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a b s t r a c t

In this paper, we establish a hydrodynamic system to study vesicle deformations under external
flow fields. The system is in the Eulerian formulation, involving the coupling of the incompressible
flow system and a phase field equation. The phase field mixing energy can be viewed as a physical
approximation/regularization of the Helfrich energy for an elastic membrane. We derive a self-consistent
system of equations describing the dynamic evolution of vesicles immersed in an incompressible,
Newtonian fluid, using an energetic variational approach. Numerical simulations of the membrane
deformations in flow fields can be conducted based on the developed model.

© 2009 Elsevier B.V. All rights reserved.

1. Overview

The study of formation and dynamics of vesicle membranes
has been an active source of experimental and theoretical
investigations in interface sciences for the past several decades.
Vesicle shapes exhibit a rich set of geometric structures in
various mechanical, physical and biological environments. The
study of themorphological changes of vesicles presents interesting
challenges to the efficient and accurate numerical simulations,
effective mathematical modeling and rigorous analysis. The
variety of equilibrium shapes assumed by vesicles in biological
experiments, such as spheres, discocytes, stomatocytes, tori and
double tori are concrete examples of minimizers of different
surface energies, such as the bending elasticity (Willmore, mean

I The work of Du is partially supported by the NSF grant DMS-0712744 and NIH
grant CA125707 and the work of Liu is partially supported by the NSF grants DMS-
0405850 and DMS-0509094. The work of Ryham is supported in part by the NSF
grant DMS-0240058. The work of Wang is supported in part by the NSF grant DMS-
0807915.
∗ Corresponding author.
E-mail addresses: qdu@math.psu.edu (Q. Du), liu@math.psu.edu (C. Liu),

ryham@rice.edu (R. Ryham), xwang@scs.fsu.edu (X. Wang).

curvature square) energy in the calculus of variations and its
different variations [1] like the general Helfrich energy [2,3].
However, in studying features of vesicles such as the deformation
of blood cells in capillaries or exocytosis processes, one must
additionally understand the coupling of these configurations
with the background fluid momentum [4–14], as well as other
external fields, e.g. electric fields. This paper addresses this issue
in the modeling and simulation of the deformation of simple
vesicles coupled with incompressible flow fields by developing an
energetic variation based diffuse interface approach.

1.1. Modeling of the vesicle structure

Let Σ ⊂ R3 be a smooth, compact surface without
boundary representing the membrane of the vesicle. The quasi-
static deformation and equilibrium configuration of a vesicle is
mainly characterized by its interfacial energy [15,1]:

H (Σ) = κ0

∫
Σ

1
2
(H(x)− κ(x))2dS(x)+ κ

∫
Σ

K(x)dS(x). (1.1)

Often,H (Σ) is called the Helfrich bending elasticity energy of the
surfaceΣ . Here

H(x) =
1
2
(k1(x)+ k2(x)), K(x) = k1(x) · k2(x)
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where k1(x) and k2(x) are the principle curvatures at a point
x ∈ Σ . κ0 and κ are two bending rigidities and κ(x) denotes
the spontaneous curvature at a point x ∈ Σ which arises due to
inhomogeneities in the bilayer lipid membrane structure. Due to
the classic Gauss–Bonnet formula, for smooth surface Σ , the last
integral in (1.1) is 2πκχ(Σ)whereχ(Σ) is the Euler characteristic
of the surface. It encodes the topology of the lipid membrane: if g
is the genus of the surface, then χ(Σ) = 2 − 2g . If the evolution
of the vesicle membrane does not change its topology, then χ(Σ)
is constant and the second integral in (1.1) can be viewed as a
constant added to the simplified energy

H0(Σ) = κ0

∫
Σ

1
2
(H(x)− κ(x))2dS(x). (1.2)

For simplicity of exposition, the phase field model put forth in
what follows is based on (1.2). However, the phase field vesicle
deformationmodel (Section 2.1) can also bemodified tomodel the
full Helfrich energy (1.1) by adding an approximation of the Euler
characteristic as defined in [16].
Canham [2] and Helfrich [3] were among the first to formulate

the conformational shapes of vesicles in terms of the energyH0 on
the basis that the bending energy of the vesicle should depend on
the symmetric, quadratic terms of k1 and k2 in the Taylor expansion
of a curvature dependent Lagrangian energy functional.
In this paper, we are interested in modeling the interaction of

a vesicle with the fluid field. Physical considerations lead us to
choose a total surface area and a enclosed volume for the vesicle
which are fixed in time: the constant surface area is a consequence
of the incompressibility of the membrane, while the constant
volume is based on the consideration that, for a fluctuating
vesicle with the inside pressure and outside pressure balanced
by the osmotic pressure, the change in volume is normally a
much slower process in comparison with the shape change. These
two constraints are widely used in the biophysical studies of
vesicles [1].
We note that there are also experimental studies on the mem-

brane area compressibility, aswell as the thickness compressibility
(see [17,18]). Moreover, there are other variations and additions
to the volume and surface area constraints, for example, in [19],
a bilayer-coupled model is proposed based on the bilayer-couple
hypothesis. Assuming that the area per lipid molecule is fixed and
there is nomolecular exchange between the inner andouter leaves,
this model leads to a constraint on the area difference

1A = κ1

∫
Σ

H(x)dS(x).

There are also recent works on enforcing membrane local incom-
pressibility constraints [20]. Note that at this point, we do not in-
corporate a constant differential area constraint but the formal
asymptotics in Section 4 indicate that local incompressibility of the
membrane is a feature of our phase field model.
Let n = n(x) be the outward pointing unit normal to Σ at

the point x ∈ Σ . The surface gradient and surface divergence are
defined respectively by:

∇Σu = (I − n⊗ n)∇, and divΣ = tr∇Σ .

The surface Laplacian is given by

1Σ = tr∇Σ∇Σ = 1− 2Hn · ∇ − n⊗ n : ∇2.

The mean curvature may be defined as follows;

H = −
1
2
∇Σ · n = −

1
2
∇ · n, (1.3)

the last equation making sense if n is defined by n = ∇ρ/|∇ρ|
for some scalar valued function ρ with ρ|Σ ≡ 0,∇ρ|Σ 6= 0 for

example. In case ∇n is symmetric, we have a second important
identity:

4H2 − 2K = tr((∇n)2). (1.4)

A vesicle which moves with the fluid generally deforms under
the flow field, thereby changing the Helfrich energy H0(Σ).
If the membrane is not in the steady state, it exhibits an
instantaneous force composed of an elastic force, surface tension
due to the surface area constraint and a pressure due to the volume
constraint. The elastic force is composed of the normal force(
1Σ (H − κ)+ 2(H − κ)(H2 − K + Hκ)

)
n, (1.5)

surface tensionµHn andpressureλn for some Lagrangemultipliers
µ and λ stemming from the surface area and volume constraints.
A derivation of (1.5) from perturbations of Σ by arbitrary vector
fields can be found in [21]while the classical case for normal vector
fields can be found in [22]. The absence of a traction in (1.5) can be
explained by the invariance of theHelfrich energy, surface area and
volume under tangential deformations ofΣ .

1.2. Energetic variational approach

Incorporating (1.5) along with the surface Σ ⊂ R3 into a
conventional, workable numerical model is in general non-trivial.
In order for (1.5) to be continuously defined, the surface must be
at least four times differentiable. In the presence of singularities,
such as the formation of necks during coalescence or pinching
from extension, (1.5) is not well defined and in practice must be
replaced by other auxiliary/regularized forces. The deformation
may be sensitive to the choice of the auxiliary force and in turn
may not be physical. In these cases, it is more appropriate to return
to the weak formulation of (1.5) in terms of the flow in the energy
landscape ofH0.
The energy of a vesicle with fluids both inside and outside is

composed of the kinetic energy of the fluid andH0 (assuming the
density of the membrane is comparable to the fluid). The fluid
will deform, transporting the vesicle, in such a way as to transfer
the total exchange of kinetic energy to the Helfrich energy of the
vesicle membrane, and vice verse. The basic physical law behind
such exchange of energies is the least action principle (LAP) or
principle of virtual work (PVW). The strategy we propose in this
paper is to approximate the Helfrich energy (1.2) by a phase field
functional (2.1) corresponding to a diffuse interface description of
the vesicle, and to define an action (2.14) in terms of the phase field
energy and then derive evolution equations which result from the
variation of the action functional. This method is consistent with
the general framework of the energetic variational approach (EVA)
developed for complex fluids with underlying microstructures or
patterns [23].
The key difficulty in studying the dynamics of the fluid–

structure interaction is the fact that the natural description for
elasticity is in Lagrangian coordinate (Hooke’s law) and for fluids, in
Eulerian coordinates. The Helfrich-type surface energy functionals
are in Lagrangian coordinate as well. The introduction of the
phase field (labeling) function provides an analytical description
for geometric motions in Eulerian coordinates. The art within
this framework is the realization/approximation of various surface
energy in terms of this phase function.
The phase field energetic variational approach hasmany advan-

tages. Themost notable one is that themodel equations are defined
in observer’s (Eulerian) coordinates. This highly simplifies the
numerical approximation because it suffices to consider a fixed
computational grid rather than tracking the position of the
interface. A corollary of this formulation is that the phase field is
insensitive to topological changes of its level sets which readily
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undergo shape transitions. The third advantage is that the
fourth order phase field equations are defined in weak form.
Consequently, conventional mixed and discontinuous Galerkin
finite elements, along with the spectral methods, may be used to
discretize the equations. Finally, the energetic variational approach
guarantees the consistency of exchange between different parts of
energy functionals. We derive the canonical energy law (2.18)
associated with the variational approach. It states that the total
sum of the kinetic and phase field energy are dissipated due to vis-
cous losses and other regularization/relaxations rates. In the next
section we define the phase field approximation of the Helfrich
energy, the action functional and derive the evolution equations
from the action functional via the least action principle (LAP).
The idea of the phase field approach goes back to [24] and it

has been extensively studied [25–30]. A labeling function (usually
referred to as a phase field) is introduced on the computational
(physical) domain. The membrane is approximated/regularized by
the transition region of the phase field. The inside/outside of the
vesicle is represented by the pre-image of R+ and R− respectively
under the phase field function.
In previous works, the authors have established phase field

representations of the Helfrich energy both with and without
spontaneous curvature, together with the corresponding topolog-
ical quantities such as the Euler number. In [31,46], we stud-
ied a phase field representation of the Helfrich energy (2.1)
when the spontaneous curvature is zero, with the constraints of
the membrane surface area and enclosed volume. We numeri-
cally studied the equilibrium configuration of local minimizers
and probed the bifurcation landscape of vesicle configurations by
varying area and volume. In [33], we included the spontaneous
curvature effect in the simulations. In these works we were
able to recover many of the experimentally observed vesicle
shapes/configurations/patterns, such as those reported in [34].
Formal asymptotic analysis of the convergence of the phase field
model (to the original sharp interfacemodel as the transitionwidth
of the diffuse interface approaches zero) were performed in
[35,36]. In [32] and later in [16], we derived numerical methods
to approximate the integral of the Gauss curvature with an aim
at obtaining (or controlling) topological information in phase field
simulations. The schemes are based on the Gauss–Bonnet formula,
giving not only a better indicator of topological changes than the
energy functional, but in fact, quantized jumpswhen the computed
surface passed singularities. A similar hydrodynamic phase field
model has also been given in [7], with themain distinct feature be-
ing the assumption on the local area preservation, while ourmodel
assumes the global area preservation. In another recent work [20],
a thermodynamic phase field model has been studied for vesicles
under the assumption of local membrane incompressibility. The
phase field energy for the vesicle is based on the formulation of the
surface tension energy instead of the elastic bending energy. The
rigorous study of the sharp interface limit of the dynamic models
in [7,20] still remains to be carried out.

2. The phase field vesicle deformation model

We approximate the deformation of the fluid bound vesicle by
means of an incompressible flow and phase field coupling. We
adopt the phase field approximation of the Helfrich energy, as well
as approximations of the vesicle surface area and volume as in [31].
The corresponding body forces which appear in the momentum
equation are derived from these energies through the least action
principle.
Motivated by the theory of phase transitions we pose the

following phase field approximation of the Helfrich energy. Let
Ω ⊂ R3 be the computational domain. For a sufficiently smooth
function φ (called the phase field), we define

Gε(φ) :=
1
c0

∫
Ω

ε

2

(
1φ(x)−

(φ2(x)− 1)φ(x)
ε2

−
2κ(x)(φ2(x)− 1)

ε

)2
dx. (2.1)

The order of thickness of the phase transition region is charac-
terized by the small, positive parameter ε, κ(x) is defined by a
suitable extension of the spontaneous curvature overΩ and c0 is a
normalization constant which would ideally guarantee that Gε(φ)
converges to H0(Σ) as ε converges to 0. In the remainder of this
paperwewill interchangeably refer to bothH0 and its approximat-
ing functional Gε as the Helfrich energy when the context is clear.
We note that (2.1) is one variant of a phase field energy functional
posed by De Giorgi in [37]which has recently gained interest in the
phase transition community as well as in image processing and
applications [38]. TheΓ -limit of a related functional toH0 has been
studied recently in [39–41].
The vesicle surface area and volume are approximated by

Sε(φ) :=
1
c1

∫
Ω

ε

2
|∇φ|2 +

(φ2 − 1)2

4ε
dx,

and V (φ) :=

∫
Ω

φ dx

respectively. Again c1 is chosen so that Sε(φ)(φ) converges to the
surface area of Σ as ε converges to zero. In this paper, we use the
prime (′) notation to denote the Euler–Lagrange operator, i.e.∫
Ω

E ′(φ)v dx =
d
dt

E (φ + tv)|t=0,

for v ∈ C∞0 (Ω) and a suitably differentiable functional E .
Note that (2.1) is a simplified form of the general Helfrich

energy H0(Σ) in (1.1), with the contribution from the Gaussian
curvature or the topological term neglected. In [32], we developed
a series of phase field formulations to approximate the topological
termwhichmay be potentially incorporated into (2.1) to give a full
treatment of (1.1). We leave such considerations to future works.
The current work remains valid for vesicle evolutions without
any change in the total Gaussian curvature contribution (see, for
example, the simulation given in Section 3).

2.1. Evolution equations

The phase field and incompressible flow coupling is

ut + u · ∇u+∇p = ν1u+
(
G ′ε(φ)+ λ(t)

+µ(t)S ′ε(φ)
)
∇φ, (2.2)

∇ · u = 0, (2.3)

φt + u · ∇φ = −γ
(
G ′ε(φ)+ λ(t)+ µ(t)S

′

ε(φ)
)
, (2.4)

Sε(φ) = Sε(φ0); V (φ) = V (φ0) (2.5)

inΩ with the initial condition

u(·, 0) = u0, φ(·, 0) = φ0, (2.6)

and the boundary condition

u|∂Ω = 0, φ(·, t)|∂Ω = 1. (2.7)

Eqs. (2.2) and (2.3) are the Navier–Stokes equations of a viscous
fluid with unit density and with a force defined in terms of φ.
Eq. (2.3) is the condition of incompressibility. We use u(x, t) as
the velocity field of the fluid, p the pressure and φ the phase field
whichmarks the position of the vesicle.We assume that ν, the fluid
viscosity, is a positive constant throughout both fluid phases and
the interface.



Author's personal copy

926 Q. Du et al. / Physica D 238 (2009) 923–930

Eq. (2.4) is a relaxed transport equation of φ with advection by
the velocity field u. We have added a regularization term on the
right-hand side. The regularization parameter γ is a small, positive
constant. The regularization term can also take on other forms
which are all chosen to ensure the consistent dissipation of energy.
The unknown parameters λ(t) and µ(t) are Lagrange multi-

pliers associated with the constraints (2.5). To understand how
these are determined, we multiply Eq. (2.4) by unity and S ′ε(φ)
respectively and integrate overΩ . We find then that λ(t) andµ(t)
implicitly solve the linear system of equations:

λ(t)|Ω| + µ(t)
∫
Ω

S ′ε(φ) dx = −
∫
Ω

G ′ε(φ) dx

λ(t)
∫
Ω

S ′ε(φ)+ µ(t)
∫
Ω

(S ′ε(φ))
2 dx

=

∫
Ω

(
γ−1u · ∇φ − G ′ε(φ)

)
S ′ε(φ) dx.

This system is solvable since the determinant of coefficients on the
left-hand side of the system is

|Ω|

(∫
Ω

(S ′ε(φ))
2 dx

)1/2
−

(∫
Ω

S ′ε(φ) dx
)2
> 0

provided S ′ε(φ) is not a constant function. Else, only one
independent Lagrange multiplier is required which can be
determined from Eq. (2.2).

2.2. Principle of virtual work

The motivation for Eqs. (2.2) and (2.3) comes from the PVW (or
LAP). This principle states that the fluid deforms in such a way as
to extremize the total exchange of kinetic energy to the internal
energy. In our case, the internal energy is the bending energy
associated with vesicle interface, namely Gε(φ). In order to derive
the force balance equation,wepostulate an action functional, apply
the PVW by extremizing the action functional with respect to
admissible fluid deformations and define the thermodynamically
consistent regularization.
LetΩ be a bounded, closed subset ofR3 with piecewise smooth

boundary. Points in Ω are denoted by p and t ∈ [0, T ] denotes
time. A motion of the region Ω is a one-parameter family of
deformations x : Ω × [0, T ] → Ω with the property that x is a
smooth function of p and t , x(·, 0) = idΩ and det(∇px(·, t)) > 0
for each t. Motivated by the no-slip boundary condition in (2.7),
we say x fixes the boundary ofΩ if x(p, t) = pwhenever p ∈ ∂Ω.
For fixed t, x(·, t) is a diffeomorphism. For p ∈ Ω , the path line of
a particle which initially lies at p is {x(p, t) : t ∈ [0, T ]}.
Associated with a motion x is the smooth velocity field u :

Ω × [0, T ] → R3 defined by

u(x(p, t)) =
d
dt

x(p, t). (2.8)

The velocity field u vanishes on ∂Ω if x fixes the boundary of Ω .
If xs is a smooth, one-parameter family of motions which fix the
boundary ofΩ, then one has a velocity field v : Ω × [0, T ] → R3
defined by

v(p, t) =
d
ds

xs(p, t)
∣∣∣∣
s=0
. (2.9)

The Eulerian velocity field v∗ associated with v is defined by
v∗(x(p, t), t) = v(p, t). Similarly for u, the velocity fields v and
v∗ vanish on ∂Ω.
We will use motions to define various transformations of

scalar valued functions on Ω and study the effect of these
transformations on functionals. Given a function φ0 : Ω → R we

define functions φ, φs : Ω × [0, T ] → R which take the constant
value φ0(p) along path lines of a particle initially lying at p under
the motions x and xs respectively;

φ(x(p, t), t) = φs(xs(p, t), t) = φ0(p). (2.10)

Note that φ and φs are well defined because x(·, t) and xs(·, t) are
one-to-one and onto Ω for each t. We call φ a labeling function
because a particle initially lying at a point p retains the initial label
φ0(p) in time. By the chain rule, (2.10) is equivalent (assumingφ0 is
regular) to the labeling functions φ and φs satisfying the transport
equations

∂φ

∂t
+ u · ∇φ = 0, φ(·, 0) = φ0, (2.11)

∂φs

∂s

∣∣∣∣
s=0
+ v∗ · ∇φ0 = 0, φ0(·, 0) = φ0. (2.12)

If E is a differentiable functional defined for φs, then by definition
of the Euler–Lagrange operator E ′(·) and the fact that v∗ · ∇φ ∈
C∞0 (Ω),

d
ds

E (φs)

∣∣∣∣
s=0
= −

∫
Ω

E ′(φ)v∗ · ∇φ0 dx. (2.13)

Given a motion xwhich fixes the boundary ofΩ , define the action

A (x) =

∫ T

0

∫
Ω

1
2
|xt |

2 dp− Gε(φ) dt. (2.14)

The fluid occupying the regionΩ is assumed to be incompress-
ible and the subregion bounded by the vesicle is assumed to have
constant volume and surface area in time. Thus wewill restrict our
attention to motions xwhich are volume preserving and for which
Sε(φ(·, t)) is constant with respect to t where φ is the labeling
function defined by (2.10) with initial label φ0 from (2.6). Volume
preserving motions automatically satisfy the volume constraint of
the vesicle, V (φ) = V (φ0) in (2.5), because of the change of
variables formula. This set of admissible motions is

X =
{
x is a motion ofΩ| det(∇px) = 1,Sε(φ(·, t))

= Sε(φ0) for all t ∈ [0, T ]
}
.

Suppose that a motion x ∈ X is a critical point of the action A .
Then
d
ds

A (xs)

∣∣∣∣
s=0
= 0

for every smooth, one-parameter family of motions xs with x0 = x
and xs(·, T ) = x(·, T ). Note that φ0 = φ and v(·, 0) = v∗(·, 0) =
v(·, T ) = v∗(·, T ) = 0. By (2.13) and the change of variables
formula, we have then

0 =
d
ds

A (xs)

∣∣∣∣
s=0
=

∫ T

0

∫
Ω

xt ·
d
ds
xst

∣∣∣∣
s=0
dp+

d
ds

Gε(φ
s)

∣∣∣∣
s=0
dt

=

∫ T

0

∫
Ω

xt · vt dp−
∫
Ω

G ′ε(φ)v
∗
· ∇φ dx dt

= −

∫ T

0

∫
Ω

xtt · v dp−
∫
Ω

G ′ε(φ)v
∗
· ∇φ dx dt

= −

∫ T

0

∫
Ω

(ut + u · ∇u− G ′ε(φ)∇φ) · v
∗ dx.

Since xs was arbitrary, we know that ut + u · ∇u− G ′ε(φ)∇φ lies in
the kernel (with respect to the L2(Ω) inner product) of the tangent
space toX. SinceSε(φ

s) is constant in s anddet(∇pxs) = 1,wealso
know from (2.13) that then there are Lagrangemultipliers λ(t) and
µ(t) and a function p̃ : Ω × [0, T ] → R for which

ut + u · ∇u− G ′ε(φ)∇φ = λ(t)∇p̃+ µ(t)S
′

ε(φ).
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Furthermore, the fact that det(∇px(·, t)) = 1 implies that ∇ · u =
0. Defining p = −λ(t)(p̃ + φ) along with (2.11) finally gives the
unregularized system

ut + u · ∇u+∇p = (G ′ε(φ)+ λ(t)+ µ(t)S
′

ε(φ))∇φ (2.15)

∇ · u = 0 (2.16)
φt + u · ∇φ = 0. (2.17)

Eqs. (2.15)–(2.17) are in general difficult to solve (individually or as
a coupled system) due to the lack of dissipative terms. To remedy
this numerical and theoretical difficulty, we arrive at (2.2)–(2.4)
by adding ν1u and γ (G ′ε(φ) + λ(t) + µ(t)S

′
ε(φ)) to (2.15) and

(2.17) respectively for µ, γ > 0. In order to modify the transport
equation (2.17) for φ, one must carefully choose regularization
terms which guarantee that the system satisfy the second law of
thermodynamics, as is discussed in the next section.

2.3. Energetic self-consistency

Suppose u, and φ are suitably smooth solutions of (2.2)–(2.7).
Then the following dissipation law holds:

d
dt

(
1
2

∫
Ω

|u|2 dx+ Gε(φ)

)
= −ν

∫
Ω

|∇u|2 dx− γ

×

∫
Ω

|G ′ε(φ)+ λ(t)+ µ(t)S
′

ε(φ)|
2 dx. (2.18)

An immediate corollary of this inequality is that the kinetic energy
of the fluid and the Helfrich energy Gε(φ) remain bounded by the
initial data independently of time. Furthermore, the total energy
is decreasing in time due to viscous damping and the artificial
relaxation. This fact is the premise of the existence theory for this
system, see [42] for details.
Let ξ = G ′ε(φ) + λ(t) + µ(t)S

′
ε(φ). To derive (2.18), we first

multiply Eq. (2.2) by u and integrate by parts to find

d
dt
1
2

∫
Ω

|u|2 dx+
∫
Ω

ν|∇u|2 dx =
∫
Ω

ξu · ∇φ dx.

On the other hand, since V (φ) = V (φ0) and Sε(φ) = Sε(φ0) are
constant in t,

d
dt

Gε(φ) =
d
dt

Gε(φ)+ λ(t)
d
dt

V (φ)+ µ(t)
d
dt

Sε(φ)

=

∫
Ω

ξφt dx = −
∫
Ω

γ ξ 2 + ξu · ∇φ dx.

Summing the above two equations yields (2.18).

3. Simulation

We have implemented numerical methods for the solution of
the coupled system (2.2)–(2.4) with spectral spatial discretizations
and semi-implicit time discretizations, using penalty methods
rather than Lagrange multipliers. Usual convergence tests have
been performed to ascertain the convergence of the numerical
solutions. The details are to be reported elsewhere. Here, we
merely present results of a single experiment, in which we take
a 64 × 64 × 64 grid on a square cube, and ε = 0.2454, with a
time step 1t = 3 × 10−7. The initial membrane is taken to be a
relatively flat disc with its volume kept at a value−202.21, and the
surface area at 45.99. The fluid velocity is initially given by u0 =(
0, 0, 50πe−48(x

2
+y2)/π2

)
in x, y, z coordinates. We used periodic

boundary condition in the x and y directions and a Dirichlet
boundary condition along the z directionwhich is compatible with
the initial velocity field.

In Fig. 3.1, the dynamic shape deformation of the initial
membrane is illustrated through snapshots at different time steps
(both cutting view and full 3d views of the membrane shapes are
shown).
The purpose of this simple numerical experiment is to illustrate

the effectiveness of the coupled system and the energetic variation
approach. The complex topological changes during the time
evolution are well captured in the simulation. This simulation
does not take into account the detailed physical transition from
the spherical to the toroidal topology as our model phase field
Navier–Stokes system is a simplification of the more complex
physical situation, but the numerical simulation is faithful to
hydrodynamic interaction of the vesicle and fluid through the
dissipation and exchange of kinetic energy and Helfrich energy.
For this particular simulation, by the generalized Gauss–Bonnet
theorem for singular surfaces, one can argue that the energetic
contributions from the total Gaussian curvature do not change
before, after and during the topological transition. Yet, a model
which takes into account the energy of topology of the membrane,
as in (1.1), would be desirable for more general topological
transformations. Such a model can be constructed, for instance, by
modifying (2.1) by the addition of a phase field approximation of
the Euler characteristic as described in [16].

4. Formal asymptotics

In this section we combine the self-consistent exchange of
energy given by the energy law (2.18) with a formal asymptotic
assumption on the solution structure of the phase field φ. We
will show that the system then converges to a sharp interface
formulation given by the force (1.5) and a zero traction boundary
condition.
The plan is as follows. First we expand Gε(φ) in powers of ε.

Then, a uniform energy bound of Gε(φ) in terms of the initial data
given by (2.18) implies that the interfacial thickness of the phase
field is uniform. Then, if the phase field additionally satisfies the
transport equation (2.4) (assuming γ � ε3), as we will show in
this section, the velocity field has zero traction at the surface and
that the force due to Gε(φ) (given on the right-hand side of (2.2))(
G ′ε(φ)+ λ(t)+ µ(t)S

′

ε(φ)
)
∇φ

converges to (1.5).
Let us assume that Σ(t) ⊂ R3 is a smooth, closed surface

evolving smoothly in time, and d(x, t) be the distance to Σ(t)
defined by

d(x, t) = dist{x,Σ(t)} = inf
z∈Σ(t)

|x− z|.

For sufficiently small ε, suppose that there are functions θ :
{(x, t) ∈ Σ(t) : t ∈ [0, T ]} → R+,Q1,Q2 : Ω × [0, T ] → R
and Q : R→ R independent of ε for which

φ(x, t) = Q
(
d(x, t)θ(x, t)

ε

)
+ εQ1(x, t)+ ε2Q2(x, t)+ · · · . (4.1)

The phase field profile is Q = Q (x), ε is the interfacial thickness
and Q1 and Q2 are higher order terms. The function θ(x, t)
measures the variation in local interfacial thickness for x ∈ Σ(t).
A more general two-scale expansion has been considered recently
in [36] which generalized the analysis in [35] in the absence of
the fluid flow. We elect to work with (4.1) to avoid technical
complications. The following calculations are performed in a
neighborhood ofΣ(t)where d(x, t) is smooth.We extend θ in this
neighborhood ofΣ(t) so that

|∇d| = 1, ∇d · ∇θ = 0. (4.2)
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Fig. 3.1. An elliptical disc is flushed by a fluid jet. The snapshots are taken at time t = 0.0000, 0.0099, 0.0109, 0.0114, 0.0139, 0.0163, 0.0183, 0.0257 (left to right, then
top to bottom).

Formally expanding (2.1) in powers of ε,

Gε(φ) =
1
ε3

Gε,−3(φ)+
1
ε2

Gε,−2(φ)+ · · ·

we define (where Q (·) = Q (d(·)θ(·)/ε))

Gε,−3(φ) =
1
2c0

∫
Ω

(
Q̈ (θ2 − 1)

)2
dx (4.3)

Gε,−2(φ) =
1
2c0

∫
Ω

(
Q̈ − Q (Q 2 − 1)

)2
dx (4.4)

Gε,−1(φ) =
1
c0

∫
Ω

Q̇ 2(1d− 2κ(x))2 dx. (4.5)

See Section 1.3 of [35] for details in the expansion.

Proposition 4.1. Given ε sufficiently small, suppose u and φ are
solutions of (2.2)–(2.7) with φ0 chosen so that Gε(φ0) be bounded
independently of ε and φ satisfies (4.1). Then

(1) Gε,−3(φ) = Gε,−2(φ) = 0;
(2) θ ≡ 1 and Q is a solution of Q̈ − Q (Q 2 − 1) = 0;
(3) Q1 ≡ 0;
(4) Gε,j = O(ε) for j = 0, 1, . . .;
(5) limε→0 Gε,−1 = H0(Σ(t)).

Proof. We fix a positive numberM so that ‖u0‖2L2(Ω)+Gε(φ0) < M
for all sufficiently small ε. By (2.18),Gε(φ(t)) < M for all t ≥ 0 and
in particular,

0 ≤ Gε,−3(φ(t)) ≤ (M + O(ε−2))ε3

for all t > 0 and all sufficiently small ε. This implies the first part
of (1). It then follows that

0 ≤ Gε,−2(φ(t)) ≤ (M + O(ε−1))ε2,

which implies the second part of (1).

Since the integrands ofGε,−3 andGε,−2 are positive,we infer that

Q̈ 2(θ2 − 1)2 =
(
Q̈ − Q (Q 2 − 1)

)2
= 0

for all (x, t) ∈ Ω ×[0, T ]. Using the boundary conditions on φ and
the fact that d(x, t) is non-constant in a neighborhood ofΣ(t), we
get (2). Other conclusions, (3), (4) and (5), canbe found in Theorems
2.1, 2.2 and 4.1 of [35]. �

Now, from (2.4) we have
2Q̇ Q̈ (dt + u · ∇d)+ εQ̇ 2∇d · ∇u · ∇d = O(ε2).
Sending ε to zero, the lowest order termmust be zero, but this does
not necessarily imply that the distance function is transported by
the velocity field since Q̇ is zero at the surface. The next term in
the expansion must also be zero, so that the velocity field has zero
compression normal to the surface. Combining this fact with the
incompressibility condition (2.3), we see that velocity also has zero
compression tangential to the surface, that is,

n(x) · ∇u(x) · n(x) =
2∑
i=1

τi(x) · ∇u(x) · τi(x) = 0 (4.6)

for an orthonormal frame {n, τ1, τ2} of the tangent plane of Σ(t)
at x. Moreover, to show that the limit of (2.2)–(2.4) as ε vanishes
is a two-phase flow with a zero traction condition on the velocity
field and an interfacial force given by (1.5), we compute the limit
on the right-hand side of (2.2). First we need the following

Proposition 4.2 (Integration by Parts). Let Σ be a smooth, compact
surface without boundary. For a smooth vector field v, smooth scalar
fields f and g and smooth surfaceΣ , one has the following formulae:

(i)
∫
Σ

∇Σ · v dS = −
∫
Σ

2Hv · n dS, (4.7)

(ii)
∫
Σ

1Σ fg dS =
∫
Σ

f1Σg dS. (4.8)
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Eq. (4.7) is the first variation formula while (4.8) follows by two
applications of the former identity, see [22].
We treat the three terms on the right-hand side of (2.2)

separately. Let v be a smooth, compactly supported, divergence
free vector field. Following the calculation in Theorem 4.2 of [35],
the incompressibility condition (2.3) and Proposition 4.2, we get

lim
ε→0

∫
Ω

G ′ε(φ)∇φ · v dx =
∫
Σ

1ΣHv · n−∇Σ (H2 − K) · v

=

∫
Σ

1ΣHv · n+ 2H(H2 − K)v · n− (H2 − K)∇Σ · v dS

=

∫
Σ

(1ΣH + 2H(H2 − K))v · n− (H2 − K)n · ∇v · n dS

where the last term is zero provided that v is chosen from a test
space appropriate for the boundary condition (4.6).
We may also adopt the derivations in [35], to get that the

Lagrange multipliers are bounded uniformly with respect to ε.We
find that, by choosing a subsequence, the remaining body force
terms on the right-hand side of (2.2) converge to a linear sum of
the mean curvature vector and normal vector.

5. Alternative Eulerian formulations

In this section we contrast the phase field EVA presented in
this paperwith another Eulerian formulation, the level setmethod.
Strictly speaking, the phase field method also adopts a level set
formulation, although we refer to the formulations given in [43]
when speaking of the level set method. We will show that in
analogy with (2.18), a level set formulation also satisfies the self-
consistent exchange of kinetic energy with the average Helfrich
energy over all levels, (5.4). Contrary to the phase field approach
though, it remains to be investigated how one could regularize the
coupled level set system, in particular the transport equation (5.1)
for the level set function ρ, so as not to significantly affect the
validation of (5.4). An existence theory may thus be more difficult
to establish in comparison with that for the phase field approach
where the artificial regularization given by the right-hand side
of Eq. (2.4) provides additional dissipation in the energy law
(2.18) [42].
Let the level set indicator function ρ satisfy the transport

equation

ρt + u · ∇ρ = 0 (5.1)

andbe sufficiently smooth. Consider the average ofmean curvature
energy of all level sets

F (ρ) =

∫
R

∫
Σt,c

H2 dS dc (5.2)

where Σt,c = {x : ρ(x, t) = c} is a smooth two-dimensional
hypersurface without boundary for almost every c ∈ R, it will be
shown in what follows that
d
dt

F (ρ) =

∫
R

∫
Σt,c

(1ΣH + 2H(H2 − K))u · n dS dc

=

∫
Ω

(1ΣH + 2H(H2 − K))u · ∇ρ dx. (5.3)

Here H , K and ∇Σ are defined as in Section 1 with n = ∇ρ/|∇ρ|.
The last equality follows from the co-area formula [44]. Suppose
now that u satisfies the momentum equation (2.2) where we
replace the body force on the right-hand side by the term (1ΣH+
2H(H2 − K))∇ρ defined on Ω . Multiplying this new momentum
equation by u and integrating over Ω and adding the resulting
expression to (5.3), we find

d
dt

(
1
2

∫
Ω

|u|2 dx+F (ρ)

)
+ ν

∫
Ω

|∇u|2 dx = 0. (5.4)

We now verify (5.3) below. A similar treatment may be found
in [45]. We reiterate these results here with a slightly different
class of test functions and an albeit shorter calculation. First we
need the following

Proposition 5.1. Let ρ ∈ C40 (Ω) and f and g be smooth functions on
Ω. Then∫
Ω

|∇ρ|1Σ fg dx =
∫
Ω

|∇ρ|f1Σg dx.

Proof. By Sard’s theorem, almost every level of ρ is a smooth,
two-dimensional hypersurface without boundary. By the co-area
formula and Proposition 4.2,∫
Ω

|∇ρ|1Σ fg dx =
∫

R

∫
{ρ=c}

1Σ fg dS dc

=

∫
R

∫
{ρ=c}

f1Σg dS dc =
∫
Ω

|∇ρ|f1Σg dx. �

From the definitions for n and H given in Section 1,

2Ht = −
d
dt
∇ · n = −

d
dt
∇ · (∇ρ|∇ρ|−1)

= −∇ · (∇ρt |∇ρ|
−1
−∇ρ∇ρt · ∇ρ|∇ρ|

−3).

From (5.1), setting ρt = −u · ∇ρ = −u · n|∇ρ| and using the
definition of ∇Σ from Section 1 to show that |∇ρ|∇Σ |∇ρ|−1 =
n · ∇n gives

2Ht = ∇ · (∇(u · ∇ρ)|∇ρ|−1 −∇ρ∇ρ · ∇(u · ∇ρ)|∇ρ|−3)
= ∇ · (∇(u · n)− nn · ∇(u · n)− (u · ∇ρ)∇Σ |∇ρ|−1)
= 1Σ (u · n)− n · ∇n · ∇(u · n)+∇ · ((u · n)n · ∇n)
= 1Σ (u · n)+ (u · n)∇ · (n · ∇n)
= 1Σ (u · n)+ (u · n)tr(∇n)2 + (u · n)n · ∇(∇ · n)

where we have collected terms into 1Σ (u · n) and made
the appropriate cancellations after multiple applications of the
product rule. Finally, noting (1.4) and using ∇ · n = −2H once
more, we get the desired identity

2Ht = 1Σ (u · n)+ (u · n)(4H2 − 2K)− 2(u · n)n · ∇H. (5.5)

To verify (5.3), first we apply the co-area formula and (5.1) to
get

d
dt

F (ρ) =
d
dt

∫
R

∫
Σc,t

H2 dS dc =
d
dt

∫
Ω

|∇ρ|H2 dx

=

∫
Ω

−|∇ρ|−1∇ρ · ∇(ρt)+ 2|∇ρ|HHt dx

=

∫
Ω

−n · ∇(u · ∇ρ)H2 + 2|∇ρ|HHt dx.

Using (5.5) in the second term, we have

d
dt

F (ρ) =

∫
Ω

[
−H2n · ∇(u · ∇ρ) + |∇ρ|H(1Σ (u · n)

+(u · n)(4H2 − 2K) −2(u · n)n · ∇H)
]
dx.

Integrating by parts in the first term (while noting that u = 0 on
∂Ω) and using ∇ · n = −2H , we obtain

d
dt

F (ρ) =

∫
Ω

[
|∇ρ|(n · ∇(H2)− 2H3)(u · n)

+|∇ρ|H(1Σ (u · n)+ (u · n)(4H2 − 2K)
− 2(u · n)n · ∇H)

]
dx.
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Now the last term cancels with the first because 2H∇H = ∇(H2);
collecting terms and using (5.4) to integrate1Σ by parts, we finally
have
d
dt

F (ρ) =

∫
Ω

|∇ρ|(u · n)(1ΣH + 2H(H2 − K)) dx

=

∫
R

∫
Σt,c

(u · n)(1ΣH + 2H(H2 − K)) dS dc.

The above variation, commonly known as variation with respect
to the domain, is in fact the usual Lagrangian evaluated over the
special test class {v · ∇ρ : v ∈ C∞0 (Ω : R

n)}.

6. Conclusion

In this paper, a coupled system of equations is presented
as a model for the deformation of three-dimensional vesicle
membranes in the fluid fields. The vesicle configuration is
determined by the competition between the elastic bending
energy, with prescribed bulk volume and surface area, and
the surrounding fluid velocity fields. The configuration in turn
affects the fluid fields. Our derivation is mostly based on an
energetic variational approach, with a diffuse interface method.
The method transforms the membrane deformation from a
Lagrangian description to an Eulerian description and leads to an
induced constitutive equation that ensures the energy dissipation.
In a very general ansatz, we have shown that, as the regularization
parameter goes to zero, the asymptotic limit of the coupled
system is consistent with a sharp interface dynamics. Preliminary
numerical simulations also support the effectiveness of using our
coupled system to study the interaction of the vesicle membrane
with the background incompressible fluid. For brevity, only the
case of a constant density is considered for the fluid, and only
a simplified version of the Helfrich energy is analyzed, without
incorporating contributions such as those from the spontaneous
curvature and Gaussian curvature. Extensions to more general
cases can be made and they will be investigated in subsequent
works. More extensive numerical tests and studies of other effects,
such as the interaction with electro-magnetic fields, will be also
investigated in the future.
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