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While two-dimensional triangles are always subdivision invariant, the same does not
always hold for their three-dimensional counterparts. We consider several interesting

properties of those three-dimensional tetrahedra that are subdivision invariant and offer

them a new classification. Moreover, we study the optimization of these tetrahedra,
arguing that the second Sommerville tetrahedra are the closest to being regular and

are optimal by many measures. Anisotropic subdivision invariant tetrahedra with high

aspect ratios are characterized. Potential implications and applications of our findings
are also discussed.
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1. Introduction

This work is mainly concerned with three-dimensional subdivision invariant tetrahe-

dra. Here, subdivision refers to a special operation of a tetrahedron that introduces

six new vertices at the midpoints of edges and connects the midpoints of the ad-

jacent edges and one additional pair of opposing midpoints to form a simplicial

complex with 8 smaller tetrahedra 7,23,27. This operation is called a red refinement

in adaptive finite element literature 37,40 or a subdivision by Freudenthal’s algorithm
26. A number of works 8,23,40 discuss the number of congruence classes generated

by the Freudenthal’s algorithm (red refinement). Congruence is defined as follows
8: two simplices T, T ′ are called congruent to each other if there exists a translation

vector v, a scaling factor c, and an orthogonal matrix Q such that T ′ = v + cQT .

In some recent studies, a more restrictive notion of congruence, namely proper con-
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gruence that requires the orientation order to be preserved, has been adopted 37.

We make no such restriction here. Subdivision invariant tetrahedra, abbreviated

as SITet (representing both singular and plural forms), are those tetrahedra whose

subdivided tetrahedra (using red refinement or Freudenthal’s algorithm) contain

only a unique congruence class 27,28,47. In other words, to be a SITet, the eight

smaller tetrahedra created by the subdivision must all be congruent, after a scaling,

to the original one.

There are various problems that motivate our study of SITet, ranging from the

theoretical quests of three-dimensional tiling and packing of geometric objects to

practical applications of three-dimensional tetrahedral mesh generation and opti-

mization. For example, simplicial meshing is a popular tool in scientific simulations

and engineering design 4,22,42. It is widely accepted that triangular meshing in two

space dimensions has become a relatively mature subject, and the theory of which

is well understood. In contrast, the progress towards an automated and optimized

meshing technology has been slow for three- or higher-dimensional simplicial mesh-

ing. On the one hand, this can be attributed to the enormous complexities associated

with the transient and adaptive nature of large-scale physical systems and complex

geometric environment. On the other hand, this is also due to the lack of funda-

mental understanding of some of the basic theoretical questions concerning space

subdivisions in high-dimension. Several long-standing conjectures on the mathe-

matics of space-tiling and packing, such as the 3D Kepler conjecture, were solved

only in the last decade, while many important questions remain open 13,33,38. Sim-

ilarly, for optimal simplicial meshing, while the optimal two-dimensional triangle is

typically associated with the regular triangle, the answer becomes unclear in three

dimensions as regular tetrahedra fail to be space-filling. Studies in 14 suggest that

regular tetrahedra may not be able to pack as densely as spheres in three dimen-

sional space. Indeed, a gap with dihedral angle 2π− 5θ = 7◦21′ is left unfilled when

five identical regular tetrahedra are glued together around a common edge. This is

a simple fact, but several renowned scholars have made mistakes regarding packings

of regular tetrahedra, and many questions about these packings remain unsolved
38. The earliest and perhaps also the most famous mistake has been attributed to

Aristole 3 and created a controversy that lasted for nearly 2000 years. The mystery

surrounding this kind of puzzle has also partly contributed to the study of Hilbert’s

18th problem 34.

Concerning space-tiling tetrahedra, the first systematic study is believed to have

been given by Sommerville 48 in the early twentieth century. The issue of classifying

tetrahedra that can tile three-dimensional Euclidean space was raised. It has been

stated as an open problem to determine those shapes of tetrahedra whose properly

congruent (that is, congruent by an orientation-preserving isometry) copies tile the

entire space 38,47. A related study was carried out in 31. A recent result was given

in 25 showing that in the proper (orientation-preserving) and face-to-face context

there are only four tetrahedral tilers up to similarity, verifying the original claims
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of Sommerville. The problem remains open if mirror reflections are allowed.

Subdivision invariant tetrahedra form a subclass of space-filling tetrahedra. Sub-

division invariance provides many additional nice features that are useful in geo-

metrical modeling and mesh generation, especially when it is desirable to produce

multilevel meshes or to perform local mesh refinement to enhance geometric reso-

lution and simulation/solver efficiency. Obviously, if proper congruence is required,

then by 48 and 25, only a finite number of congruent tetrahedral shapes can possibly

be subdivision invariant. In fact, a recent study in 37 showed that only one congru-

ent class of such tetrahedra exists. Without requiring orientation consistency, it has

been shown in 27,28 that there are possibly four types of such tetrahedra, each type

containing infinite number of congruent classes parametrized by a single variable.

Our study here further demonstrates that the four types are in fact equivalent,

so that effectively there exists a unique type of SITet that can be parametrized

by a single scalar variable. This gives our first main result. We also provide addi-

tional features of these SITet, such as certain universal relations between the edges,

dihedral angles, and faces, that have not been presented before.

In tetrahedra based geometric modeling and tetrahedral mesh generation, mesh

optimization is often carried out together with the domain triangulation. The no-

tion of mesh optimality has remained a subject worthy of careful examinations. For

isotropic tetrahedral meshes, forcing all tetrahedra into equal-sized regular tetrahe-

dra might be desirable but is impossible to achieve since regular tetrahedra are not

space-filling. Unfortunately, it has been a common and popular practice in three

dimensional unstructured tetrahedral meshing to take the regular tetrahedron as

the ideal element. While such a practice may make most tetrahedra close to being

regular, due to the low packing density of regular tetrahedra 14, it is inevitable that

sliver elements are often produced to fill in the gaps left in between. Sophisticated

techniques developed in the meshing community are then needed for effective sliver

removal 12,24,46,49. This is a scenario that can be perhaps characterized as the intrin-

sic geometric frustration in three dimensional triangulation, a phenomenon that also

reflects a larger issue concerning the proper extensions of two (or lower) dimensional

mathematical concepts to three (or higher) dimensions. While many similarities and

common features can be documented, there are sometimes fundamental differences

in geometric notions when the dimension changes. As an illustration, we advocate

the notion of optimal or ideal tetrahedra to be restricted to tetrahedra the class of

space-filling tetrahedra or in particular the class of subdivision invariant tetrahe-

dra. This is completely consistent with the conventional (unrestricted) definition in

two dimension, but it has dramatically different implications in three and higher

dimensions. A natural question is to identify such optimal tetrahedra, upon speci-

fication of a suitable metric of optimality, via optimization over all space-filling or

subdivision invariant tetrahedra.

Since SITet form an important subclass of space-filling tetrahedra and possess

extra nice properties in mesh generation, and because SITet have been completely

classified in three dimension already, we make the second important contribution
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of this work by exploring optimization of SITet with respect to various metrics.

An interesting finding is that while many different metrics are taken, all aimed

at making the tetrahedron more symmetric or regular, the optimal tetrahedron

under those metrics are all given by a unique tetrahedron, namely, the second

Sommerville tetrahedron. This finding is consistent with studies of other optimiza-

tion problems concerning space tessellations, in particular, the so-called centroidal

Voronoi tessellations. We are thus led to further discussions on how our findings

may impact the subject of Voronoi tessellations and Delaunay triangulations as

well as three-dimensional tetrahedral mesh generation and optimization. In fact,

three-dimensional mesh optimizations of unstructured tetrahedral meshes based on

the centroidal Voronoi tessellations have often led to the spontaneous appearance of

large patches of second Sommerville tetrahedra 20. Computational studies of space

filling tetrahedra given in 41 also led to the second Sommerville tetrahedra based

on various measures. Moreover, numerical solutions of partial differential equations

based on such meshes also offer nice superconvergent properties that are generally

associated with structured meshes 11. It is thus no coincidence that while much of

the discussion here is elementary, our findings should have far-reaching implications.

The rest of this paper is organized as follows: we first discuss the SITet and the

special second Sommerville tetrahedron (SSTet) through some geometric illustra-

tions in section 2, along with a classification of SITet; we then study a number of

properties of SITet in section 3; section 4 is devoted to optimizations of SITet and

finally some conclusions are given in section 5.

2. Subdivision invariant tetrahedra

The subdivision considered here refers to only bisection or red refinement.

Definition 1. A subdivision invariant tetrahedron can be divided into eight tetra-

hedra that are congruent, with possible mirror-reflections and a scaling, to the

original tetrahedron.

2.1. Subdivision into tetrahedra: some examples

We begin our discussion of SITet with a couple of examples that also serve to offer

some geometric intuition.

Among the most widely studied SITet are those obtained by subdividing a unit

cube into six congruent tetrahedra 38. Let u1 and u2 be two opposing vertices on

a diagonal of the unit cube, and {vi}6i=1 be the other six vertices of the cube so

that {vivi+1} (with v7 = v1) gives a directed loop made of six edges of the cube.

Then, the six tetrahedra having vertices {u1u2vivi+1} form a congruent tetrahedron

packing of the unit cube. Since unit cubes tile the space nicely, we thus obtain a

tetrahedron tiling of space. The tetrahedra involved in the tiling have edge ratios

1 : 1 : 1 :
√

2 :
√

2 :
√

3, in contrast to regular tetrahedra that have all edges of the

same length.
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Fig. 1. Invariant subdivision of a cubic domain.

Another very popular class of SITet is given by the second Sommerville tetra-

hedron, which we will abbreviate as SSTet. It can also be constructed using unit

cubes or the BCC lattice: one simply takes two neighboring unit cubes and connects

the centers of two cubes with a particular pair of vertices of their shared edges, as

shown in Figure 2. SSTet again tile the whole three dimensional space, but not a

single unit cube. The SSTet have edge ratios 1 : 1 : 1 : 1 : 2
√

3/3 : 2
√

3/3.

Comparing the above two examples of SITet, we see firstly that SITet may not

have a unique shape, and secondly, that the edge ratios of SSTet are closer to 1

than those of the other example, thus making the SSTet the closer of the two to

being a regular tetrahedra in some sense. More discussions and clarifications are to

be given later along these directions.

Fig. 2. Construction of subdivision invariant second Somerville tetrahedra.

2.2. Classification of subdivision invariant tetrahedra

To classify all SITet, we consider a typical tetrahedron represented by vertices

p1p2p3p4. Upon translation and rotation, without loss of generality, we may set

p1 at the origin, p2 on the positive x-axis with unit distance to p1, p3 in the first

quadrant on the xy-plane, and p4 in the first octant of xyz-space. With this set-up,

the following result has been provided in 27.

Lemma 1. (Fuchs 27) A tetrahedron (as shown in Figure 3) with vertices

p1 = 0, p2 =

1

0

0

 , p3 =

x1y1
0

 , p4 =

x2y2
z

 , (x1, x2, y2 ≥ 0, y1, z > 0 )

is subdivision invariant iff one of the following conditions is fulfilled:
Condition 1: 0 ≤ x1 < 1

2 , x2 = 2x1, y21 = 1− x21,

y22 =
(1 + x1)(1− 2x1)2

1− x1
, z2 =

(1 + x1)(1− 2x1)

1− x1
.
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Fig. 3. Subdivision invariant tetrahedra.

Condition 2: y2 > 0, x1 =
1

3
, x2 =

2

3
, y1 = 2y2, z =

√
3y2.

Condition 3: 0 ≤ x1 <
1

2
, x2 = 1− x1, y21 = 1− x21,

y22 =
x21(1 + x1)

1− x1
, z2 =

(1 + x1)(1− 2x1)

1− x1
.

Condition 4: 0 < x1 < 3, x2 =
1

2
(x1 + 1), y21 = x1(3− x1),

y22 =
1

4
x1(3− x1), z2 =

1

4
(3− x1).

We note that each of the conditions is parametrized by a single control variable:

x1 for conditions 1, 3, and 4; and y2 for condition 2. Given a condition and an

input value of the control variable (x1 or y2) within the specified bounds, we can

determine the remaining vertices.

Remark 1. We note that while we have assumed that all vertices are in the first

octant, the tetrahedra generated by the conditions 1 and 3 in Lemma 1 can be

constructed as long as −1 < x1 < 1/2.

3. Properties of subdivision invariant tetrahedra

We first consider the edges of SITet. Let points A,B,C, and D refer to vertices p1,

p2, p3, and p4 as defined in Lemma 1. Direct calculations of edge lengths are given

below.

Condition 1:

AB =
√

12 + 02 + 02 = 1,

BC =
√

(x1 − 1)2 + y21 + 02 =
√

2− 2x1,

CD =
√

(x2 − x1)2 + (y2 − y1)2 + z2 = 1,

AC =
√
x21 + y21 + 02 = 1,

AD =
√
x22 + y22 + z2 =

√
2− 2x1,

BD =
√

(x2 − 1)2 + y22 + z2 =
√

3− 6x1.

With 0 ≤ x1 < 1/2, we have AB = CD = AC = 1 ≤ BC = AD.
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Condition 2:

AB =
√

12 + 02 + 02 = 1,

BC =
√

(x1 − 1)2 + y21 + 02 =

√
36y22 + 4

3
,

CD =
√

(x2 − x1)2 + (y2 − y1)2 + z2 =

√
36y22 + 1

3
,

AC =
√
x21 + y21 + 02 =

√
36y22 + 1

3
,

AD =
√
x22 + y22 + z2 =

√
36y22 + 4

3
,

BD =
√

(x2 − 1)2 + y22 + z2 =

√
36y22 + 1

3
.

With y2 > 0, we get CD = AC = BD ≤ BC = AD, and AB = 1.

Condition 3:

AB =
√

12 + 02 + 02 = 1,

BC =
√

(x1 − 1)2 + y21 + 02 =
√

2− 2x1,

CD =
√

(x2 − x1)2 + (y2 − y1)2 + z2 =
√

3− 6x1,

AC =
√
x21 + y21 + 02 = 1,

AD =
√
x22 + y22 + z2 =

√
2− 2x1,

BD =
√

(x2 − 1)2 + y22 + z2 = 1.

With 0 < x1 < 1/2, we get AB = AC = BD = 1 ≤ BC = AD.

Condition 4:

AB =
√

12 + 02 + 02 = 1,

BC =
√

(x1 − 1)2 + y21 + 02 =
√
x1 + 1,

CD =
√

(x2 − x1)2 + (y2 − y1)2 + z2 = 1,

AC =
√
x21 + y21 + 02 =

√
3x1,

AD =
√
x22 + y22 + z2 =

√
x1 + 1,

BD =
√

(x2 − 1)2 + y22 + z2 = 1.

With 0 < x1 < 3, we have AB = CD = BD = 1 ≤ BC = AD.

Based on direct calculations of the edge lengths, it becomes trivial to check

the subdivision invariance of the tetrahedra specified in Lemma 1. For example,

with condition 2, one may check that the length of the two opposing mid-points

q2 and q4 as shown in Figure 3 is given by |q2q4| =
√
y22 + 1/9, which is precisely
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half of BC = AD. This leads to the congruence of all eight subdivided tetrahedra.

Moreover, we have the following result.

Lemma 2. A SITet has at least two pairs of equal opposing edges. More specifically,

it has three edges of equal lengths with a pair of them being opposing edges, an

additional pair of opposing edges of equal lengths that are longer, and a single edge

of a possibly different length.

Proof. This follows from the direct calculation of edge lengths.

For easy reference, we call the three edges with equal lengths type-III edges, the

two longer edges type-II edges, and the remaining edge a type-I edge. As noted in

later discussions, the length of the type-I edge becomes the same as the length of

the type-III edges only for the SSTet.

We now present one of our main findings. It shows that the tetrahedra classified

by the four conditions given in the Lemma 1 above are in fact determined by a

single class through similarity transforms.

Theorem 1. Tetrahedra generated by one of the four conditions in Lemma 1 are

similar to those generated by any of the other conditions.

Proof. Conditions 1 and 3 obviously generate similar tetrahedra with an inter-

change of vertices B and C.

As for the other cases, we first look at the edge lengths produced by different

conditions. For the statement in the theorem to be true, the ratios of lengths of

edges of different types must be the same for some input in different conditions.

Let us start with condition 1 and condition 2. For clarity, let us denote the x1 in

condition 1 c1 and the y2 in condition 2 c2. The three ratios are

√
3− 6c1 : 1, 3 :

√
36c22 + 1, 3

√
2− 2c1 :

√
36c22 + 4.

By setting the first two equal to each other, we get a relation 2c1 = 1−3/(36c22 + 1).

Using this, we get all three ratios identical since 2− 2c1 = (36c22 + 4)/(36c22 + 1).

Similarly, by comparing ratios given by condition 1 with x1 = c1 and condition

4 with x1 = c4, we get that
√

2− 2c1 =
√
c4 + 1, which leads to c4 = 1 − 2c1 and

consequently
√

3c4 =
√

3− 6c1, again making all three ratios identical. Note that by

remark 1, we have the bound −1 < c1 < 1/2 corresponding exactly to 0 < c4 < 3.

Having verified that the ratios of the edge lengths are the same for the different

conditions, we need to show that the tetrahedral configurations formed by the edges

are the same. We observe that for each condition the type-II edges contain a pair

of edges opposing each other. Any configurations of the type-I and type-III edges

for the remaining edges all produce similar tetrahedra, so thus we have that the

tetrahedra produced by each of the conditions are equivalent to up to a similarity

transform.
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In conclusion, we find that a tetrahedron is subdivision invariant if and only if

it satisfies the edge length ratios 1 : x :
√

3x2 − 3, with three edges of length 1, two

edges of length x that are opposite to each other, and one edge of length
√

3x2 − 3,

with a bound of 1 < x < 2 that ensures that the tetrahedron is not degenerate.

Lemma 3. A SITet has at least two pairs of opposing congruent dihedral angles.

More specifically, it has two dihedral angles equal to 90 degrees along the pair of

opposing type-II edges and one dihedral angle equal to 60 degrees along the type-I

edge. For the three dihedral angles along type-III edges, the sum of the three angles

is 180 degrees, with two congruent angles along a pair of opposing edges, and the

remaining angle along the edge opposite to the type-I edge.

Proof. We first find the normal vector vector −→v i of the face opposite point pi.

Using condition 2 for our calculations with y2 = c2, we get:

−→v 1 =

−2
√

3c2
−2
√
3

3

0

 , −→v 2 =

2
√

3c2

−
√
3
3

−1

 , −→v 3 =

 0

−
√

3

1

 , −→v 4 =

0

0

1

 .

Obviously, −→v 1 ·−→v 4 = −→v 2 ·−→v 3 = 0. Those vertex pairs correspond to 90◦ dihedral

angles along the type-II edges AD and BC. Moreover, −→v 3 · −→v 4 = ‖−→v 3‖‖−→v 4‖/2,

corresponding to a 60◦ dihedral angle along the type-I edge AB. Let φP,Q denote the

dihedral angle between the two faces adjacent to edge PQ for any pair of vertices

P and Q. We get

cosφA,C = cosφB,D =

√
3√

36c22 + 4
, cosφC,D =

18c22 − 1

18c22 + 2
.

Thus,

cos(φA,C + φB,D) = cos(2φA,C) = 2 cos2(φA,C)− 1 =
−18c22 + 1

18c22 + 2
= − cos(φC,D).

Consequently, we see that φA,C +φB,D+φC,D = 180◦, with φA,C = φB,D. Moreover,

φC,D, the unique angle in this trio, corresponds to the edge that is opposite to the

type-I edge.

Lemma 4. A SITet has two sets of two congruent faces, with one of these sets

having isosceles faces.

Proof. We see that, for condition 1, ∆ABD ∼= ∆CDB and ∆ABC ∼= ∆CAD,

with side lengths AB = AC = CD giving us two sets of two congruent faces, and

one set of them being composed of isosceles triangles. Since the other conditions

provide the same structure of equivalent edge lengths, we see that the same results

hold.



Intern. J. Comp. Geo. & Appl. Vol 25, No.1 (2015), 37-58

10 D. Liu and Q. Du

4. Optimization studies of subdivision invariant tetrahedra

We seek to find tetrahedra that are ”optimal” among all SITet according to various

different metrics. It turns out that the second Sommerville tetrahedron (SSTet)

introduced earlier plays a special role in much of the discussion.

Let us first document some special properties of SSTet. First of all, we have

Lemma 5. SSTet are the only SITet with three pairs of equal edges, and the only

ones with three pairs of equal dihedral angles. They are also the only ones with two

pairs of isosceles faces.

Proof. Given a SITet, it has necessarily edge ratios 1 : 1 : 1 : x : x :
√

3x2 − 3

for x ∈ (1, 2). Having three pairs of equal edges implies that x = 2/
√

3, which

corresponds to a SSTet. Similarly, three pairs of equal dihedral angles means, by

the proof of the lemma 3 and using condition 2 with the notation y2 = c2, that

12c22 − 2
3

12c22 + 4
3

=
1

2
.

This means 36c22 = 8 and we again get a SSTet. The argument for all faces being

isosceles leading to a SSTet is the same as that for three equal edge pairs.

With regard to mirror symmetry and the use of mirror reflection for congruence,

we have the following.

Lemma 6. SSTet are the only SITet with mirror symmetry (they in fact have two

perpendicular planes of symmetry) and they are the only SITet for which the subdi-

vided tetrahedra are properly congruent, that is, congruent with the same orientation

order.

Proof. We consider the condition 2 with y2 = c2. It is obvious that any plane of

mirror symmetry for a tetrahedron must contain two vertices, while the other two

vertices must be symmetric with respect to the plane. For configuration given in

condition 2,
−−→
AB cannot be perpendicular to

−−→
CD, so there are only two possibilities:

either
−→
AC ⊥

−−→
BD or

−−→
AD ⊥

−−→
BC. These orthogonality conditions correspond to

equations

(
1

3
, 2c2, 0) · (−1

3
, c2,
√

3c2) = 0 or (
1

3
, 2c2, 0) · (−1

3
, c2,
√

3c2) = 0.

The only values of c2 making any of the above satisfied are c22 = 2/9, corresponding

to SSTet for which both equations are satisfied simultaneously. This proves the first

part of the lemma. The second part follows from the discussion given in 37.

SSTet also look the most symmetric or regular among SITet in the following

sense.

Lemma 7. SSTet are the only SITet with the circumcenter, inscribed center, and

mass centroid being at the same point.
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Proof. We again use condition 2 as illustration with y2 = c2. A direct calculation of

the mass centroid gives (1/2, 3c2/4,
√

3c2/4), to coincide with the the circumcenter.

We need the following properties:

(0, 3c2/4,
√

3c2/4) · (1, 0, 0) = 0,

(1/3,−c2/4, 2
√

3c2/4) · (1/3, 2c2, 0) = 0,

(1/6.c2/4,−
√

3c2/4) · (2/3.c2,
√

3c2) = 0 .

These properties are simultaneously satisfied only for c2 =
√

2/3, which gives us

the SSTet. One can check that the mass centroid is also the inscribed center.

The above results have shown that SSTet are special SITet with additional sym-

metric geometric features. We now examine many additional optimization properties

associated with SSTet.

Lemma 8. Among SITet, SSTet have the smallest maximum edge ratios.

Proof. The maximum of edge ratios for a given SITet is given by

g(x) = max{x, x√
3x2 − 3

,
√

3x2 − 3}

for x ∈ (1, 2). A direct calculation shows

g(x) =


x√

3x2−3 , x ∈ (1, 2/
√

3),

x, x ∈ (2/
√

3,
√

3/2),√
3x2 − 3, x ∈ (

√
3/2, 2).

Thus, the minimum of g = g(x) is given by x = 2/
√

3, corresponding to a SSTet.

Studying the optimization among all SITet is worthwhile to pursue as there

are many important motivations: although regular simplices often correspond to

optima for many criteria, they cannot tile the whole space except in two space

dimensions. Thus, forcing tetrahedra to be very close to regular tetrahedra in three

dimensions means that there would be a high probability of leaving gaps made of

sliver elements 12,24. With this in mind, we see that while regular triangles may

be viewed as optimal two dimensional triangles, regular tetrahedra may not. To

search for a universal definition that serves many practical purposes, we may limit

candidate optimal tetrahedra by restricting to the class of space-tiling tetrahedra,

or more restrictively, SITet. We note that 30 has discussed the optimal orientation-

preserving space tiling tetrahedra, and found that the optimal one corresponds to

SSTet. Another desirable property for a tetrahedron is being well-centered, a notion

discussed in detail in 50 that consists of the set of tetrahedra whose circumcenters

are in their interiors. The SSTet are completely well-centered in the sense that not

only are they well-centered themselves, but their faces are also well-centered.

Among the most popular quality measures for tetrahedra used in the meshing

community is one defined by Q(e) = Rin/hmax with Rin being the radius of the
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inscribed-sphere and hmax the longest edge length 6,19,16,36,43,44. In two dimensions,

the maximum of Q(e) is attained for a regular triangle, and generating a mesh

with elements that are as close to regular triangles as possible makes sense, as this

is as perfect as one can get from many viewpoints. Unfortunately, while regular

tetrahedra give maximum values of Q(e) in three dimensions, they are not SITet

nor space filling, so we consider optimization of Q(e) within a smaller class of

tetrahedra.

Lemma 9. Among SITet, SSTet have the largest inradius to longest edge ratio.

Proof. We perform our analysis using condition 2 from Lemma 1 with y2 = c2. We

first calculate that the inradius is given by

3
√

3c2

6 + 2
√

3
√

1 + 9c22
.

If the longest edge length is given by AB = 1, the inradius to longest edge ratio

is given by the above function. By direct calculation, we see that the derivative of

the above function has a sign equal to the sign of

2
√

3 + 18
√

3c22 + 3
√

1 + 9c22 −
√

1 + 9c22

which is clearly non-zero.

If the longest edge length is BC = AD =
√

36c22 + 4/3, the derivative of the

ratio between the inradius to the longest edge has the same sign as

2
√

3 + 3
√

1 + 9c22 − 18c22

√
1 + 9c22 −

√
1 + 9c22 .

Substituting x = 9c22/2, we see that the above is zero when (x−1)(1+2x+4x2) = 0,

that is, only when x = 1, which corresponds to the SSTet, with an inradius to the

longest edge ratio given by 1
4
√
2
≈ 0.176777.

To complete the proof, we compute the inradius to longest length ratio for

tetrahedra in limiting cases, i.e. as c2 goes to 0 and ∞, as well as the boundary

case

√
36c22+4

3 = 1 where the lengths of AB and of BC = AD become the same.

For the two limiting cases, the ratio goes to 0. As for the boundary case, we are

led to c2 =
√
5
6 with the ratio being 5

6
√
3(
√

5
3+

2
√

5
3 )
≈ 0.17296, thus proving that the

optimum of the inradius to longest length ratio is achieved by SSTet.

We may also optimize with respect to the ratio between circumradius and inra-

dius. For SSTet , this gives 3.162278, and for a regular tetrahedron, it gives 3.

Lemma 10. Among SITet, SSTet have the smallest circumradius/inradius ratio.

Proof. Using again the condition 2 with y2 = c2, the circumradius is given by√
4 + 99c22 + 1296c42

18
√

3c2
.
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Taking the derivative of the circumradius/inradius ratio, we get that it has a sign

equal to the sign of

11664
√

3c62 − 8
√

3− 24
√

1 + 9c22 − 135
√

3c22 − 297c22

√
1 + 9c22 .

Substituting x =
√

1 + 9c22, we get the above factors into

(x−
√

3)(16
√

3x5 + 48x4 − 33x2 + 9) .

As x > 1, we see that the second term is always positive, so the derivative of

circumradius/inradius is 0 only when x =
√

3, which corresponds to the SSTet with

a ratio
√

10. The limiting cases, i.e. as c2 goes to 0 and∞, both have ratio going to

infinity, so thus the optimum for circumradius/inradius ratio is achieved by SSTet.

By Lemma 5, we know that SSTet are the only SITet with all isosceles faces.

We may also compare the face areas of SITet.

Lemma 11. Among SITet, SSTet are the only ones with the same face areas.

Proof. We use the second condition with y2 = c2. Let us compute the normalized

quantity being the cube of the face area standard deviation divided by the square

of volume, that gives (
4 + 9c22 − 2

√
3
√

1 + 9c22

)3/2
8
√

3c2
.

The above is positive unless c2 =
√
2
3 , corresponding to SSTet.

A scaled surface area to volume ratio criterion can also be devised to assess

the regularity of a tetrahedron. To account for size scaling the square root of the

surface area and the cubed root of the volume were used in the ratio. This value is

minimized with the regular tetrahedron that has a ratio of 2.6843. We now show

that the SSTet are the optimal tetrahedra with the smallest scaled surface area to

volume ratio among all SITet.

Lemma 12. Among SITet, SSTet have the smallest scaled surface area to volume

ratio.

Proof. Using condition 2 with y2 = c2, the surface area is given by

2

3
c2(3 +

√
3
√

1 + 9c22)

and volume is c22/
√

3. The sign of the derivative of the scaled surface area to volume

ratio is equal to the sign of

648c22 − 24
√

3
√

1 + 9c22 − 24− 216c22



Intern. J. Comp. Geo. & Appl. Vol 25, No.1 (2015), 37-58

14 D. Liu and Q. Du

Substituting x =
√

1 + 9c22, we see that the above is 0 if and only if (x−
√

3)(2x+√
3) = 0, and as x > 1 we see that the derivative is 0 only when x =

√
3, which

corresponds to the SSTet with a ratio of 2
11
12 3

1
3 ≈ 2.723. The limiting cases, i.e. as

c2 goes to 0 and∞, both have ratio going to infinity, so thus the optimum for scaled

surface area to volume ratio is achieved by SSTet.

The above result is consistent with the finding in 30.

4.1. Optimal subdivision invariant tetrahedra

The above discussions show SSTet uncannily optimize many criteria among SITet.

We summarize this in a theorem as the second major finding of this work.

Theorem 2. Among SITet, SSTet are optimal with respect to a variety of metrics

as follows: they have the smallest maximum edge ratios, the smallest scaled surface

area to volume ratio, the largest inradius to longest edge ratio, and the largest in-

radius to circumradius ratio; they are also the only tetrahedra with circumcenter,

incenter, and mass centroids coinciding at the same point, the only tetrahedra with

all equal face areas, the only tetrahedra with the largest number of equal edge pairs,

the largest number of equal dihedral angle pairs, and the largest number of isosceles

triangular faces.

The theorem follows from the lemmas shown before. Obviously, we may consider

many more criteria that would demonstrate the SSTet are closest to be regular

among all SITet. A regular tetrahedron has zero deviation in edge length, face area,

and dihedral angles, and we may consider the deviations of such quantities among

all SITet and consider those having the minimum standard deviations as those

being closest to regular or optimal. The standard deviations may be normalized to

ensure that scaling the size of a tetrahedron has no impact. We have performed

both symbolic and numerical computations to verify that standard deviations of

edge lengths, dihedral angles, and face angles are minimized among all SITet by

SSTet with the corresponding values given approximately by 0.072927 for edge

lengths, 14.142136 for dihedral angles, and 7.44497 for face angles. Although the

SSTet dihedral angles of π/2 and π/3 are very different from the dihedral angle of

cos−1(1/3) ≈ 1.23096 for the regular tetrahedra, and likewise, the face angles of

SSTet are cos−1(1/3) ≈ 1.23096 and cos−1(1/
√

3) ≈ 0.95532 and also differ from

π/3 significantly, the fact that SSTet have the minimum standard deviations among

SITet further adds to the optimality of SSTet over other SITet.

4.2. More optimization questions: extreme anisotropy

The discussions above are mostly concerned with SITet that are as close as possible

to be regular or have the lowest aspect ratio. We now look into those SITet with high

aspect ratios. Studying these tetrahedra may allow us to utilize SITet in anisotropic
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mesh generation and optimization in cases where needle-like or plate-like tetrahedra

are needed to best capture quantities of interest that have different degrees of vari-

ability in different directions. Using subdivision invariant tetrahedra ensures that

the refined tetrahedra inherit the same strong anisotropy of the original tetrahedra

and avoids leaving voids or producing elements that display different anisotropy.

To begin the discussion, we follow 12 to introduce some classifications of tetra-

hedra based on their edges and faces. For a triangular face with a high aspect ratio,

there are only two cases: namely, a dagger if it has one very short edge; and a

blade if there is no short edge. For tetrahedra of high aspect ratio, there are more

possibilities. First, a tetrahedron that is close to being a line (or needle) can be

classified as a spire, spear, spindle, spike, or splinter, depending on how many of its

faces are daggers and blades. More specifically, a spire has one small triangle and 4

daggers; a spear and a spike both have two daggers and two blades, but a spear has

one long edge, one short edge and 4 medium edges while a spike has 2 long edges,

3 medium ones and 1 short one; a spindle has no short edge so it has 4 blades;

and a splinter has two short edges, four long edges, and four daggers. Meanwhile, a

tetrahedron that is close to a plane (or plate) can be classified as a wedge, spade,

cap, or sliver: a wedge has two vertices close to each other; a spade has one vertex

close to another edge; a cap has one vertex close to another face; and a sliver can

be projected to form a quadrilateral. The number of long edges with small dihedral

angles also increases from 1 to 4 in these four cases.

Specializing to SITet with high aspect ratios, we get the following.

Lemma 13. SITet can have high aspect ratios, either as spindles with edge ratios

close to 1 : 1 : 1 : 2 : 2 : 3 and dihedral angles close to 30◦ : 30◦ : 60◦ : 90◦ : 90◦ :

120◦, or as wedges formed by two near-regular faces sharing a common edge with

the opposing vertices close to each other with dihedral angles close to 0◦ : 60◦ : 90◦ :

90◦ : 90◦ : 90◦.

Proof. We consider condition 2, where we only need to look at the extreme limiting

cases corresponding to c2 = y2 → 0 and ∞ as all other c2 have some finite aspect

ratio. In the former case, we see that the tetrahedron we get approaches a line

segment with the four points evenly spaced, thus giving us a spindle with three

edges of length 1
3 , two edges of length 2

3 , and one edge of length 1.

In the latter case, we have a plane-like shape where one edge has a short length,

which is precisely a wedge. All of the other edges tend to have the same length and

form two near-regular faces.

It remains an interesting issue, though beyond the scope of this work, to inves-

tigate the relations between these anisotropic SITet and the anisotropic CVTs or

CVTs in other metrics 21,39 and to determine, for what type of special anisotropic

quantities, the special high aspect ratio elements produced by SITet can offer the

most effective approximation/representation.
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5. Discussions

SITet and optimal tetrahedra among SITet are not only interesting geometric ob-

jects but also useful in broad applications. We focus on implications for optimal

tetrahedral meshing as an illustration.

First of all, it is well-known that optimal meshing depends on optimal placement

of vertices 2 and optimal connections between vertices to form meshing elements,

often via Delaunay triangulation 4,22,49. There is a strong tie between SSTet and

optimal unstructured tetrahedral mesh generation and optimization. In particular,

tetrahedral meshes made up by SSTet, as depicted in Figure 2, gives the dual Delau-

nay triangulation corresponding to optimal centroidal Voronoi tessellations (CVTs)
17,19. To further clarify, CVTs are Voronoi tessellations 4 whose generators all coin-

cide with the mass centroids of the Voronoi regions. Optimal CVTs are those CVTs

with the minimum CVT energy or clustering energy (also called quantization error

or mean square error 17,29). Asymptotically as the number of generators gets larger

and larger, Gersho’s Conjecture 29 states that the optimal CVT forms a regular

tessellation consisting of the replication of a single polytope whose shape depends

only on the spatial dimension. For a uniform density, the regular hexagon provides a

confirmation of the conjecture in 2D. For 3D, the special CVT (or quantizer) corre-

sponding to the body-centered cubic lattice (its Voronoi regions are the space-filling

truncated octahedra) is viewed as the optimal CVT 5,18,20. As stated above, the dual

tetrahedra for the dual Delaunay triangulation correspond precisely to SSTet, the

subject studied in this work.

Next, note that contrary to the 2D case, the appearance of opposing dihedral

angles of π/2 in the SSTet does not present degeneracy or numerical instability

in 3D, especially for the numerical solutions of many typical PDEs. When solving

typical elliptic problems, we expect to get the stiffness matrices to be M-matrices

on SSTet meshes, thus providing the desirable numerical stability. Numerical sim-

ulation of electromagnetic systems based on co-volume or Yee schemes can also be

implemented on 3D SSTet type meshes 45. Moreover, CVDT-like meshes or meshes

based on SSTet offer superconvergent properties 11,35 which can be effectively used

in many numerical PDE applications.

Finally, to avoid the geometric frustration due to the fact that regular tetrahe-

dra do not fill space, it is natural to explore new alternatives that either utilize a

nice tetrahedron that is space-filling or simple space-filling configurations consisting

of a patch of nice tetrahedra. With no gaps left to be filled, many of the elements

in the interior mesh can be optimized in a harmonious fashion, thus delegating the

issue of high quality meshing mostly to optimizing the boundary fitting. The study

given in this work addresses the first of these possibilities where the nice tetrahe-

dron is subdivision invariant and is given by the SSTet. When a large portion of a

complex geometric domain is filled by patches of SSTet, extra symmetry and struc-

ture properties can be utilized even with generically unstructured triangulations 11.

The subdivision invariance offers additional opportunities for developing multilevel
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resolution and fast numerical solvers. Hence, with effective CVT and CVDT con-

struction algorithms already available and nice approximation properties associated

with CVDT and SSTet being explored 18, we may argue that for isotropic tetrahe-

dral meshing, SSTet, which make up the optimal CVDT, are strong candidates for

optimal tetrahedra and perfect alternatives to regular tetrahedra in three dimen-

sion. Such a conclusion distinguishes from some other ones reported in the literature
1 where conventional regular tetrahedra are treated as the optimal choice. Indeed,

instead of attempting to produce regular tetrahedra, we advocate, a new paradigm

for three dimensional isotropic tetrahedral mesh generation and optimization that

is aimed at producing optimal elements given by the SSTet, and can be achieved

via the optimization of CVDT.

In closing, with expanding applications of computational geometric modeling

and growing interests in data sciences, there is a strong demand for building com-

putational tools and mathematical models that are suitable for high dimensional

geometry. Adopting the same geometric concepts developed historically in lower

dimensions such as those in two dimensions may not always be effective or appro-

priate for high dimensional problems. Using the re-examination of basic concepts

like regular and optimal tetrahedra as an illustration, we hope that this study helps

to motivate further development of new mathematical understandings of higher

dimensional geometry and related computational tools.
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