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Abstract

We study a class of nonlocal operators that may be seen as high order gen-
eralizations of the well known nonlocal diffusion operators. We present proper-
ties of the associated nonlocal functionals and nonlocal function spaces including
nonlocal versions of Sobolev inequalities such as the nonlocal Poincaré and non-
local Gagliardo–Nirenberg inequalities. Nonlocal characterizations of high order
Sobolev spaces in the spirit of Bourgain–Brezis–Mironescu are provided. Appli-
cations of nonlocal calculus of variations to the well-posedness of linear nonlocal
models of elastic beams and plates are also considered.

1. Introduction

The focus of this paper is to investigate the following class of nonlocal energy
functionals for a scalar function u : RN → R:

En(u) =
∫
RN

∫
RN

γn(|s|)|Ds
n[u](x)|2dsdx, n ∈ N, (1)

the associated variational problems, and the corresponding nonlocal operators.Here
Ds
n denotes an nth order difference operator, and γn : R+ → R+ is a compactly

supported function (kernel) corresponding to the indexn.A special instance, namely
E1, given by ∫

RN

∫
RN

γ1(|s|)|u(x + s) − u(x)|2dsdx

=
∫
RN

∫
RN

γ1(|y − x |)|u(y) − u(x)|2dydx,
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is a nonlocal functional that, together with its associated nonlocal operators and
nonlocal problems defined in nonlocal function spaces, has attracted much atten-
tion in recent literature, see for example [1–3,5,8,10,12,16,26]. We refer to [28]
for a survey and a more extensive list of references on related mathematical analy-
sis. Important to our study here is the fact that while the functional E1 defines a
natural nonlocal function space V1, containing u ∈ L2 with bounded E1(u) [9], it
has also been used for nonlocal characterizations of conventional Sobolev spaces
[5,26]. As a matter of fact, for suitably scaled kernel functions having their sup-
port shrinking to the origin, the local limit of the respective sequence of energy
functionals involving the first order difference operator Ds

1 becomes the Dirichelet
integral, that is, the square of the standard H1 semi-norm. The sequence of function
spaces may then be seen as a nonlocal characterization of H1 [5]. The correspond-
ing nonlocal operator becomes an analog of the classical, local, Laplacian. Thus,
functionals {En} corresponding to a higher order difference operator Ds

n may be
seen as the nonlocal analog of local functionals involving higher order deriva-
tives.

There have been various other studies of nonlocal operators related to high order
derivatives such as high order fractional Laplacian operators discussed in [29,32]
that are an extension to the study of [8], and the work in [4] as a higher order
extension of [5] on the nonlocal characterization of Sobolev spaces. It is worth
noting that our present work is not only driven by the large mathematical interest
in studying how properties of E1 may be extended to the more general class of
functionals {En}, but also finds motivation in their applications to the modeling of
various physical processes. Indeed, nonlocality is ubiquitous in nature. In recent
years, there have been many works that apply nonlocal models to give better de-
scriptions of the physical realities in many areas including materials and biological
sciences, mechanics, stochastic processes, data and image analysis [6,7,11,13–
15,17,23,30]. Studies of {En} not only enrich the mathematical theory but also
have potentially broader applications in these and other important fields. In prac-
tice, the nature of nonlocal interactions depends on the particular physical state and
may also be a result of the coarse graining process; this means that one may poten-
tially encounter very different types of nonlocal kernels associated with nonlocal
operators of different orders. A particular example is the nonlocal peridynamic
plate model considered in Section 6.1, which is derived in [24,25] using a general
non-ordinary state-based formulation of peridynamics. The kernel function used
for the fourth order nonlocal operator there can be modeled differently, say, from
that used for the second order nonlocal operators used in the ordinary bond based
peridynamicsmodel of Navier elasticity equations [20,30].Moreover, to be directly
applicable to [24,25], the kernels cannot be taken as those usual ones leading to
typical fractional Sobolev spaces. Furthermore, for coupled systems of nonlocal
models, the formulation may involve nonlocal interactions that are described by
matrix-valued or higher order tensor valued kernels [21]. As a first attempt, we do
not consider the tensor kernels here but elect to work with scalar-valued kernels
that are more general than those corresponding to fractional differential operators
considered by many existing studies. While these generalizations provide a more
physically desirable flexibility in treating different nonlocal interactions on dif-
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ferent orders and make the analyst readily applicable to recently studied nonlocal
mechanical models, it becomes evident that additional technical challenges also
arise in mathematical analysis, for example, the Fourier symbols of the associated
nonlocal operators no longer enjoy explicit forms so thatmore refinedmathematical
estimates on different symbols for operators of different orders have to be worked
out.

The main results of this paper contain the characterizations of the nonlocal
function spaces associated with the functionals {En}, including the various em-
bedding and compactness properties. Analogus to the classical counterpart, nonlo-
cal versions of Poincaré inequalities are also presented, including a version valid
for more general nonlocal kernels and a second one for more specialized ker-
nels that leads to sharper control on the Poincaré constant. In addition, we can
naturally consider nonlocal Gagliardo–Nirenberg type inequalities for norms asso-
ciated with the class of nonlocal spaces. Such results, in their general forms that
go beyond the conventional forms related to fractional Sobolev spaces, have not
appeared in the literature before to the best of our knowledge. These results offer
extensions to some previous works given initially in [5,26] and more recently in
[12,18,19,22]. Moreover, localizations of the related nonlocal spaces also offer
nonlocal characterizations of high order Sobolev spaces in the spirit of Bourgain–
Brezis–Mironescu are provided. Our results are established for functionals defined
in the whole space RN as well as in an open and bounded domain � ⊂ R

N . The
latter is made possible through the consideration of functions that vanish outside
�. This study can be viewed as part of the ongoing effort to establish a systematic
framework of nonlocal calculus of functions and nonlocal calculation of varia-
tions for nonlocal models [10,11,18,19]. As an illustration of its many possible
applications, the framework is used here to analyze a recently developed nonlocal
bending elasticity model of linear elastic beams [24,25]. The mathematical well-
posedness of such a model does not readily follow from known results on nonlocal
function spaces already given in the literature but relies on the new compactness
and localization properties of the corresponding function space and the nonlocal
Poincare inequalities established here with the more general kernels under our
considerations.

The paper is organized as follows. In Section 2, the class of nonlocal opera-
tors of interested are introduced and some preliminary results are given. In Sec-
tion 3, we present Nonlocal Sobolev type inequalities which are stated as Theo-
rems 2, 3, and 4 respectively. Theorems 2 and 4 are proved there, but the proof
of theorem 3 is postponed to Section 4 where compactness properties are estab-
lished. In fact, Section 4 contains several compactness results, stated and proved
as Theorems 5, 6 and 7, which further allow us to investigate limiting proper-
ties of nonlocal variational problems with vanishing nonlocality. Such proper-
ties are presented as Theorem 9 in Section 5. Then, in Section 6, we discuss a
particular application of the high order nonlocal operator theory to a nonlocal
model of a linear elastic beam, establishing the well-posedness and convergence
to the local PDE models in theorem 5. Some final remarks are given in Section
7. Detailed proofs of a couple of technical Lemmas 1 and 6 are given in the
appendix.
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2. Energy spaces and nonlocal operators

We first discuss some notations and terms used in (1). The associated nonlocal
function spaces, or energy spaces, as we later refer to, them and operators are then
introduced. The energy spaces are shown to be Hilbert spaces with norms defined
by the nonlocal functionals.

2.1. Definition and notation

First, with regard to the kernel functions {γn}, we assume that for any positive
integer n ∈ N,

{
γn is nonnegative, compactly supported, |x |2nγn(|x |) ∈ L1

loc(R
N ),

and there exist a constant η > 0, such that Bη(0) ⊂ Supp{γn(| · |)}. (K)

Next, for any s ∈ R, Ds
n denotes the n-th difference operator acting on any

function u: RN → R given by

Ds
n[u](x) =

n∑
j=0

(−1) j
(
n

j

)
u(x + a j

n s) where

(
n

j

)
= n!

j !(n − j)! (2)

and
{
a j
n = n+1

2 − j if n is odd, or
a j
n = n

2 − j if n is even.
(3)

The difference operators defined above allow us to interpret a higher order
difference operator by the composition of lower order difference operators. This
simple fact together with two other basic equalities are given in a lemma that will
be useful in subsequent calculations. The proof of the lemma is rudimentary and is
included in the Appendix for completeness.

Lemma 1. For n � 2, s ∈ R
N , Ds

n satisfies the following:

Ds
n = Ds

1 ◦ Ds
n−1 if n is odd, or Ds

n = −D−s
1 ◦ Ds

n−1 if n is even. (4)∣∣∣∣∣∣
n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n s

∣∣∣∣∣∣
2

= (2 − 2 cos(ξ · s))n, (5)

n∑
j=0

(−1) j
(
n

j

)
(a j

n )
n = n! . (6)

With the kernels and difference operators defined, we now introduce the asso-
ciated function spaces given by
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Sn,γn =
{
u ∈ L2(RN ) :

∫
RN

∫
RN

γn(|s|)|Ds
n[u](x)|2dsdx < ∞

}
. (7)

Obviously Sn,γn is a subspace of L2(RN ). For 0 < α < 1, if the kernel γ1(|s|)
behaves like |s|−N−2α near the origin, the space associated with S1,γ1 corresponds
to the usual fractional Sobolev space Hα . We note that the norm equivalence may
depend on how γ1(|s|) behaves away from the origin and its compact support, as
well as how it is normalized. Moreover, although our study covers such fractional
cases, our focus is on kernels thatmay behavemore generally at the origin, including
those γn(|s|) in L1

loc(R
N ) along with their 2n-moments as specified in assumption

(K).
For simplicity, whenever there is no notational confusion, we use Sn to denote

Sn,γn . Let the bilinear form ((·, ·))Sn : Sn × Sn → R be defined by

((u, v))Sn =
∫
RN

∫
RN

γn(|s|)
(
Ds
n[u](x)) (

Ds
n[v](x)) dsdx .

Then the space (Sn, (·, ·)Sn ) is a real inner product space with (·, ·)Sn defined as

(u, v)Sn = (u, v)L2 + ((u, v))Sn .

Now we use |u|Sn to denote the semi-norm
√

((u, u))Sn . Then Sn is equipped
with a norm ‖ · ‖Sn given by

‖u‖2Sn = ‖u‖2L2 + |u|2Sn .

Next, we consider a simple property of the difference operators which may
be viewed as an analog of the integration by parts formula. Similar formulae have
been discussed inmany earlier works such as [10,11]. For convenience, we drop the
domain of integration in the integral whenever there is no ambiguity, in particular,
when it is an integral over the whole space.

Lemma 2. (Integration by parts formula) The following is true for functions u, v ∈
L2(RN ) and ρ ∈ L1(RN ).

∫∫
ρ(|s|)u(x)Ds

1[v](x)dsdx =
∫∫

ρ(|s|)D−s
1 [u](x)v(x)dsdx .

Proof. It is very easy to check the following equalities.
∫∫

ρ(|s|)u(x)Ds
1[v](x)dsdx =

∫∫
ρ(|s|)u(x)(v(x + s) − v(x))dsdx

=
∫∫

ρ(|s|)(u(x − s) − u(x))v(x)dsdx

=
∫∫

ρ(|s|)D−s
1 [u](x)v(x)dsdx .

Another lemma is on characterizing the norm | · |Sn by the Fourier transform.



1526 X. Tian & Q. Du

Lemma 3. Suppose u is a function defined onRN , andF is denoted as the Fourier
transform of u, then for any n � 1
∫∫

γn(|s|)|Ds
n[u](x)|2dsdx =

∫∫
γn(|s|)(2 − 2 cos(ξ · s))n|û(ξ)|2dξds. (8)

Proof. By the Plancherel Formula, we have
∫∫

γn(|s|)|Ds
n[u](x)|2dsdx =

∫∫
γn(|s|)|Ds

n[u](x)|2dxds

=
∫
RN

γn(|s|)‖Ds
n[u](·)‖2L2(RN )

ds

=
∫
RN

γn(|s|)‖F
(
Ds
n[u](·)) ‖2L2(RN )

ds.

Now by the definition of Ds
n , we obtain∫

RN
γn(|s|)‖F

(
Ds
n[u](·)) ‖2L2(RN )

ds

=
∫∫

γn(|s|)
∣∣∣∣∣∣

n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n s

∣∣∣∣∣∣
2

|û(ξ)|2dξds.

Hence, by Lemma 1,

∣∣∣∣∣∣
n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n s

∣∣∣∣∣∣
2

= (2 − 2 cos(ξ · s))n,

we thus get the desired result.

Finally, to help establishing desired compactness properties in Section 4, we
quote here a result from [5, Lemma 2] as a lemma.

Lemma 4. Let g, h : (0, δ) → R+. Assume g(t) � g(t/2), t ∈ (0, δ), and that
h = h(t) is non-increasing. Then, for some C = C(d) > 0,

∫ δ

0
td−1g(t)h(t)dt � Cδ−d

∫ δ

0
td−1g(t)dt

∫ δ

0
td−1h(t)dt.

2.2. The energy spaces

We first show that the inner product space Sn = Sn,γn is complete, thus a
Hilbert space. Analogous results for the special case of n = 1, but for more general
vector fields, can be found in, for example, [18,19].

Theorem 1. For n ∈ Z
+, assume that γn satisfies (K ). Then (Sn, (·, ·)Sn ) is a

Hilbert space.
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Proof. It suffices to check that the space is complete under the norm ‖ · ‖Sn . Given
a Cauchy sequence {uk} ∈ Sn , it is also Cauchy in L2(RN ). So {uk}, up to a
subsequence, converges to some u ∈ L2(RN ). We show that |uk − u|Sn → 0 as
k → ∞.

For any ε > 0, we may choose M large enough such that |uk − um |2Sn � ε2

for any k,m � M . We then follow similar techniques as that in [18,19] to define
a cut-off of kernel γn by γ τ

n (r) = γn(r)χ[τ,∞)(r) to make γ τ
n integrable for any

given τ > 0, and∫∫
γ τ
n (|s|)(Ds

n[uk − um](x))2dsdx � |uk − um |2Sn .

We now first claim that, for any w, v ∈ Sn ,∫∫
γ τ
n (|s|)Ds

n[w](x)Ds
n[v](x)dsdx

= (−1)n
∫∫

γ τ
n (|s|)Ds

2n[w](x)v(x)dsdx . (9)

In fact, by Lemma 1, Ds
n[v] can be decomposed into Ds

1 ◦ Ds
n−1[v] or −D−s

1 ◦
Ds
n−1[v]. Then using the integration by parts formula in Lemma 2, we may throw

the first order difference operator to the term involving Ds
n[w](x) and apply Lemma

1 again to get −Ds
n+1[w](x). Repeating this procedure we can finally get (9).

Subsequently, we get∫∫
γ τ
n (|s|)(Ds

n[uk − um](x))2dsdx

= (−1)n
∫
RN

(∫
RN

γ τ
n (|s|)Ds

2n[uk − um](x)ds
)

(uk − um)(x)dx .

Since um → u in L2(RN ), we have for a fixed k, and all x ∈ R
N ,

lim
m→∞

∫
RN

γ τ
n (|s|)Ds

2n[uk − um](x)ds =
∫
RN

γ τ
n (|s|)Ds

2n[uk − u](x)ds.
Therefore by dominated convergence theorem,

(−1)n
∫
RN

(∫
RN

γ τ
n (|s|)Ds

2n[uk − u](x)ds
)

(uk − u)(x)dx

= lim
m→∞(−1)n

∫
RN

(∫
RN

γ τ
n (|s|)Ds

2n[uk − um](x)ds
)

(uk − um)(x)dx � ε2

for k � M . Now we can apply Equation (9) again and obtain∫∫
γ τ
n (|s|)(Ds

n[uk − u](x))2dsdx � ε2.

In the end, by letting τ → 0 and applying Fatou’s lemma, we have

|uk − u|Sn =
∫∫

γn(|s|)(Ds
n[uk − u](x))2dsdx � ε2,

which completes the proof.
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For � ⊂ R
N , we let Sn

� = Sn,γn
� denote the closure of C∞

c (�) in Sn , that is,

Sn
� = {u ∈ L2(RN ) : uk → u in Sn as k → ∞ for some uk ∈ C∞

c (�)}.
It is important to note that, for the later discussion on problems defined in a

bounded domain, if u ∈ Sn
� and supp(γn) ⊂ Bδ(0), then∫∫

γn(|s|)|Ds
n[u](x)|2dsdx =

∫
�∪�δ

∫
Bδ(0)

γn(|s|)|Ds
n[u](x)|2dsdx

where �δ := {x ∈ R
N\� : dist(x, ∂�) < δ}.

Wemay see that |·|Sn is indeed a norm as demonstrated in the following lemma.

Lemma 5. Suppose u ∈ Sn
� with γn satisfying (K ) and supp(γn) ⊂ Bδ(0), and∫∫
γn(|s|)|Ds

n[u](x)|2dsdx = 0,

then u = 0.

Proof. The conditions of the lemma imply that

Ds
n[u](x) = 0 for almost everywhere x ∈ � ∪ �δ and s ∈ Bδ(0).

Thus, u = u(x) must be a polynomial of degree (n − 1) almost everywhere in
� ∪ �δ . Now since u|�δ = 0 by assumption, we have u(x) ≡ 0 for almost
everywhere x ∈ � ∪ �δ .

2.3. The nonlocal operators

It is easy to see that Sn
� is also a Hilbert space with respect to the same inner

product, we can define naturally via the Riesz representation theorem a linear
operator Ln from Sn

� to its dual (Sn
�)∗ by

〈Lnu, v〉 = ((u, v))Sn , ∀ u, v ∈ Sn
�. (10)

First, Ln is a bounded linear operator on Sn
�. Next, if in addition to (K ), we

also have γn = γn(|x |) ∈ L1
loc(R

N ), then we have already seen from Equation (9)
that

Lnu(x) = (−1)n
∫
RN

γn(|s|)Ds
2n[u](x)ds, almost everywhere x ∈ �.

However, Ln is an unbounded operator if γn(| · |) /∈ L1
loc(R

N ). In this case, we
proceed in the way suggested by [19]. By introducing the sequence of operator

Lτ
nu(x) = (−1)n

∫
RN

γ τ
n (|s|)Ds

2n[u](x)ds,

for γ τ
n (|s|) defined earlier, we can show that Lτ

nu → Lnu, where Lnu is defined as

Lnu(x) = (P.V.) (−1)n
∫
RN

γn(|s|)Ds
2n[u](x)ds. (11)
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3. Nonlocal Sobolev type inequalities

In this section, we show several nonlocal Sobolev type inequalities, including
Poincaré type andGagliardo–Nirenberg type inequalities. First, we prove two kinds
of nonlocal Poincaré type inequalities. The first kind says that for every function u
of the space Sn

�, the L
2 norm of u can be bounded in terms of |u|Sn .

Theorem 2. (The 1st nonlocal Poincaré inequality) For n ∈ Z
+ and kernel γn

satisfying (K ), there exists C = C(n, γn,�) such that

‖u‖L2 � C |u|Sn ∀ u ∈ Sn
�.

The second kind of nonlocal Poincaré type inequalities extends the results above
and shows that a lower order norm (say, the n-th order norm |u|Sn ) can be bounded
by a higher order norm (say, |u|Sn+1 ) for any function u in the space defined by the
latter (that is, Sn+1

� ). Obviously, this cannot be true for arbitrary kernel functions
γn and γn+1. Hence, besides the assumption that γ1, γn, γn+1 are kernels satisfying
(K ) respectively, we assume further that,

γk is non-increasing, supp{γk(| · |)} ⊂ B1(0) for k = 1, n, γn+1 = γ1 γn,

(12)

and there is a constant C such that

In(ξ) I1(ξ) � C In+1(ξ), ∀ξ ∈ R
N , (13)

where

Ik(ξ) =
∫

γk(|s|)(1 − cos(ξ · s))kds, ∀k. (14)

We remark that while the requirement (13) might not appear very intuitive at
the first sight, it actually can be satisfied by a large class of kernels. For instance, if

γn(|s|) = (γ1)
n(|s|), and γn+1(|s|) = (γ1)

n+1(|s|), (15)

then (13) is true. This is a simple consequence of the fact that for A, B : X → R

and μ a positive measure on X , if

(A(x) − A(y))(B(x) − B(y)) � 0, ∀ x, y ∈ X

then ∫
X
ABdμ � 1

μ(X)

∫
X
Adμ

∫
X
Bdμ.

We may apply A(x) = (B(x))n with B(x) = γ1(|x |)(1 − cos(ξ · x)) and μ the
Lebesgue measure, then we see that (13) holds with C being the volume of the unit
ball in RN .

To present another class of examples different from the above, we first offer an
alternative characterization of (13) in the following lemma, whose proof is left to
the appendix.
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Lemma 6. (Another characterization of (13)) Assume that γ1, γn and γn+1 = γ1γn
are kernels that satisfy (K ) respectively and without loss of generality that Bη(0) ⊂
Supp{γk(| · |)} ⊂ B1(0) for all k. In addition, assume that the following properties
are satisfied.

(i)
∫

|s|<ε

γn(|s|)|s|2nds
∫

|s|<ε

γ1(|s|)|s|2ds � C
∫

|s|<ε

γn+1(|s|)|s|2n+2ds

for any ε � 1 with C independent of ε.

(ii)

(∫
|s|<ε

γk(|s|)|s|2kds
) (∫

ε<|s|<1
γk(|s|)ds

)−1

� Cε2k, k = 1, n,

for any ε � η with C independent of ε.

Then we have (13) satisfied.

Let us now check that if γ1 and γn satisfy

m1|x |−β1 � γ1(|x |) � M1|x |β1 and m2|x |−β2 � γn(|x |) � M2|x |β2
for some β1 ∈ [0, N + 2) and β2 ∈ [0, N + 2n), then (13) holds. Indeed, by direct
integration, we get the condition (i) of Lemma 6 since∫

|s|<ε

γn(|s|)|s|2nds
∫

|s|<ε

γ1(|s|)|s|2ds � CM1M2ε
2N+2n+2−β2−β1 ,

and ∫
|s|<ε

γn(|s|)γ1(|s|)|s|2n+2ds � Cm1m2ε
N+2n+2−β1−β2 .

As for the condition (ii) in Lemma 6, we show the case for k = 1 as an illustration.
For β1 � N , (∫

|s|<ε

γ1(|s|)|s|2ds
) / (∫

ε<|s|<1
γ1(|s|)ds

)

� CM1ε
N+2−β1

/ (∫
ε<|s|<1

γ1(|s|)ds
)

� Cε2,

and for N < β1 < N + 2,(∫
|s|<ε

γ1(|s|)|s|2ds
) / (∫

ε<|s|<1
γ1(|s|)ds

)
� C

M1

m1
εN+2−β1/(εN−β1 − 1)

= C
M1

m1
ε2/(1 − εβ1−N ) � Cε2, for ε � 1/2.

We now present the second nonlocal Poincaré inequality whose proof is pre-
sented in the next section as it relies on a compactness result given there.

Theorem 3. (The 2nd nonlocal Poincaré inequality) For n ∈ Z
+ and kernels {γn}

satisfying (K ), (12) and (13), there exists C = C(n, γn, γn+1,�) such that

‖u‖Sn � C |u|Sn+1 ∀ u ∈ Sn+1
� .
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The final result of this section is a Gagliardo–Nirenberg inequality stated below.

Theorem 4. (Nonlocal Gagliardo–Nirenberg inequality) For nonnegative integers
n, k1 and k2 with k1+k2 > 0, suppose that γn satisfies (K ), and α = k1/(k1 + k2),
the following nonlocal Gagliardo–Nirenberg type inequality holds:

|u|Sn � |u|1−α

S(n−k1) |u|αS(n+k2) , (16)

where S(n−k1) = Sn−k1,γ(n−k1) and S(n+k2) = Sn+k2,γ(n+k2) with properly cho-
sen kernels that, in particular, are given by γ(n−k1) = (γn)

1−k1/n and γ(n+k2) =
(γn)

1+k2/n.

We note that for n ∈ N, if k1 = 0, k2 = 1, then the above reduces to Theorem 3
with the simple case of (15) satisfied.

3.1. Proof of Theorem 2

Variants of the case n = 1 can be found inmany existing papers, say for example
[10,18]. Our proof follows a similar path.

Suppose that the conclusion of the theorem is false, then we can find a sequence
{uk ∈ Sn

�} such that ‖uk‖L2 = 1 and |uk |Sn → 0 as k → ∞. This leads to the
existence of a weak limit u ∈ L2 such that uk ⇀ u in L2.

Step 1. We show that u is in fact 0. Suppose {φε} are standard mollifiers, then

|φε ∗ uk |2Sn =
∫∫

γn(|s|)
∣∣Ds

n[φε ∗ uk](x)
∣∣2 dsdx

=
∫∫

γn(|s|)
∣∣∣∣
∫

Ds
n[uk](x − y)φε(y)dy

∣∣∣∣
2

dsdx

�
∫

φε(y)

(∫∫
γn(|s|)|Ds

n[uk](x − y)|2dsdx
)
dy

=
∫

φε(y)

(∫∫
γn(|s|)|Ds

n[uk](x)|2dsdx
)
dy,

where all integrals are over RN or RN × R
N respectively and the first inequality

follows from the Jensen’s inequality. This then leads to

|φε ∗ uk |Sn � |uk |Sn . (17)

Now uk ⇀ u in L2 implies φε ∗ uk → φε ∗ u strongly in L2. So φε ∗ uk → φε ∗ u
almost everywhere as k → ∞. Applying Fatou’s lemma to (17), we get, for any
fixed ε > 0,
∫∫

γn(|s|)|Ds
n[φε ∗ u](x)|2dsdx � lim inf

k

∫∫
γn(|s|)|Ds

n[φε ∗ uk](x)|2dsdx
� lim inf

k
|uk |2Sn = 0.
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With φε ∗ u → u pointwise, by applying Fatou’s lemma again, we get∫∫
γn(|s|)|Ds

n[u](x)|2dsdx � lim inf
ε

∫∫
γn(|s|)|Ds

n[φε ∗ u](x)|2dsdx = 0.

In addition, since uk |RN \� = 0 for any k and uk ⇀ u, we have u|
RN \� = 0. This

is u = 0 by Lemma 5.
Step 2. We next show that uk → u strongly in L2. First, for some M > 0, we

define γ̄n(|x |) = min{M, γn(|x |)}. Then, with b j
n := (−1) j

(n
j

)
, we have

|uk |2Sn �
∫∫

γ̄n(|s|)|Ds
n[uk](x)|2dsdx =

∫∫
γ̄n(|s|)

∣∣∣∣∣∣
n∑
j=0

b j
nuk(x + a j

n s)

∣∣∣∣∣∣
2

dsdx

=
n∑
j=0

(b j
n)

2
∫∫

γ̄n(|s|)u2k(x + a j
n s)dsdx

+ 2
∑
i �= j

binb
j
n

∫∫
γ̄n(|s|)uk(x + ains)uk(x + a j

n s)dsdx

=
n∑
j=0

(b j
n)

2
∫∫

γ̄n(|s|)u2k(x)dsdx

+ 2
∑
i �= j

binb
j
n

∫ (∫
γ̄n(|s|)uk(x + (ain − a j

n )s)ds

)
uk(x)dx

= I + II.

Now the first term

I =
n∑
j=0

(b j
n)

2
∫

γ̄n(|s|)ds
∫

u2k(x)dx → c‖uk‖2L2 , as k → ∞

for a constant c > 0. The second term

II = 2
∑
i �= j

binb
j
n

∫ (∫
γ̄n(|s|)uk(x + (ain − a j

n )s)ds

)
uk(x)dx

= 2
∑
i �= j

binb
j
n

∫
Fk(x)uk(x)dx,

where

Fk(x) =
∫
RN

γ̄n(|s|)uk(x + (ain − a j
n )s)ds

= 1

ain − a j
n

∫
RN

γ̄n

(∣∣∣∣∣
y − x

ain − a j
n

∣∣∣∣∣
)
uk(y)dy

= 1

ain − a j
n

∫
�

γ̄n

(∣∣∣∣∣
y − x

ain − a j
n

∣∣∣∣∣
)
uk(y)dy,
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which can be seen as the action of a Hilbert-Schmidt operator since γ̄n � M . So

Fk = Fk(x) → F = F(x) = 1

ain − a j
n

∫
�

γ̄n

(∣∣∣∣∣
y − x

ain − a j
n

∣∣∣∣∣
)
u(y)dy = 0

strongly in L2. Now that Fk → 0, and uk ⇀ u, we have

lim
k

∫
Fk(x)uk(x)dx = 0,

which implies II→0. Thus ‖uk‖L2 → 0 which is a contradiction to ‖uk‖L2 =1. ��

3.2. Proof of Theorem 4

First, by applying Lemma 3, we only need to show the following inequality in
order to have (16).

∫∫
γn(|s|)(2 − 2 cos(ξ · s))n|û(ξ)|2dξds

�
(∫∫

γ(n−k1)(|s|)(2 − 2 cos(ξ · s))n−k1 |û(ξ)|2dξds
)1−α

·
(∫∫

γ(n+k2)(|s|)(2 − 2 cos(ξ · s))n+k2 |û(ξ)|2dξds
)α

(18)

where û denotes the Fourier transform of u. Now let n1 = (1 − α)(n − k1) and
n2 = α(n + k2), then n = n1 + n2. By applying Hölder’s inequality, we have

∫
γn(|s|)(2 − 2 cos(ξ · s))nds =

∫
(γn(|s|))n1/n+n2/n(2 − 2 cos(ξ · s))n1+n2ds

�
(∫

γ(n−k1)(|s|)(2 − 2 cos(ξ · s))n−k1ds

)1−α

·
(∫

γ(n+k2)(|s|)(2 − 2 cos(ξ · s))n+k2ds

)α

.

Then, by splitting |û(ξ)|2 and using Hölder’s inequality with respect to the integral
in ξ , we have

∫∫
γn(|s|)(2 − 2 cos(ξ · s))n|û(ξ)|2dsdξ

�
∫ (∫

γ(n−k1)(|s|)(2 − 2 cos(ξ · s))n−k1ds|û(ξ)|2
)1−α

·
(∫

γ(n+k2)(|s|)(2 − 2 cos(ξ · s))n+k2ds|û(ξ)|2
)α

dξ
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�
(∫∫

γ(n−k1)(|s|)(2 − 2 cos(ξ · s))n−k1 |û(ξ)|2dsdξ
)1−α

·
(∫∫

γ(n+k2)(|s|)(2 − 2 cos(ξ · s))n+k2 |û(ξ)|2dsdξ
)α

.

Thus (18) is true. ��

4. Compact embeddings

The nonlocal Poincaré type inequalities imply continuous embedding between
spaces. In many applications, a stronger compact embedding result is necessary.
Here we give conditions so that such compactness holds.

Let γ1 satisfy (K ). In addition, as in [5], we assume that

lim
ε→0

ε2
(∫

|x |<ε

|x |2γ1(|x |)dx
)−1

= 0. (19)

We note that if γ1(|x |) has a singularity of the type 1/|x |N+2s for x at the origin
with exponent s ∈ (0, 1), which is a typical kernel for the standard Sobolev space
Hs , then the assumption (19) is satisfied. The results established here are more
general, however, as in the spirit of [5], that are valid for kernels which may not
have such singularities at the origin, including γ1(|x |) ∈ L1

loc(R
N ).

Theorem 5. Suppose that the kernels γ1, γn, γn+1 satisfy (12), (13) and (19). Let
F be a bounded set in Sn

�. If

|u|Sn+1 � C0 ∀ u ∈ F , (20)

then F is precompact in Sn
� and any of its limit point is in Sn+1

� with a norm
bounded by C0.

4.1. Proof of Thoerem 5

Step 1. Suppose (φε) are standard mollifiers defined as φε(x) = ε−Nφ(x/ε)
with integrals equal to 1, ‖φ‖∞ � C and Supp{φε} ⊂ Bε(0). We claim that for any
ε > 0, there exists σ = σ(ε) such that

|φε ∗ u − u|Sn � σ ∀ u ∈ F .

Indeed,

|φε ∗ u − u|Sn =
∫∫

γn(|s|)|Ds
n[φε ∗ u − u](x)|2dsdx

=
∫∫

γn(|s|)|(φε ∗ Ds
n[u] − Ds

n[u])(x)|2dsdx

=
∫∫

γn(|s|)
∣∣∣∣
∫
RN

(Ds
n[u](x − y) − Ds

n[u](x))φε(y)dy

∣∣∣∣
2

dsdx

�
∫
RN

∫∫
γn(|s|)φε(y)|Ds

n[u](x − y) − Ds
n[u](x)|2dydsdx,
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by Jensen’s inequality. Similarly to the proof of Lemma 3,∫
RN

(∫∫
γn(|s|)φε(y)|Ds

n[u](x − y) − Ds
n[u](x)|2dyds

)
dx

=
∫∫ ∥∥∥√

γn(|s|)φε(y)F
(
Ds
n[u](· − y) − Ds

n[u](·))
∥∥∥2
L2(RN )

dyds

=
∫∫ (∫

RN
γn(|s|)φε(y)(2 − 2 cos(ξ · y))(2 − 2 cos(ξ · s))n|û(ξ)|2dξ

)
dyds.

Combining the above two equalities and using ‖φε‖∞ � Cε−N , we get

|φε ∗ u − u|Sn

� Cε−N
∫

|y|<ε

∫∫
γn(|s|)(1 − cos(ξ · s))n|û(ξ)|2(1 − cos(ξ · y))dξdsdy

= Cε−N
∫ ε

0
t N−1G(t)dt, (21)

where G(t) is defined as

G(t) =
∫

ω∈SN−1

∫∫
γn(|s|)(1 − cos(ξ · s))n|û(ξ)|2(1 − cos(tξ · w))dξdsdω.

Using the fact that 1 − cos(2a) � 22(1 − cos(a)) for any a ∈ R, we have

G(2t) � 22G(t).

Applying Lemma 4 with g(t) = t−2G(t), h(t) = γ1(t), and d = N + 2, we get

C

εN+2

∫ ε

0
t N−1G(t)dt � C

(∫ ε

0
t N−1G(t)γ1(t)dt

)
/

(∫
|x |<ε

|x |2γ1(|x |)dx
)

.

(22)

For the right hand side, we have that, without loss of generality, for ε < 1,∫ ε

0
t N−1G(t)γ1(t)dt =

∫
RN

|û(ξ)|2In(ξ)

(∫
|s|<ε

γ1(|s|)(1 − cos(ξ · s))ds
)
dξ

�
∫
RN

|û(ξ)|2In(ξ)

(∫
|s|<1

γ1(|s|)(1 − cos(ξ · s))ds
)
dξ

=
∫
RN

|û(ξ)|2In(ξ) I1(ξ)dξ,

where In(ξ) and I1(ξ) are defined as in (14).
With the assumptions (12)–(13), we have by Lemma 3 that∫ ε

0
t N−1G(t)γ1(t)dt � C

∫
RN

|û(ξ)|2In+1(ξ)I1(ξ)dξ

=
∫
RN

|û(ξ)|2
∫

|s|<1
γn+1(|s|)(1 − cos(ξ · s))n+1dsdξ

� C
∫∫

γn+1(|s|)|Ds
n+1[u](x)|2dsdx . (23)
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Combining (21), (22) and (23), we obtain

|φε ∗ u − u|Sn � Cε2
(∫

|x |<ε

|x |2γ1(|x |)dx
)−1

→ 0 as ε → 0

by condition (19)
Step 2. In order to use Arzela–Ascoli, we first claim that {φε ∗ u}u∈F are

uniformly bounded and equicontinuous, that is,

‖φε ∗ u‖L∞(RN ) � Cε‖u‖L2(RN )

and

|φε ∗ u(x) − φε ∗ u(y)| � Cε‖u‖L2(RN )|x − y|,

where Cε only depends on ε. The first inequality follows from Hölder’s inequality
with Cε = ‖φε‖L2 . For the second inequality, since ‖∇(φε ∗ u)‖L∞ = ‖(∇φε) ∗
u‖L∞ � ‖∇φε‖L2‖u‖L2 , the inequality is true with Cε = ‖∇φε‖L2 . Now by
Theorem 2 and the bound (20), we see that {φε ∗u}u∈F are uniformly bounded and
equicontinuous as claimed. So φε ∗ u has a uniformly convergent subsequence by
Arzela–Ascoli. Moreover, since |φε ∗ u|Sn � |u|Sn � C by (17), the convergence
is also true inSn

� by dominated convergence theorem. So {φε ∗u}u∈F is precompact
in Sn

� for any ε > 0.
Step 3. We now combine Steps 1 and 2 to show that F is also precompact in

Sn
�.
Indeed, ∀ε > 0, by Step 1, there exists σ > 0, such that

|φε ∗ u − u|Sn � σ ∀ u ∈ F .

So for u, g ∈ F with |φε ∗ u − φε ∗ g|Sn � ε, we have

|u − g|Sn � 2σ + ε,

by triangle inequality. Now for any λ > 0, we could choose ε small enough such
that ε+2σ < λ. Since {φε ∗u}u∈F is precompact in Sn

�, there exists a finite ε-cover
{φε ∗ u1, φε ∗ u2, . . . , φε ∗ uk} of {φε ∗ u}u∈F . Then it immediately follows that
{u1, u2, . . . , uk} is a λ-cover of F , which means that F is precompact in Sn

�.
Step 4. Let us verify that the limit point ofF is in Sn+1

� . Suppose without loss of
generality that {uk} ⊂ F and uk → u in Sn

�, then we need to show |u|Sn+1 � C0.
By Theorem 2 we know that uk converges to u strongly in L2. So uk(x) → u(x)
pointwise up to a set of measure zero. Then by Fatou’s lemma

|u|2Sn+1 � lim inf
k

|uk |2Sn+1 � C2
0 .

��
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4.2. Another compactness result

To satisfy the assumption (19), the kernel γ1 has to have certain singularity at
zero in general, in particular, γ1 cannot be integrable. In the latter case, we have
the following variant of Theorem 5.

Theorem 6. (A variant of Thoerem 5) Suppose that the kernels γ1, γn, γn+1 satisfy
assumptions (12)–(13). If (uk) is a bounded sequence in Sn

�, and

|uk |Sn+1 → 0 as k → 0, (24)

then (uk) is relatively compact in Sn
� and any of its limit point u is in Sn+1

� with
|u|Sn+1 = 0.

Proof. Following Step 1 of proof of Thoerem 5, we have

‖φε ∗ uk − uk‖Sn � Cε2
(∫

|x |<ε

|x |2γ1(|x |)dx
)−1

‖uk‖Sn+1 ∀ k. (25)

Now since |uk |Sn+1 → 0 as k → ∞, (25) reduces to

|φε ∗ uk − uk |Sn → 0 as k → ∞ ∀ε > 0. (26)

Then similarly as Step 2 of proof of Thoerem 5, we can show (φε ∗uk)k is relatively
compact in Sn

� for any ε > 0. Therefore (uk) is also relatively compact in Sn
� by

(26).
Finally, suppose uk → u in Sn

� without loss of generality. Similarly as Step 4
of Theorem 5, we have

|u|2Sn+1 � lim inf
k

|uk |2Sn+1 = 0.

4.3. Proof of Theorem 3

The nonlocal Poincaré type inequality in Theorem 3 is a corollary of Theorem 6.
Assume the opposite, then there exists a sequence (uk) such that |uk |Sn = 1

and |uk |Sn+1 → 0. Then by Theorem 6, (uk) is relatively compact in Sn
�. Suppose

the limit of uk (up to a subsequence) in Sn
� is u. Then on one hand, |u|Sn = 1. On

the other hand, |u|Sn+1 = 0 by Theorem 6, which implies u = 0 by Lemma 5, so
it is in contradiction to |u|Sn = 1. ��

5. Limiting properties for vanishing nonlocality

In this section, we consider a fixed integer n, and study the a family of kernels
γ δ
n parametrized by δ that characterizes the nonlocal interaction length. Suppose

that γn satisfies (K ) and Supp{γn} ⊂ B1(0). Then the rescaled kernel γ δ
n is defined

by

γ δ
n (|s|) = 1

|δ|N+2n γn

( |s|
δ

)
for s ∈ Bδ(0), (27)
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which satisfies ∫
|s|2nγ δ

n (|s|)ds =
∫

|s|2nγn(|s|)ds.

To study the limiting behavior as δ → 0, we first give a continuous embedding
property.

Lemma 7. Assume the kernel γn satisfies (K ) with Supp{γn} ⊂ B1(0) and u ∈
Hn(� ∪ �1). Then

∫
�∪�1

∫
B1(0)

γn(|s|)|Ds
n[u](x)|2dsdx � C

(∫
|s|2nγn(|s|)ds

)
‖u‖2Hn ,

where C depends only on n and � ∪ �1 and Hn is the standard Sobolev space.

Proof. First, by standard extension we may always assume that u ∈ Hn(RN ).
Then, by the multivariate version of Talyor’s theorem, we have

Ds
n[u](x) =

n∑
j=0

(−1) j
(
n

j

) ∑
|α|=n

|α|
α! (a j

n s)
α

∫ 1

0
(1 − t)n−1Dαu(x + ta j

n s)dt,

where the multi-index notation is used, namely, for α = (α1, α2, . . . , αN )

|α| = α1 + · · · + αN , α! = α1! · · · αN !, sα = sα1
1 · · · sαN

N .

Therefore we obtain∫
RN

|Ds
n[u](x)|2dx

� c1(n)

∫
RN

|s|2n
n∑
j=0

∑
|α|=n

(∫ 1

0
(1 − t)n−1Dαu(x + ta j

n s)dt

)2

dx

� c1(n)

∫
RN

|s|2n
n∑
j=0

∑
|α|=n

∫ 1

0

(
Dαu(x + ta j

n s)
)2

dtdx

= c1(n)|s|2n
n∑
j=0

∑
|α|=n

∫ 1

0

∫
RN

(
Dαu(x + ta j

n s)
)2

dxdt

= c1(n)(n + 1)|s|2n
∑
|α|=n

∫
RN

(
Dαu(x)

)2 dx

� c1(n)(n + 1)|s|2n‖u‖Hn(R) � C(n,� ∪ �δ)|s|2n‖u‖2Hn(�∪�δ)

where c1(n) = ∑n
j=0

∑
|α|=n

(
(−1) j

(n
j

)
(a j

n )
n |α|

α!
)2
. This implies that

∫∫
γn(|s|)|Ds

n[u](x)|2dsdx � C

(∫
|s|2nγn(|s|)ds

)
‖u‖2Hn .
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Lemma 8. Suppose that γ δ
n are rescaled kernels defined as (27), then for u ∈

Hn
0 (� ∪ �1),

lim
δ→0

∫
�∪�δ

∫
Bδ(0)

γ δ
n (|s|)|Ds

n[u](x)|2dsdx =
∑
|α|=n

M(n, α)

∫
�

(Dαu(x))2dx

(28)

where

0 < M(n, α) =
∫

s2αγn(|s|)ds
∑

|β|=|θ |=n,
β+θ=2α

(n!)2
β!θ ! , Dαu = ∂ |α|u

∂xα1
1 · · · ∂xαN

N

with multi-indices α = (α1, . . . , αN ), β = (β1, . . . , βN ), and θ = (θ1, . . . , θN )

used.

Proof. First let Uδ(x, s) = (γ δ
n (|s|))1/2|Ds

n[u](x)|, then we have to prove that

lim
δ→0

‖Uδ‖2L2 =
∑
|α|=n

M(n, α)

∫
�

(Dαu(x))2dx .

By Lemma 7, we have for any u, v ∈ Hn
0 (� ∪ �1),

|‖Uδ‖L2 − ‖Vδ‖L2 | � ‖Uδ − Vδ‖L2 � C‖u − v‖Hn .

Therefore it suffices to prove the result for u in the dense subset C∞
c (� ∪ �1). In

this case, we obtain by Taylor expansion that

Ds
n[u](x) =

n∑
j=0

(−1) j
(
n

j

) ∑
|β|=n

(a j
n s)β

β! Dβu(x) + O(|s|n+1).

Then the higher order terms can be dropped since

∫
γ δ
n (|s|)|s|2n+1 → 0.

Thus,

lim
δ→0

∫
�∪�δ

∫
Bδ(0)

γ δ
n (|s|)|Ds

n[u](x)|2dsdx

=
⎛
⎝ n∑

j=0

(−1) j
(
n

j

)
(a j

n )
n

⎞
⎠

2

lim
δ→0

∫
�∪�δ

∫
Bδ(0)

γ δ
n (|s|)

⎛
⎝ ∑

|β|=n

sβ

β! D
βu(x)

⎞
⎠

2

dsdx
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= (n!)2 lim
δ→0

∑
|β|=|θ |=n

1

β!θ !
∫

�∪�δ

∫
Bδ(0)

γ δ
n (|s|)sβ+θ Dβu(x)Dθu(x)dsdx

=
∑

|β|=|θ |=n

(n!)2
β!θ !

∫
sβ+θ γn(|s|)ds

∫
�

Dβu(x)Dθu(x)dx,

where Equation (6) is used.
Now, for the summation in the last term, if there exists some index i such that

βi +θi is odd, then the integral of sβ+θ γn(|s|) becomes zero, which implies that the
summation is over all β, θ with |β| = |θ | = n and β + θ = 2α, for some |α| = n.
In addition, since u ∈ C∞

c (� ∪ �1), using integration by parts, we have

∫
�

Dβu(x)Dθu(x)dx =
∫

�

(D
β+θ
2 u(x))2dx .

Combining the above results we get the expression as the righthand side of (28).

In the following we choose a sequence of kernels {γ δk
n }, where δk → 0, and

study the compactness property as k → ∞.

Theorem 7. (Compactness) Suppose that {uk} is a bounded sequence in L2(�)

with zero extension outside �. If

sup
k

∫
�∪�δk

∫
Bδk (0)

γ δk
n (|s|)|Ds

n[uk](x)|2dsdx < ∞, (29)

then {uk} is relatively compact in L2(�). Moreover, any limit point u ∈ Hn
0 (�).

Proof. We follow the proof of Theorem 5 but with a slight modification. Instead
of comparing uk with φε ∗ uk , where φε is the standard mollifier, we compare uk
with a combination of mollifications of uk , in the L2 norm, in order to get an upper
bound in the form of (29).

As Ds
n is defined differently for n odd or even, different estimates are sought

after for the two cases. Without any loss of generality, we will only prove the case
n where n is an even number. The other case is essentially the same. Now we claim
that

lim
δ→0

lim sup
k→∞

∥∥∥∥∥∥
(
n
n
2

)
uk −

n
2−1∑
j=0

2(−1)
n
2−1− j

(
n

j

)
φ
a j
n ε

∗ uk

∥∥∥∥∥∥
L2

= 0. (30)

Indeed, we can write uk = ∫
uk(x)φε(s)ds and φ

a j
n ε

∗ uk = ∫
u(x + a j

n s)φε(s)ds.

By equating
(n
j

)
with

( n
n− j

)
for j = 0, 1, · · · , n

2 − 1, we can see that
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∣∣∣∣∣∣
(
n
n
2

)
uk −

n
2−1∑
j=0

2(−1)
n
2−1− j

(
n

j

)
φ
a j
n ε

∗ uk

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫ n∑

j=0

(−1) j
(
n

j

)
uk(x + a j

n s)φε(s)ds

∣∣∣∣∣∣
=

∣∣∣∣
∫

Ds
n[uk](x)φε(s)ds

∣∣∣∣ .
Then by Jensen’s inequality we have

∥∥∥∥∥∥
(
n
n
2

)
uk −

n
2−1∑
j=0

2(−1)
n
2−1− j

(
n

j

)
φ
a j
n ε

∗ uk

∥∥∥∥∥∥
L2

� C

εN

∫
|s|<ε

∫
|Ds

n[uk](x)|2dxds

= C

εN

∫ ε

0
t N−1G(t)dt,

where

G(t) =
∫

ω∈SN−1

∫
|Dtω

n [uk](x)|2dxdω.

Notice that G(2t) � 22nG(t). By applying Lemma 4 with g(t) = t−2nG(t), and
h(t) = γ

δk
n (t), and d = N + 2n, we get

∫ ε

0
t N−1G(t)dt � CεN+2n∫

|s|<ε

|s|2nγ δk
n (|s|)ds

(∫
|s|<ε

∫
γ δk
n (|s|)|Ds

n[uk](x)|2dxds
)

.

Now we see that, by (29) and the fact

lim
k→∞

∫
|s|<ε

|s|2nγ δk
n (|s|)ds =

∫
|s|2nγn(|s|)ds,

we conclude that (30) is true.
Similar to Step 2 of Theorem 5, we can show that the sequence

⎧⎨
⎩

n
2−1∑
j=0

2(−1)
n
2−1− j

(
n

j

)
φ
a j
n ε

∗ uk

⎫⎬
⎭

k

is uniformly bounded and equicontinuous thus relatively compact in L2. And (30)
implies that {uk}k is also relatively compact in L2.

Finally, suppose that uk → u in L2, we will show that u ∈ Hn
0 (�). Suppose

that ∫
�∪�δk

∫
Bδk (0)

γ δk
n (|s|)|Ds

n[uk](x)|2dsdx � C2
0 .
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Then consider the mollification φε ∗ uk , we also have∫∫
γ δk
n (|s|)|Ds

n[φε ∗ uk](x)|2dsdx � C2
0 ,

by Jensen’s inequality. Observe that uk vanishes outside �, so for each fixed ε,
φε ∗ uk → φε ∗ u in C∞

c (� ∪ �ε). So

∑
|α|=n

M(n, α)

∫
�∪�ε

(Dα(φε ∗ u)(x))2dx

= lim
k→∞

∫∫
γ δk
n (|s|)|Ds

n[φε ∗ u](x)|2dsdx

= lim
k→∞

∫∫
γ δk
n (|s|)|Ds

n[φε ∗ uk](x)|2dsdx � C2
0 .

where the first and second equalities are obtained by applying Lemmas 8 and 7
respectively. Now let ε → 0, we have

∑
|α|=n

M(n, α)

∫
�

(Dαu(x))2dx � C2
0 ,

which implies that∫
�

(Dαu(x))2dx is bounded ∀ α = (α1, . . . , αN ) with |α| = n.

Then byGagliardo–Nirenberg interpolation inequalities, we conclude that all lower
order derivatives are also bounded. Observe that the above estimates also work for
any �̃ that contains � (by viewing uk and u as functions defined on �̃ but vanish
outside �, that is, u |�c= 0). Therefore u ∈ Hn

0 (�).

Finally, by applying the above results, we have a sharper version of the 1st
nonlocal Poincaré inequality.

Theorem 8. There exists δ0 and C(δ0) such that for all δ ∈ (0, δ0],

‖u‖L2 � C(δ0)|u|Sn,γ δ
n
, ∀ v ∈ Sn,γ δ

n
�

Proof. Let

1

A
= inf

⎧⎨
⎩

∑
|α|=n

M(n, α)

∫
�

(Dαu(x))2dx : u ∈ Hn
0 (�), ‖u‖L2 = 1

⎫⎬
⎭ .

By standard local Poincaré inequalities, 0 < A < ∞. We claim that for given ε,
there exists some δ0(ε) such that for all δ < δ0 the lemma holdswithC(δ0) = A+ε.

We prove it by contradiction. Suppose there exists a C > A, such that for all
n, there exist δk → 0 and uk with the property that

‖uk‖2L = 1 and
∫

�∪�δk

∫
Bδk (0)

γ δk
n (|s|)|Ds

n[uk](x)|2dsdx � 1

C
,
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then by lemma 8, uk is relatively compact in L2. Moreover, any limit point u ∈
Hn
0 (�) and satisfies

∑
|α|=n

M(n, α)

∫
�

(Dαu(x))2dx � 1

C
.

This contradicts the assumption that A is the best Poincaré constant.

6. Application

We consider an example to illustrate the application of our analytic framework.
In [24,25], nonlocal peridynamic models for beams and plates were developed
which in the local limit recover the classical Euler-Bernoulli beam and Kirchhoff-
Loveplate. Thewell-posedness for the linear peridynamic beams andplates bending
elasticity models, along with rigorous connections to their local limits, can be
established using the theoretical results established above.

6.1. Peridynamic beams and plates

Consider u : RN → R to be the vertical displacement of a beam or plate, with
N = 1 and N = 2 respectively. The total nonlocal bending energy proposed in
[24,25] is defined by

Wδ(u) = 1

2

∫
�∪�δ

∫
Bδ(0)

ωδ(|ξ |)
(
u(x + ξ) − 2u(x) + u(x − ξ)

|ξ |
)2

dξdx,

(31)

where for consistency with discussions in the earlier sections, the notation ωδ is
used instead of the original notation appeared in [24,25].

6.2. The variational problems

Notice that the nonlocal bending energy (31) is exactly one half of the functional
(1) with n = 2 and γ2(|ξ |) being replaced by ωδ(|ξ |)

|ξ |2 . The existence of the minimizer
of the energy (31) can be seen through the following formulation of the variational
problem.

We associate it with a bilinear form bδ(·, ·) : S2,γ δ

� × S2,γ δ

� → R through

bδ(u, v) = ((u, v))S2,γ δ ,

for any given δ > 0, where γ δ(|ξ |) = ωδ(|ξ |)/|ξ |2 is supported on Bδ(0). We then
consider the variational problem defined by: given f ∈ L2(�),

find uδ ∈ S2,γ δ

� such that bδ(uδ, v) = ( f, v)L2 ∀ v ∈ S2,γ δ

� . (32)
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As before, bδ(·, ·) induces a natural linear operator Lδ : S2,γ δ

� → (S2,γ δ

� )∗ via

〈Lδu, v〉 = bδ(u, v) for u, v ∈ S2,γ δ

� ,

which, based on Section 2.3, corresponds to Equation (11) with n = 2. Therefore,

Lδu(x) = (P.V.)
∫
Bδ(0)

ωδ(|ξ |)/|ξ |2Dξ
4 [u](x)dξ for x ∈ �, (33)

with

Dξ
4 [u](x) = u(x + 2ξ) − 4u(x + ξ) + 6v(x) − 4u(x − ξ) + u(x + 2ξ).

6.3. The limiting behavior for vanishing nonlocality

To study the limit as δ → 0, we first, similar to the practice in [24,25], assume
that

m =
∫
Bδ(0)

ωδ(|ξ |)|ξ |2.

Now suppose that u ∈ Hn , by applying Lemma 8 to the functional (31), namely,
with n = 2 and N = 1, 2, we can get the limit energy functional. Notice that for
N = 1, we have only one case α = β = θ = 2. For N = 2, the values of α, β and
θ we can take are listed as follows:

– α = (2, 0), β = θ = (2, 0),
– α = (0, 2), β = θ = (0, 2),
– α = (1, 1), β = θ = (1, 1),
– α = (1, 1), β = (2, 0), θ = (0, 2),
– α = (1, 1), β = (0, 2), θ = (2, 0).

Hence, after collecting like terms, the limit local energy functional of (31) is of the
form

W0(u) = am

2

∫
�

(u′′(x))2dx

for N = 1, or, we have for N = 2,

W0(u) = 3am

16

∫
�

(�u(x))2dx .

Now define the associated bilinear form b0(·, ·) : H2
0 (�) × H2

0 (�) → R as

b0(u, v) =
{
m

∫
�
u′′(x)v′′(x)dx, for N = 1,

3m
8

∫
� (�u(x)�v(x)) dx, for N = 2.

Then variational problem is defined by: given f ∈ L2(�),

find u0 ∈ H2
0 (�) such that b0(u0, v) = ( f, v)L2 ∀ v ∈ H2

0 (�). (34)
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Similarly, we can associate a linear operatorL0 : Hn
0 (�) → (Hn

0 (�))∗ through

〈L0u, v〉 = b0(u, v) for u, v ∈ H2
0 (�).

Now from integration by part, we know that for u ∈ C∞, L0u can be written
as

L0u(x) =
{
mu(4)(x) for N = 1;
3m
8 �2u(x) for N = 2.

Lemma 9. For all u ∈ C∞
c (�), and x ∈ �, we have

Lδu(x) → L0u(x) as δ → 0.

Proof. Through Taylor expansion, it is straightforward to check the convergence.
Here we only prove for N = 2. In this case,∫

Bδ(0)
ωδ(|ξ |)/|ξ |2Dξ

4 [u](x)dξ

=
4∑
j=0

(−1) j
(
4

j

)
(a j

4 )
4

∑
|α|=4

Dαu(x)

α!

×
(∫

Bδ(0)

ω(|ξ |)
|ξ |2 ξαdξ + O

(∫
Bδ(0)

ω(|ξ |)|ξ |3dξ
))

= 24
∑
|α|=4

Dαu(x)

α!
(∫

Bδ(0)

ω(|ξ |)
|ξ |2 ξαdξ

+O

(∫
Bδ(0)

ω(|ξ |)|ξ |3dξ
))

.

Notice that for |α| = 4, the integrals of ξαω(|ξ |)/|ξ |2 over Bδ(0) are not zero only
for α = (4, 0), (0, 4), (2, 2). Then

lim
δ→0

∫
Bδ(0)

ω(|ξ |)/|ξ |2Dξ
4 [u](x)dξ

=
∫ δ

0
ω(r)r3dr

(
3π

4

∂4u

∂x41
+ 3π

4

∂4u

∂x42
+ 6π

4

∂2u

∂x21

∂2u

∂x22

)

= 3

8

(∫
Bδ(0)

ωδ(|ξ |)|ξ |2dξ
)

�2u(x) = 3m

8
�2u(x).

From the proof the above result, we see that the convergence is not only point-
wise, but also uniform in �. So it is easy to see also that Lδu → L0u in L2(�).

6.4. Nonlocal variational problems and local limit

Theorem 9. The variational problem (32) is well posed with a unique solution

uδ ∈ S2,γ δ

� with a uniformly bounded norm ‖uδ|S2,γ δ

�

, independent of δ > 0.

Moreover,
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‖uδ − u0‖L2 → 0 as δ → 0,

where u0 is the solution of the local variational problems(34).

Proof. First, for each given δ > 0, by Lax–Milgram via the 1st nonlocal Poincaré

inequality in Theorem 2, we have the existence of a unique solution uδ ∈ S2,γ δ

� to
(32) and with a uniformly bounded norm ‖uδ|S2,γ δ

�

, independent of δ > 0.

As for the local limit as δ → 0, we first have estimates for |uδ|S2,γ δ as follows.

|uδ|2S2,γ δ = bδ(uδ, uδ) = ( f, uδ)L2 � ‖ f ‖L2‖u‖L2 � C‖ f ‖L2 |uδ|S2,γ δ ,

by the sharp Poincaré inequality, which implies that |uδ|S2,γ δ is uniformly bounded.
Then {uδ} is relatively compact in L2 by Theorem 7, and each limit point u ∈
Hn
0 (�). Now we only need to show that u = u0. This is true because for any

v ∈ C∞
c (�),

( f − L0u, v)L2 = (Lδuδ − L0u, v)L2 = (uδ,Lδv)L2 − (u0,L0v)L2

= (uδ,Lδv − L0v)L2 + (uδ − u,L0v)L2

� ‖uδ‖L2‖Lδv − L0v‖L2 + ‖uδ − u‖L2‖L0v‖L2 → 0

as δ → 0.

7. Conclusion

Our study has focused on generalizing analytical properties associated with
the nonlocal diffusion operator to higher order nonlocal operators corresponding
to, in the local limit, high order elliptic differential operators. Naturally, nonlocal
extensions of local differential operators can be defined in various fashions that are
different from the way given in this work. For example, one may take compositions
of low order nonlocal operators directly to get high order ones, though such a
formulation involves integrations in higher and higher dimensional spaces. Indeed,
we note with much interest a recent work [27] which has developed a nonlocal
biharmonic operator as a square of the nonlocal diffusion (Laplacian) operator. In
this wrok, the well-posedness and the local limit to the conventional biharmonic
operators are subjected to various types of boundary conditions. Furthermore, one
may also consider combinations of nonlocal operators in these different forms to
model various physical systems; a practice that was used in [11,20,30]. Moreover,
we have limited the study to the case of scalar fields. In the future, it is natural
to further study the extension of the nonlocal calculus of variations to high order
operators and functionals defined for more general vector fields. Time-dependent
andnonlinear problems can also be studied. Such studiesmayfindmore applications
in the analysis of nonlocal, nonlinear systems, and serve as the rigorous foundation
to algorithm development [31] and computational simulations of physical problems
based on nonlocal mathematical models.
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Appendix 1: Proof of Lemma 1

For the first result, we prove the case with n being even. Similar proof works
for n odd. For any u : RN → R, by definition,

Ds
n[u](x) =

n∑
j=0

(−1) j
(
n

j

)
u

(
x +

(n
2

− j
)
s
)

and

Ds
n−1[u](x) =

n−1∑
j=0

(−1) j
(
n − 1

j

)
u

(
x +

(n
2

− j
)
s
)

,

−D−s
1 [u](x) = u(x) − u(x − s).

Therefore,

−D−s
1 ◦ Ds

n−1[u](x)

=
n−1∑
j=0

(−1) j
(
n − 1

j

)
u

(
x +

(n
2

− j
)
s
)

−
n−1∑
j=0

(−1) j
(
n − 1

j

)
u

(
x +

(n
2

− j − 1
)
s
)

=
n−1∑
j=1

(−1) j
((

n − 1

j

)
+

(
n − 1

j − 1

))
u

(
x +

(n
2

− j
)
s
)

+ u
(
x + n

2
s
)

+ u
(
x − n

2
s
)

=
n∑
j=0

(−1) j
(
n

j

)
u

(
x +

(n
2

− j
)
s
)

= Ds
n[u](x).

For the second result, we prove it by induction. For n = 1, the equality is true
because |eiξ ·s − 1|2 = 2 − 2 cos(ξ · s). Note also that |eiξ ·s − 1|2 = |e−iξ ·s − 1|2.

Assume the equality is true for n − 1, that is,
∣∣∣∣∣∣
n−1∑
j=0

(−1) j
(
n − 1

j

)
eiξ ·a j

n−1s

∣∣∣∣∣∣
2

= (2 − 2 cos(ξ · s))n−1.

We consider two cases, where n is even or odd. For n even, we have a j
n−1 =

n/2 − j = a j
n for j = 0, 1, . . . n. Then

n−1∑
j=0

(−1) j
(
n − 1

j

)
eiξ ·a j

n−1s)(e−iξ ·s − 1)

=
n−1∑
j=0

(−1) j
(
n − 1

j

)
eiξ ·(a j

n−1−1)s +
n−1∑
j=0

(−1) j+1
(
n − 1

j

)
eiξ ·a j

n−1s
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=
n−1∑
j=0

(−1) j+2
(
n − 1

j

)
eiξ ·a j+1

n−1s +
n−1∑
j=0

(−1) j+1
(
n − 1

j

)
eiξ ·a j

n−1s

=
n∑
j=1

(−1) j+1
(
n − 1

j − 1

)
eiξ ·a j

n−1s +
n−1∑
j=0

(−1) j+1
(
n − 1

j

)
eiξ ·a j

n−1s

= −eiξ ·a0n−1s +
n−1∑
j=1

(−1) j+1
((

n − 1
j − 1

)
+

(
n − 1

j

))
eiξ ·a j

n−1s

+(−1)n+1eiξ ·ann−1s

= −
n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n−1s = −1
n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n s .

Thus we see that∣∣∣∣∣∣
n∑
j=0

(−1) j
(
n

j

)
eiξ ·a j

n s

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
n−1∑
j=0

(−1) j
(
n − 1

j

)
eiξ ·a j

n−1s

∣∣∣∣∣∣
2

|e−iξ ·s − 1|2

= (2 − 2 cos(ξ · s))n−1 · (2 − 2 cos(ξ · s)) = (2 − 2 cos(ξ · s))n .
For n odd, we can similarly prove the equality by changing the multiplication factor
used above with eiξ ·s − 1. Thus we complete the induction.

Now to show the last equality in the lemma, we notice that

n∑
j=0

(−1) j
(
n

j

)
(a j

n )
n = D1

n[xn](0).

Since the nth order difference approximation is exact for a nth degree polynomial,
we know that D1

n[xn](0) = n!. ��

Appendix 2: Proof of Lemma 6

First, it is not hard to see that the inequality in assumption (13) is true for
|ξ | � 1. Indeed, since a2/4 � 1− cos(a) � a2/2 for any real number |a| < 1, we
have

In(ξ) I1(ξ) � |ξ |2n+2

2n+1

∫
|s|<1

γn(|s|)|s|2nds
∫

|s|<1
γ1(|s|)|s|2ds

� C
|ξ |2n+2

2n+1

∫
|s|<1

γn+1(|s|)|s|2n+2ds,

where the last inequality is implied by assumption of the Lemma. Also since we
have

1

4n+1

∫
|s|<1

γn+1(|s|)|ξ · s|2n+2ds �
∫

|s|<1
γn+1(|s|)(1 − cos(ξ · s))n+1ds,
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then the case |ξ | � 1 is true only if

C̃ |ξ |2n+2
∫

|s|<1
γn+1(|s|)|s|2n+2ds �

∫
|s|<1

γn+1(|s|)|ξ · s|2n+2ds

or equivalently if for any ξ̃ ∈ SN−1, the unit sphere in RN ,

C̃
∫

|s|<1
γn+1(|s|)|s|2n+2ds �

∫
|s|<1

γn+1(|s|)|ξ̃ · s|2n+2ds

for some constant C̃ . The last can be established by taking note of the rotational
symmetry of the integral on the right hand side with respect to ξ̃ so that, with {ek}
being the canonical orthonormal basis in RN , we have

∫
|s|<1

γn+1(|s|)|ξ̃ · s|2n+2ds = 1

N

N∑
k=1

∫
|s|<1

γn+1(|s|)|ek · s|2n+2ds

� C̃ |ξ |2n+2
∫

|s|<1
γn+1(|s|)|s|2n+2ds,

where C̃ depends only on N and n.
Now, we consider the case where |ξ | > 1. We split the integrals In(ξ) and

I1(ξ) over the domain {|s| < 1} into two parts {|s| < t} and {t < |s| < 1}, where
the positive parameter t is sufficiently small such that 0 < t � 1/|ξ |. Then using
the estimates 1−cos(a) � a2/2 for any |a| < 1, and 1−cos(a) � 2 for any a ∈ R

respectively, we have∫
|s|<1

γk(|s|)(1 − cos(ξ · s))kds

� |ξ |2k
2k

∫
|s|<t

γk(|s|)|s|2kds + 2k
∫
t<|s|<1

γk(|s|)ds

for k = 1 and k = n. Now since γ1 and γn are non-increasing, we get that∫
t<|s|<1

γ1(|s|)ds
∫
t<|s|<1

γn(|s|)ds � (1 − t)
∫
t<|s|<1

γ1(|s|)γn(|s|)ds

�
∫
t<|s|<1

γ1(|s|)γn(|s|)ds =
∫
t<|s|<1

γn+1(|s|)ds.

Also by assumption (12), we have∫
|s|<t

γ1(|s|)|s|2ds
∫

|s|<t
γn(|s|)|s|2nds � C

∫
|s|<t

γn+1(|s|)|s|2n+2ds.

Denoting, for k = 1, n and n + 1,

At
k = Ck |ξ |2k

∫
|s|<t

γk(|s|)|s|2kds, Bt
k = C̃k

∫
t<|s|<1

γk(|s|)ds.

Then the above results show that At
1A

t
n � CAt

n+1 and Bt
1B

t
n � Bt

n+1.
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Meanwhile, we see from Lemma 6 that for k = 1, n and

At
k/B

t
k =

Ck |ξ |2k
∫

|s|<t
γk(|s|)|s|2kds

C̃k

∫
t<|s|<1

γk(|s|)ds
,

we have Aτ
k/B

τ
k is bounded for τ = ζ/|ξ |, where ζ is a small number less than η

which is a parameter to be specified later. Together, we get

(Aτ
1 + Bτ

1 )(Aτ
n + Bτ

n ) � C̃(Aτ
n+1 + Bτ

n+1).

Now to complete the proof, we only need to show that there exists a constant
C0 independent of ξ such that

C0(A
τ
n+1 + Bτ

n+1) �
∫

|s|<1
γn+1(|s|)(1 − cos(ξ · s))n+1ds.

To show the above inequality, we split the integral on the right hand side into two
parts {|s| < τ } and {τ < |s| < 1}. Similarly as before, we can see that the first part∫

|s|<τ

γn+1(|s|)(1 − cos(ξ · s))n+1ds � 1

4n+1

∫
|s|<τ

γn+1(|s|)|ξ · s|2n+2ds

� 1

4n+1 |ξ |2n+2
∫

|s|<τ

γn+1(|s|)|s|2n+2ds = 1

4n+1 A
τ
n+1.

For the second part, define,

I(ξ) =
∫

τ<|s|<1
γn+1(|s|)(1 − cos(ξ · s))n+1ds

then I(ξ) is rotationally invariant with respect to ξ , that is I(ξ) = I(|ξ |e) for any
unit vector e ∈ R

N . Now define the set

E |ξ | =
∞⋃

k=−∞

(
2kπ − ζ/2

|ξ | ,
2kπ + ζ/2

|ξ |
)

,

then

I(|ξ |e) �
∫

{s:τ<|s|<1,e·s /∈E |ξ |}
γn+1(|s|)(1 − cos(|ξ |e · s))n+1ds

� C(ζ )

∫
{s:τ<|s|<1,e·s /∈E |ξ |}

γn+1(|s|)ds.

Thus,

I(ξ) � C(ζ )

|SN−1|
∫
SN−1

∫
{s:τ<|s|<1,e·s /∈E |ξ |}

γn+1(|s|)dsde

= C(ζ )

|SN−1|
∫

τ<|s|<1
γn+1(|s|)

∫
SN−1∩{e:e·s /∈E |ξ |}

deds

= C(ζ )

∫
τ<|s|<1

γn+1(|s|)Ĩ(s, |ξ |)ds,
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where

Ĩ(s, |ξ |) := 1

|SN−1|
∫
SN−1∩{e:e·s /∈E |ξ |}

de.

Notice that Ĩ(s, |ξ |) is rotationally invariantwith respect to s, namely, Ĩ(s, |ξ |) =
Ĩ(|s|e′, |ξ |) for any e′ ∈ SN−1. We claim that Ĩ(s, |ξ |) � C0, for τ < |s| < 1 and
C0 independent of ξ . If this is true, then I(ξ) � C(ζ )C0Bτ

n+1, which makes the
proof complete.

To establish the claim on Ĩ(s, |ξ |) = Ĩ(|s|e′, |ξ |), we take e′ to be the first axis
directionvector inRN anddefinem = m(r) to be themeasure of {(e1, e2, . . . , eN ) ∈
SN−1 : e1 /∈ Er } for r = |ξ ||s| and τ < |s| < 1. The claim then follows if
we can show that m(r) is bounded below for ζ � r � |ξ | by some constant
C0 > 0 independent of |ξ |. It is easy to see that m = m(r) is positive and con-
tinuous for any finite r , then we only need to show that lim infr→∞ m(r) �= 0.
Indeed, for (e1, e2, . . . , eN ) ∈ SN−1 with e1 ∈ Er ∩ (−√

2/2,
√
2/2), the interval

((4kπ − ζ )/(2r), (4kπ + ζ )/(2r)) may be a portion of (−√
2/2,

√
2/2) only if

−
√
2r

4π
− ζ

4π
< k <

√
2r

4π
+ ζ

4π

and the number of such k’s is no greater than
√
2r/(2π)+ ζ/(2π)+1. In addition,

meas({(e1, . . . , eN ) ∈ SN−1 : e1 ∈
(
4kπ − ζ

2r
,
4kπ + ζ

2r

)
∩

(
−

√
2

2
,

√
2

2
)}

)

is bounded above by |SN−2|√2ζ/r . Taking ζ � 1
2π |SN−1|/|SN−2|, we get

lim inf
r→∞ m(r) � lim inf

r→∞
1

2
− |SN−2|

|SN−1|
√
2
ζ

r

(√
2r

2π
+ ζ

2π
+ 1

)

= 1

2
− |SN−2|

|SN−1|
ζ

π
> 0,

which is always positive. This verifies the claim on Ĩ(s, |ξ |). Therefore the proof
is completed.
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