 6(0,10 )N  for the fixed effects 
parameters   and ,  and a proper inverse-gamma prior 
distribution 6 6IGamma(10 ,10 )   for the variance compo-
nents 2

b  and 2.v  We fixed the values of 2 0.1.A   The 
full conditionals of the posterior are detailed in Crainiceanu 
et al. (2007).  

The posterior distribution of the finite population -
quantile is simulated by generating a large number D  of 
draws and using the predictive estimator form 

  
( )

1 ( )

( )

ˆinf ; ( ) ( ) ,

d

d
i j

i s j s

t N t y t y

 

  

       



 

where ( )ˆ d
jy  is a draw from the posterior predictive distri-

bution of the thj  non-sampled unit of the continuous out-
come. The average of these draws simulates the Bayesian 
two-moment penalized spline predictive (B2PSP) estimator 
of the finite population - quantile,  

1 ( )
B2PSP

1

ˆ ( ) ( )
D

d

d

D



      . 

The Bayesian 95% credible interval for the population -
quantile in the simulations is formed by splitting the tail area 
equally between the upper and lower endpoints. 
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3. Simulation study 

 
3.1 Simulation study with artificial data 
 

We first simulated a super-population of size M   
20,000. The size variable X  in the super-population takes 
20,000 consecutive integer values from 710 to 20,709. A 
finite population of size N   2,000 was then selected from 
the super-population using systematic probability pro-
portional to size (pps) sampling with the probability propor-
tional to the inverse of the size variable. Consequently, the 
size variable in the finite population has a right skewed 
distribution. The survey outcome Y  was drawn from a 
normal distribution with mean ( )f   and error variance 
equal to 0.04 (homoscedastic error) or   (heteroscedastic 
error). Three different mean structures ( )f   were simu-
lated: no association between Y  and   (NULL) ( )f    
0.5, a linear association (LINUP) ( ) 6 ,f     and a 
nonlinear association (EXP) ( ) exp( 4.64f   - 52 ).  
For each of the six simulation conditions, one thousand 
replicate finite populations were generated, and a systematic 
pps sample (n   100) was drawn from each population 
with x  as the size variable; thus i  1/ .N

ji jnx x  Scatter 
plots of Y  versus   for these six populations are displayed 
in Figure 2.  

We compared the performance of the Bayesian inverse-
CDF and the B2PSP estimators with five alternative ap-
proaches: 

 
a) SW, the sample-weighted estimator defined by 

inverting ˆ .wF  
b) Smooth-SW, the smooth sample-weighted esti-

mator. A smooth cubic regression curve was fit to 
ˆ ,wF  and denoted as .wF  The smooth sample-

weighted estimator is then defined as inf{ ;w t 
 

}.wF    
c) CD, the Chambers and Dunstan estimator (1986), 

by assuming the following model: i iY     
,i iU  where iU  is an independent and 

identically distributed random variable with zero 
mean.  

d) Ratio, the RKM’s ratio estimator (1990) given by 
ˆ ˆ{ ( ) / ( )} ( ),y x x       where ˆ ( )y   and 

ˆ ( )x   denotes respectively the sample-weighted 
estimates for Y  and the size variable ,X  and 

( )x   is the known population quantile of .X  
e) Diff, the RKM’s difference estimator (1990) 

given by ˆ ˆˆ( ) { ( ) ( )},y x xR          where 
R̂  is the sample-weighted estimate of / .Y X   

The seven estimators for the finite-population 10th, 25th, 
50th, 75th, and 90th percentiles were compared in terms of 

empirical bias and root mean squared error (RMSE). 
Because of the complexity in the variance estimation for the 
CD and RKM’s estimators, we only compared the average 
width and the non-coverage rate of the 95% confi-
dence/credible interval (CI) for the two Bayesian model-
based estimators and the sample-weighted estimator. For the 
95% CI, we used Woodruff’s method for the sample-
weighted estimator, the method illustrated in Figure 1(c) for 
the inverse-CDF Bayesian estimator, and the 95% posterior 
probability of the quantile with equal tails for the B2PSP 
estimator. We used cubic splines with 15 equally spaced 
knots.  

Tables 1 and 2 show the empirical bias and RMSE for 
the three normal distributions with homoscedastic errors and 
with heteroscedastic errors, respectively. Overall, the 
empirical bias in estimating the five quantiles is similar 
using the two Bayesian estimators, the two sample-weighted 
estimators, and the RKM’s two design-based estimators. In 
contrast, the CD estimator has large bias and RMSE in all 
scenarios except for LINUP with heteroscedastic error, 
where its underlying model is correctly specified. The two 
Bayesian model-based estimators yield smaller root mean 
squared errors than the other estimators, and this improve-
ment in efficiency is substantial in some scenarios, 
especially using the B2PSP estimator. By applying a smooth 
cubic regression curve on the estimated empirical sample-
weighted CDF, the smooth-sample-weighted estimator 
gains some efficiency over the conventional sample-
weighted estimators, but the RMSE is still larger than the 
Bayesian Inverse-CDF estimator. Comparisons of the three 
design-based estimators suggest that none of the three 
estimators uniformly dominates the other two. Specifically, 
the sample-weighted estimator has smaller RMSE than the 
RKM difference and ratio estimators for all five quantiles in 
the NULL and for the lower quantiles in the LINUP and 
EXP populations; on the other hand, the RKM estimators 
have smaller RMSE at the upper quantiles in the LINUP 
and EXP populations. 

Table 3 shows the average width and non-coverage rate 
of 95% CI for the two Bayesian model-based estimators and 
the sample-weighted estimator. Overall, the two Bayesian 
model-based estimators yield shorter average 95% CI 
widths than the sample-weighted estimator. The coverage 
rate of the 95% CI is similar among the three estimators, 
except that when   is equal to 0.1, where the 95% CI of the 
B2PSP estimator has the shortest average width and very 
good coverage, while the sample-weighted estimator has 
serious under-coverage. This happens because the Woodruff 
method for estimating the variance of the sample-weighted 
estimator is based on a large sample assumption, but here 
the pps sampling leads to only a small number of cases 
being sampled in the lower tail.  
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Figure 2 Scatter plots of Y versus the inclusion probabilities for the six artificial finite populations of size equal to 2,000 
 
 
Although the sample-weighted estimator performs simi-

larly with the two Bayesian spline-model-based estimators 
in terms of overall empirical bias, the conditional bias of 
estimates varies largely as the sample mean of the inclusion 
probability increases. Following Royall and Cumberland 
(1981), the estimates from the 1,000 samples were ordered 
according to the sample mean of the inclusion probabilities 
and were split into 20 groups of 50 each, and then the 
empirical bias was calculated for each group. Figure 3 

displays the conditional bias of the two Bayesian estimators 
and the sample-weighted estimator for the 90th percentile in 
the “EXP + homoscedastic error” case. Figure 3 shows that 
there is a linear trend for the bias in the sample-weighted 
estimator as the sample mean of the inclusion probabilities 
increases, while the grouped bias of the two Bayesian 
spline-model-based estimators is less affected by the sample 
mean of inclusion probabilities. Similar findings are also 
seen in other scenarios.   
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Table 1 
Comparisons of empirical bias and root mean squared errors × 103 of ( )   for   0.1, 0.25, 0.5, 0.75, and 0.9: Scenarios with 
homoscedastic errors 
 

 Empirical bias Empirical RMSE
 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

NULL 
Inverse-CDF -6 -3 -1 -1 -5 46 37 36 37 45
B2PSP -5 -1 1 2 6 41 33 31 34 42
SW -5 -3 -1 -4 -6 54 41 39 41 50
Smooth-SW -7 -4 -1 -2 -5 50 39 37 38 47
CD -197 -272 -265 -108 168 203 274 266 115 189
RKM’s Ratio 3 25 33 16 6 77 125 159 112 79
RKM’s Diff -5 -1 6 14 14 58 58 94 122 113

LINUP 
Inverse-CDF -15 -3 -2 -1 -2 70 49 39 34 33
B2PSP -3 -1 1 4 7 56 43 35 31 29
SW -15 -3 -3 -2 -6 77 57 48 44 42
Smooth-SW -14 -5 -2 -1 -4 72 53 45 42 41
CD 101 35 -37 -49 1 104 38 39 53 31
RKM’s Ratio -23 -9 2 5 -0.2 95 67 53 51 40
RKM’s Diff -15 -4 -4 -0.2 -2 77 55 45 43 38

EXP 
Inverse-CDF -8 0.4 4 7 4 60 45 41 43 49
B2PSP -10 -6 -3 0.3 13 52 40 35 36 36
SW -9 -3 -2 -2 -8 65 49 46 50 72
Smooth-SW -12 -5 -2 -1 -2 62 47 43 46 68
CD 92 54 14 19 61 96 57 21 31 75
RKM’s Ratio -17 -11 1 3 -5 87 65 50 53 55
RKM’s Diff -9 -4 -2 -2 -7  65 49 47 47 59 

 
Table 2 
Comparisons of empirical bias and root mean squared errors × 103 of ( )   for   0.1, 0.25, 0.5, 0.75, and 0.9: Scenarios with 
heteroscedastic errors 
 

 Empirical bias Empirical RMSE
 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

NULL 
Inverse-CDF -9 -8 -2 4 1 30 24 22 24 31
B2PSP -6 -6 1 7 7 25 21 19 23 27
SW -4 -3 -2 -1 -5 34 26 23 26 35
Smooth-SW -4 -5 -2 1 -4 34 26 23 26 35
CD -298 -325 -253 -46 270 302 327 255 60 288
RKM’s Ratio 8 31 32 16 5 81 143 154 94 57
RKM’s Diff -5 -1 6 17 16 44 54 87 113 97

LINUP 
Inverse-CDF -11 -1 5 2 -3 32 24 24 29 35
B2PSP -10 -1 7 3 1 29 22 22 24 30
SW -5 -1 -0.1 -1 -4 31 28 33 45 51
Smooth-SW -11 -3 2 -0.4 -5 32 26 30 44 50
CD 10 7 6 7 11 20 13 13 20 32
RKM’s Ratio -7 -3 2 3 1 36 29 30 35 41
RKM’s Diff -5 -2 -1 1 -0.2 32 27 28 33 41

EXP 
Inverse-CDF -8 -3 5 7 -3 30 23 23 30 48
B2PSP -11 -7 2 6 7 28 23 20 25 36
SW -3 -3 -2 1 -2 30 26 26 41 84
Smooth-SW -8 -5 1 2 -5 30 23 24 39 86
CD 18 16 35 84 68 27 21 38 88 81
RKM’s Ratio -5 -6 -1 2 -0.1 36 31 27 32 62
RKM’s Diff -3 -3 -2 1 -0.1  32 28 28 31 67 
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Table 3 
Comparisons of average width and non-coverage rate of 95% CI × 103 of ( )   for   0.1, 0.25, 0.5, 0.75, and 0.9 
 

 Average width of 95% CI Non-coverage rate of 95% CI
 0.1 0.25 0.5 0.75 0.9 0.1 0.25 0.5 0.75 0.9

Homoscedastic errors
NULL 
Inverse-CDF 199 156 141 152 184 46 35 44 38 67
B2PSP 178 134 118 134 177 52 55 61 59 50
SW 195 164 151 167 237 112 65 46 40 38

LINUP 

Inverse-CDF 257 207 157 139 141 61 45 37 46 52
B2PSP 230 167 134 123 121 58 54 44 57 59
SW 248 231 188 179 187 119 60 42 41 39

EXP 

Inverse-CDF 234 184 163 177 234 59 44 47 40 42
B2PSP 217 157 132 144 156 54 59 55 53 60
SW 231 199 175 210 402 106 64 47 40 40

Heteroscedastic errors
NULL 
Inverse-CDF 146 104 90 101 137 42 43 38 38 47
B2PSP 107 89 79 89 107 38 49 37 68 65
SW 146 101 91 113 169 80 60 51 37 42

LINUP 

Inverse-CDF 131 107 104 124 154 70 31 36 42 40
B2PSP 125 97 87 93 116 47 35 50 58 52
SW 141 110 133 184 219 138 69 41 50 42

EXP 

Inverse-CDF 131 99 99 134 242 63 49 34 40 41
B2PSP 116 92 84 98 139 57 55 40 63 59
SW 135 100 106 186 378 111 65 46 45 34

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Variation of empirical bias of the three estimators for 90th percentile from the “EXP + homoscedasticity” case 
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3.2 Simulation study with the broadacre farm 
survey data 

 
The B2PSP estimator assumes the outcome has a normal 

distribution, after conditioning on the inclusion proba-
bilities. Since the inverse-CDF Bayesian model-based ap-
proach does not assume normality, we might expect it to 
out-perform the B2PSP when the normality assumption is 
violated. This motivates a comparison of the sample-
weighted and the inverse-CDF Bayesian estimators for non-
normal data.  

The population considered here is defined by 398 
broadacre farms (farms involved in the production of cereal 
crops, beef, sheep and wool) with 6,000 or less hectares that 
participated in the 1982 Australian Agricultural and Grazing 
Industries Survey carried out by the Australian Bureau of 
Agricultural and Resource Economics (ABARE 2003). The 
Y  variable is the total farm cash receipts. One thousand 
systematic pps samples of size equal to 100 were drawn 
with the farm area, X, as the size variable, that is, larger 
farms are more likely to be selected into the sample. Figure 
4 is the scatter plot of Y  versus the size variable X for these 

farms, with filled circles representing a selected pps sample. 
This shows that the variation of Y  increases as X increases. 
Moreover, Y  is right-skewed given X. A simulation study 
using this broadacre farms data was conducted to compare 
the two Bayesian spline-model-based estimators with the 
sample-weighted estimator.  

Table 4 shows the simulation results. The inverse-CDF 
Bayesian approach yields smaller empirical bias and RMSE, 
and shorter average length of 95% CI than the sample-
weighted estimator in general. The 95% CI of the inverse-
CDF Bayesian approach also have closer to nominal level 
confidence coverage than the sample-weighted estimator 
when   is 0.1 and 0.25. However, in the upper tail with 
  0.90, the non-coverage rate of the inverse-CDF 
Bayesian approach is higher than the nominal level 0.05, 
while the Woodruff CI of the sample-weighted estimator 
does well. This is consistent with the findings of Sitter and 
Wu (2001) that the Woodruff intervals perform well even in 
the moderate to extreme tail regions of the distribution 
function. Since the conditional normality assumption is not 
reasonable here, the B2PSP estimator is biased and the 95% 
CI has poor confidence coverage.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Scatter plot of the broadacre farm data with the filled circles representing a pps sample 
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Table 4 
Empirical bias × 10-2, root mean squared errors × 10-2, average width of 95% CI × 10-2, and non-coverage rate of 95% CI × 103 of 

( )   for   0.1, 0.25, 0.5, 0.75, and 0.9: The broadacre farm data 
 

 0.1 0.25 0.5 0.75 0.9
 

Empirical bias 

Inverse-CDF 8 14 10 -22 -60
B2PSP -110 -125 -63 -12 88
SW 20 -19 -17 -21 -61

 
Empirical RMSE 

Inverse-CDF 117 117 108 164 256
B2PSP 113 141 124 140 206
SW 132 173 167 226 350

 
Average width of 95% CI 

Inverse-CDF 402 443 501 697 906
B2PSP 170 327 539 726 964
SW 285 468 615 864 1,589

 
Non-coverage rate of 95% CI 

Inverse-CDF 96 53 26 52 90
B2PSP 670 258 42 8 17
SW 220 121 68 42 44

 
 
 

4. Discussion  
Sample-weighted estimators for finite population 

quantiles are widely used in survey practice. Although the 
sample-weighted estimators with Woodruff’s confidence 
intervals are easy to compute and can provide valid large-
sample inferences, they may be inefficient and confidence 
coverage can be poor in small-to-moderate-sized samples. 
Model-based estimators can improve the efficiency of the 
estimates when the model is correctly specified, but lead to 
biased estimates when the model is misspecified. To 
achieve the balance between robustness and efficiency, we 
considered spline-model-based estimators. For the quantile 
estimation of a continuous survey variable, we can either 
estimate the model-based distribution functions and invert 
the distribution functions to obtain quantiles, or model the 
survey outcome on the inclusion probabilities directly. In 
this paper, we proposed two Bayesian spline-model-based 
quantile estimators. The first method is the Bayesian 
inverse-CDF estimator, obtained by inverting the spline-
model-based estimates of distribution functions. The second 
method is the B2PSP estimator, estimated by assuming a 
normal distribution for the continuous survey outcome, with 
the mean function and the variance function both modeled 
using splines. 

The simulations suggest that the two Bayesian spline-
model-based estimators outperform the sample-weighted 
estimator, the design-based ratio and difference estimators, 
as well as the CD model-based estimator when its assumed 
model is incorrect. Both new methods yield smaller root 

mean squared errors whether there is no association, a linear 
association, or a nonlinear association between the survey 
outcome and the inclusion probability. In some scenarios, 
the improvement in efficiency using the two Bayesian 
methods is substantial. When the normality assumption of 
the survey outcome given the inclusion probabilities is true, 
the B2PSP estimator has smaller RMSE and shorter credible 
interval than the inverse-CDF approach. Moreover, the two 
Bayesian model-based estimators are robust to the mis-
specification in both the mean and variance functions. In 
contrast, the CD model-based estimator is biased and 
inefficient when either the mean function or the variance 
function is misspecified. Finally, the Bayesian model-based 
methods have the advantage of easier calculation of the 95% 
CI and inference based on the posterior distributions of 
parameters. This is appealing, because variance estimation 
for the alternative design-based estimators can be compli-
cated. Woodruff’s variance estimation method for sample-
weighted estimator performs well when a large fraction of 
the data is selected from the finite population, even in the 
moderate to extreme tail regions of the distribution function. 
However, when data from the population is sparse, the 
Woodruff’s method tends to underestimate the confidence 
coverage, whereas both Bayesian methods have closer to 
nominal level confidence coverages.  

All the three design-based estimators have comparable 
overall empirical bias to the two Bayesian spline-model-
based estimators. However, there is a linear trend in the 
variation of bias for the sample-weighted estimator as the 
sample mean of inclusion probabilities increases. When 
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there is no association between the survey outcome and the 
inclusion probability, the ratio and difference estimators 
have relatively larger bias and RMSE than the sample-
weighted estimator. However, in some simulation scenarios, 
the ratio and difference estimators achieve smaller RMSE 
than the sample-weighted estimator. The comparison be-
tween the conventional sample-weighted estimator and the 
smooth sample-weighted estimator suggests that fitting a 
smooth cubic curve to the sample-weighted CDF can 
improve the efficiency, but the smooth sample-weighted 
estimator still has larger RMSE than the Bayesian inverse-
CDF estimator.  

For normally distributed data, we recommend the use of 
the B2PSP estimator over the other estimators, because of 
smaller bias, smaller RMSE, and better confidence coverage 
with shorter interval length. The B2PSP estimator and its 
95% posterior probability interval are easy to obtain using 
the algorithm proposed by Crainiceanu et al. (2007), which 
also has the advantage of relatively short computation time.  

The B2PSP estimator is potentially biased when the 
conditional normal assumption does not hold. One possi-
bility here is to transform the survey outcome to make the 
conditional normality assumption more reasonable. The 
B2PSP estimator can be applied to the transformed data, and 
the draws from the posterior distributions of the non-
sampled units are transformed back to the original scale 
before estimating the quantiles of interest.  

In our simulations with non-normal data, the inverse-
CDF Bayesian approach was still more efficient than the 
sample-weighted estimator. Improvement in the confidence 
coverage was restricted to situations where the sample size 
is small, with Woodruff’s CI method performing well when 
the large sample assumption holds. Thus for non-normal 
data where there no clear transformation to improve 
normality, we do not recommend the inverse-CDF Bayesian 
approach when the sample size is large. Given the good 
properties of the B2PSP estimator in the normal setting, one 
extension for future work is to relax the normality 
assumption in our proposed approaches.  

We use the probability of inclusion as the auxiliary 
variable here. When there is only one relevant auxiliary 
variable, it does not matter whether the inclusion probability 
or the auxiliary variable is modeled. However, if there is 
more than one relevant auxiliary variable, the inclusion 
probability is the key auxiliary variable that needs to be 
modeled corrected, since misspecification of the model 
relating the survey outcome to the inclusion probability 
leads to bias. When other auxiliary variables are observed 
for all the units in the finite population, both of our Bayesian 
estimators can be easily extended to include additional 
auxiliary covariates by adding linear terms for these vari-
ables in the corresponding penalized spline model.  

One reviewer suggested an alternative weighted Dirichlet 
approach, which is simple to calculate but it does not utilize 
the known auxiliary variables in the non-sampled units. 
Another possibility is to re-define the CD estimator by using 
the spline model we have used to define the B2PSP. Speci-
fically, instead of assuming a regression model through the 
origin, a spline model is fitted to the first and second order 
moments of the conditional distribution of survey outcome 
given the inclusion probability. The spline-based CD 
estimator should perform similarly to the B2PSP estimator, 
and its variance can be estimated using resampling methods. 

In the official statistics context, the methods in this article 
illustrate the potential benefits of a paradigm shift from 
design-based methods towards Bayesian modeling that is 
geared to yielding inferences with good frequentist 
properties. Design-based statistical colleagues raise two 
principal objections to this viewpoint.  

First, the idea of an overtly model-based - even worse, 
Bayesian - approach to probability surveys is not well 
received, although our emphasis here is on Bayesian 
methods with good randomization properties. We believe 
that classical design-based methods do not provide the 
comprehensive approach needed for the complex problems 
that increasingly arise in official statistics. Judicious choices 
of well-calibrated models are needed to tackle such 
problems. Attention to design features and objective priors 
can yield Bayesian inferences that avoid subjectivity, and 
modeling assumptions are explicit, and hence capable of 
criticism and refinement. See Little (2004, 2012) for more 
discussion of these points.  

The second objection is that Bayesian methods are too 
complex computationally for the official statistics world, 
where large number of routine statistics need to be com-
puted correctly and created in a timely fashion. It is true that 
current Bayesian computation may seem forbidding to 
statisticians familiar with simple weighted statistics and 
replicate variance methods. Sedransk (2008), in an article 
strongly supportive of Bayesian approaches, points to the 
practical computational challenges as an inhibiting feature. 
We agree that work remains to meet this objection, but we 
do not view it insuperable. Research on Bayesian compu-
tation methods has exploded in recent decades, as have our 
computational capabilities. Bayesian models have been 
fitted to very large and complex problems, in some cases 
much more complex than those typically faced in the 
official statistics world.  
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