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Abstract Approximations of solutions of fractional Laplacian equations on bounded
domains are considered. Such equations allow global interactions between points
separated by arbitrarily large distances. Two approximations are introduced. First,
interactions are localized so that only points less than some specified distance,
referred to as the interaction radius, are allowed to interact. The resulting truncated
problem is a special case of a more general nonlocal diffusion problem. The second
approximation is the spatial discretization of the related nonlocal diffusion problem.
A recently developed abstract framework for asymptotically compatible schemes is
applied to prove convergence results for solutions of the truncated and discretized
problem to the solutions of the fractional Laplacian problems. Intermediate results
also provide new convergence results for the nonlocal diffusion problem. Special
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attention is paid to limiting behaviors as the interaction radius increases and the
spatial grid size decreases, regardless of how these parameters may or may not be
dependent. In particular, we show that conforming Galerkin finite element approx-
imations of the nonlocal diffusion equation are always asymptotically compatible
schemes for the corresponding fractional Laplacian model as the interaction radius
increases and the grid size decreases. The results are developed with minimal regu-
larity assumptions on the solution and are applicable to general domains and general
geometric meshes with no restriction on the space dimension and with data that are
only required to be square integrable. Furthermore, our results also solve an open
conjecture given in the literature about the convergence of numerical solutions on a
fixed mesh as the interaction radius increases.

Keywords Nonlocal diffusion · Fractional Laplacian · Numerical approximation ·
Convergence · Asymptotically compatible schemes

Mathematics Subject Classification (2010) 65R20 · 35R11 · 46N40 · 65N30

1 Introduction

The fractional Laplacian operator appears in several nonstandard models in situa-
tions for which standard models have been found to not always adequately represent
the physics of the problem being modeled. Popular examples include anomalous dif-
fusion problems and quantum theory [20]. Analogous to the way that the Laplacian
operator is related to Brownian processes and Feymann path integrals, the fractional
Laplacian is related to α-stable Lévy processes and Lévy path integrals. More pre-
cisely, the fractional Laplacian operator can be the generator of an α-stable Lévy
process [28]. Unlike Brownian processes for which paths are continuous, α-stable
Lévy processes are jump processes for which paths can include jumps of arbitrarily
large length.

In this paper, we consider the fractional Laplacian equation posed on general
bounded domains Ω ⊂ R

n. Unlike the classical Poisson problem for the Laplacian
operator for which well posedness requires the specification of values of the solution
along only the boundary of Ω , for the fractional Laplacian equation considered in
this paper, one needs to specify values of the solution over all of the complement of
Ω in Rn. Thus, in designing a discretization algorithm, e.g., a finite element method,
for the fractional Laplacian equation one must deal with the unbounded nature over
which the constraint in the solution is applied. Here, we precede the spatial discretiza-
tion of the equation by a truncation step such that interactions between a point in Ω

with other points in R
n is limited to a ball of finite radius λ. This is reminiscent to

the introduction of a horizon parameter in the nonlocal peridynamic theory of elas-
ticity [30] that characterizes the finite range of nonlocal interactions. Our focus is on
studying the convergence properties of approximations of the solution of the frac-
tional Laplacian equation as the interaction radius λ → ∞ and also as h → 0, where
h denotes a measure of the grid size of, e.g., a finite element discretization of the
truncated problem.
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1.1 The fractional Laplacian problem and its approximation through
truncation

Let Ω ⊂ R
n denote a bounded, open domain with a piecewise planar boundary. The

fractional diffusion problem, as modeled using the fractional Laplacian operator, is
defined as {

(−Δ)αu = f on Ω

u = 0 on Ωc = R
n\Ω .

(1)

Here, the fractional Laplacian operator (−Δ)α with 0 < α < 1 is the pseudo-
differential operator with symbol |ξ |2α , that is [31],

F[(−Δ)αu](ξ) = |ξ |2αF[u](ξ) ,

where F[·] denotes the Fourier transform. It is well known [26] that an equivalent
definition of the fractional Laplacian operator is by given by

(−Δ)αu(x) = Cn,α

∫
Rn

u(x) − u(y)
|x − y|n+2α

dy , (2)

where

Cn,α = π−( n
2+2α)

Γ (n
2 + α)

Γ (−α)

with Γ (·) denoting the gamma function. The integral in Eq. 2 and similar integrals in
the sequel should be understood in the sense of principal value [18, 23].

The problem (1) involves global interactions in R
n. Computationally, it is conve-

nient to restrict the interaction to a smaller neighborhood. Thus, based on Eq. 2, we
approximate, for any x ∈ Ω , the fractional Laplacian operator as

(−Δ)αu ≈ Lλu(x) := Cn,α

∫
Rn

1λ(x, y)
u(x) − u(y)
|x − y|n+2α

dy , (3)

where, for some 0 < λ < ∞ and with Bλ(x) = {y ∈ R
n : |y − x| < λ}, 1λ(x, y)

denotes the indicator function

1λ(x, y) =
{
1 ∀ y ∈ Bλ(x)

0 otherwise.

Formally speaking, the fractional Laplacian operator (−Δ)α is the limit, as λ →
∞, of the nonlocal integral operator Lλ defined by the right-hand side of Eq. 3; this
notion is made rigorous in this paper.

It is easy to see that if the fractional Laplacian in Eq. 1 is replaced by the
approximation (3), we are then led to a finite domain approximate problem given by⎧⎪⎨

⎪⎩
Lλuλ(x) = Cn,α

∫
Ω∪Ωλ

1λ(x, y)
uλ(x) − uλ(y)
|x − y|n+2α

dy = f for x ∈ Ω

u = 0 for x ∈ Ωλ ,

(4)
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where Ωλ denotes the shape interaction domain defined as

Ωλ = {y ∈ R
n\Ω such that dist(y, ∂Ω) ≤ λ}. (5)

Following [12], we refer to the problem (4) as a nonlocal diffusion problem with
a volume constraint, the latter indicating that the constraint is applied on a set Ωλ

having positive measure inRn, as contrasted to the partial differential equation setting
for which constraints are applied on the boundary ∂Ω of Ω . Of course, the problem
(1) is also a nonlocal problem, but we will continue to refer to it as a fractional
Laplacian problem.

This paper is devoted to exploring the connections between solutions of Eq. 4 and
those of (1), especially as the interaction parameter λ → ∞; in this setting, we view
(4) as an approximation, effected by domain truncation, of Eq. 1. In practice, for gen-
eral domains Ω , solutions of the nonlocal diffusion problem (4) cannot be obtained
exactly for generic data so that we are also interested in finite-dimensional numeri-
cal approximations such as those given by finite element methods. In particular, with
h denoting a measure of the grid size, we would like to also obtain a better under-
standing of the convergence properties of finite element approximations as h → 0.
Our main approach is to treat it as approximations to a family of problems param-
eterized by the parameter λ. While there are various mathematical frameworks on
such approximations, see for example [7], we elect to adopt the notion of asymptoti-
cally compatible schemes and its abstract framework introduced in [35]. The abstract
framework, to be briefly reviewed in Section 3, enables us to identify asymptotically
compatible finite element methods for the robust discretization of Eq. 4 as well as
the limiting problem (1). This also allows us to further advocate nonlocal models as
bridges between local and fractional models and asymptotically compatible schemes
as robust algorithms for their numerical approximations.

Our two main results are as follows. First, we establish the convergence of con-
forming numerical approximations of solutions of Eq. 4 to those of Eq. 1 in cases
for which the mesh size h decreases and the nonlocal interaction length λ increases,
regardless of the dependence or independence of these two parameters. We also solve
a conjecture given in [11] on the convergence of numerical solutions on a fixed
mesh with increasing nonlocal interactions. In [11], careful a priori error estimates on
the solution were derived under additional regularity assumptions and the results of
numerical experiments were provided that illustrated the predicted order of conver-
gence with respect to λ or h when one of them is sufficiently small. However, it is not
clear from [11] whether the correct solution to the fractional Laplacian is obtained as
λ → ∞ and h → 0 simultaneously, given that not all dependences of the error terms
on λ and h can be given in simple and specific manners. Here, we prove the conjec-
ture by showing rigorously that any conforming Galerkin finite element method for
Eq. 4 is asymptotic compatible, regardless of how the nonlocal interaction parameter
λ and the spatial discretization parameter h change.

We note that the main results presented here are developed with minimal regular-
ity assumptions on the solution and are applicable to general domains and general
geometric meshes with no restriction on the space dimension. The forcing term is
only assumed to be in in L2.
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Clearly, Eq. 4 is a special form of the problem⎧⎨
⎩−Lu(x) = 2

∫
Rn

1λ(x, y)
(
u(y) − u(x)

)
γ (x, y)dy = f (x) for x ∈ Ω

u = 0 for x ∈ Ωλ

(6)

with the kernel γ (x, y) given by γ (x, y) = Cn,αCλ2|x − y|−n−2α and Cλ = 1.
Related studies can be found in, e.g., [1–3, 5, 6, 8, 9, 11, 12, 15–17, 19, 21–25, 27,
29, 32, 34, 35, 37, 38, 40, 41] and the references cited therein. In these earlier works,
several useful kernels, in addition to the type specified above, are considered. In these
and other papers (see those cited in [33]), mathematical analyses of Eq. 6 are provided
as are numerical methods, including finite difference, finite element, quadrature, and
particle-based methods. In particular, with appropriate constraints applied on the vol-
ume Ωλ [12, 23], these problems are known to be well posed. We refer to [11] for
numerical examples that demonstrate the competitiveness of the approximations.

Note that in several previous works cited above, especially those related to studies
of nonlocal peridynamic models, the symbol δ is used instead of λ; there, δ is often
referred to as the horizon parameter; regardless of the notation used, λ (or δ) is a
measure of the range of nonlocal interactions. In such works, the attention is focused
on the case of a small λ and the local limit λ → 0; in such cases, Cλ 
= 1 is chosen so
as to get consistent parameters with the partial differential equations obtained in the
local limit. For large λ and for limiting behavior as λ → ∞ of interest here, we may
simply set Cλ = 1. We further note that, for convenience, a different notation σ is
used in the abstract framework on parametrized problems given in Section 3. While
σ could represent different quantities in more general setting, it plays the same role
as λ in this work.

The rest of the paper is organized as follows. In Section 2, we formulate a varia-
tional formulation of the nonlocal diffusion problem (4) and of its finite-dimensional
discretization. We then review, in Section 3, the basic theory of asymptotically com-
patible schemes given in [35]. That scheme is then applied, in Section 4, to develop
a convergence analysis of nonlocal diffusion and fractional Laplacian equations and
their conforming Galerkin finite element approximations. Further discussions relat-
ing local, nonlocal and fractional models and their numerical approximations are
given in Section 5. Some conclusion remarks are given at the end.

2 Variational formulations and Galerkin approximations

For the bilinear form

(u, v)Tλ
=

∫
Ω∪Ωλ

∫
Ω∪Ωλ

Cn,α

2|x − y|n+2α

(
u(x) − u(y)

)(
v(x) − v(y)

)
dxdy ,

we define [12, 23] the natural “energy” space

T̃λ =
{
u ∈ L2(Ω ∪ Ωλ) : ‖u‖2

L2(Ω∪Ωλ)
+ (u, u)Tλ

< ∞,
}

⊂ L2(Ω ∪ Ωλ) .
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We let the solution space Tλ be the completion of C∞
c (Ω) in T̃λ which contains

functions u ∈ T̃λ satisfying u |Ωλ= 0. As discussed later, the Poincaré type inequality
in Section 4 implies that Tλ is a Hilbert space with (·, ·)Tλ

being an equivalent inner

product and ‖u‖Tλ
= (u, u)

1/2
Tλ

being the corresponding norm. Similarly, we may let

(u, v)T∞ =
∫
Rn

∫
Rn

Cn,α

2|x − y|n+2α
(u(x) − u(y))(v(x) − v(y)) dxdy ,

‖u‖T∞ = (u, u)
1/2
T∞ , and T∞ = Hα

Ω(Rn) be the completion of C∞
c (Ω) in T̃∞ =

Hα(Rn), the fractional Sobolev space of order α. For any u ∈ T∞ = Hα
Ω(Rn), we

have u ∈ Hα(Rn) with u |R\Ω= 0. As shown in Section 4, Tλ and T∞ are, in fact,
equivalent for any λ > 0 and their norms are uniformly equivalent for λ bounded
uniformly from below by a positive constant.

A weak formulation of Eq. 4 is given as follows:

given f ∈ (T∞)∗ = (Tλ)
∗, find uλ ∈ Tλ

such that aλ(uλ, v) = 〈f, v〉 , ∀ v ∈ Tλ,
(7)

where aλ(·, ·) := (·, ·)Tλ
. 〈·, ·〉 denotes the duality pairing for T∞ and its dual space

T ∗∞. It also represents the standard inner product in T0 = L2(Ω), or equivalently in
the space of functions in L2(Ω ∪ Ωλ) that vanish outside Ω (for any λ ≥ 0). Indeed,
we let T0 serve as the pivot space between T ∗

λ and Tλ so that a realization of the
duality pairing 〈·, ·〉 between T ∗

λ and Tλ is given as the extension of the inner product
on T0, i.e., for any λ ∈ [0, ∞] and for w ∈ T0 ⊆ T ∗

λ ,

〈w, v〉 = (w, v)T0 , ∀ v ∈ Tλ . (8)

Thus, we do not specify any subscript related to λ to distinguish the duality pairing.
Now, for any λ ≥ 0, we introduce a finite-dimensional approximation space

{Tλ,h} ⊂ Tλ parameterized by h → 0, usually taken as a measure of a grid size in
the case of finite element methods or a quantity that is inversely proportional to the
dimension of the discrete space.

For any λ and h, the Galerkin approximation uλ,h ∈ Tλ,h of the solution u ∈ Tλ

of Eq. 7 is defined by replacing T∞ by Tλ,h in Eq. 7:

given f ∈ T ∗∞ = T ∗
λ , find uλ,h ∈ Tλ,h

such that aλ(uλ,h, v) = 〈f, v〉 , ∀ v ∈ Tλ,h.
(9)

Computational illustrations of the application of the approximation scheme (9)
using piecewise linear finite element spaces are given in [11]. One of our objectives
here is to provide a theoretical justification for some of the observations gleaned from
those numerical experiments and, as mentioned previously, we want to particularly
explore, in rigorous terms, behaviors in the limits λ → ∞ and h → 0. We stress that
our study only assumes minimal regularity on the solutions and the forcing term is
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only assumed to be in f ∈ L2. This distinguishes our convergence results from many
existing works that require higher regularities on the data.

3 Asymptotically compatible schemes

We now review the notion of asymptotically compatible schemes and an abstract
framework for their numerical analysis when they are applied to a special class of
parametrized problems. This framework was introduced in [35] where it was applied
to nonlocal models, including (4), and their local limits as the extent of nonlocal
interactions vanish, i.e., as λ → 0. In Section 4, we apply the framework to the λ →
∞ limit. The review is limited to the main conclusions only as they are necessary for
the new application to the approximation of fractional diffusion equations.

We adopt notations used in [35] that include many already introduced in Sections 1
and 2 but which may be interpreted differently in a more general context. We consider
a family of Hilbert spaces {Tσ , σ ∈ [0, ∞]} over R, such that Tσ2 is a dense subspace
of Tσ1 for any 0 ≤ σ1 ≤ σ2 ≤ ∞. Let (·, ·)Tσ

and ‖ · ‖Tσ
respectively denote the

corresponding inner product and norm on Tσ and the dual space of Tσ is denoted by
T−σ = T ∗

σ .
One of the distinctions of the framework of [35] from other convergence studies of

parameterized variational problems is that the parameterized spaces (and their limit)
are allowed to have different topologies. The following assumption on the function
spaces is given in [35].

Assumption 1 [35, Assumption 2.1] {Tσ } are assumed to satisfy:

i) Uniform embedding: there exist positive constants M1 and M2, with values
independent of σ ∈ [0, ∞], such that M1‖u‖T0 ≤ ‖u‖Tσ

, ∀ u ∈ Tσ and
‖u‖Tσ

≤ M2‖u‖T∞ , ∀ u ∈ T∞.
ii) Asymptotically compact embedding: for any sequence {uσ ∈ Tσ }, if there exists

a constant C > 0 with value independent of σ such that ‖uσ ‖Tσ
≤ C, ∀ σ , then,

the sequence {uσ } is relatively compact in T0 and each limit point belongs to
T∞.

Note that we need only the case where {Tσ } are equivalent spaces in order to dis-
cuss the special class of variational problems and approximations defined by Eqs. 7
and 9. By the results of Section 2, we can see that the above assumption is automat-
ically satisfied. We now recall that there are main assumptions discussed in [35] on
the bilinear forms, induced linear operators, and finally on approximations.

Assumption 2 [35, Assumption 2.2] Let aσ : Tσ × Tσ → R be symmetric and C1
and C2 be constants independent of σ such that aσ is:

i) bounded: aσ (u, v) ≤ C2‖u‖Tσ
‖v‖Tσ

, ∀ u, v ∈ Tσ ; and
ii) coercive: aσ (u, u) ≥ C1‖u‖2Tσ

, ∀ u ∈ Tσ .
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The bilinear form aσ (·, ·) induces a bounded self-adjoint and positive definite
linear operator, denoted by Aσ , from Tσ to its dual T ∗

σ , with a bounded inverse
A−1

σ : T ∗
σ → Tσ , via

〈
Aσ u, v

〉 = aσ (u, v), ∀ u, v ∈ Tσ .

Assumption 3 [35, Assumption 2.3] For operators {Aσ }, there is a subspace T∗ such
that T∗ is dense in T∞, and is also dense in any Tσ with σ ≥ 0, such that Aσ u ∈ T0,
∀ u ∈ T∗ and as σ → ∞, ‖Aσ u − A∞u‖T ∗

σ
→ 0, ∀ u ∈ T∗.

Let us now consider a family of closed subspaces {Tσ,h ⊂ Tσ } parametrized by the
mesh parameter h ∈ (0, h0]. The fact that Tσ,h is taken as a subspace of Tσ implies
that we are effectively considering a standard, internal (or equivalently conform-
ing) Galerkin approximations. For the spaces {Tσ,h ⊂ Tσ }, we make the following
assumptions.

Assumption 4 [35, Assumption 2.4] Assume that the family of subspaces {Tσ,h ⊂
Tσ }, parametrized by σ ∈ [0, ∞] and h ∈ (0, h0], and satisfies:

i) For each σ ∈ [0, ∞], the family {Tσ,h, h ∈ (0, h0]} is dense in Tσ in the sense
that, ∀ v ∈ Tσ , there exists a sequence {vj ∈ Tσ,hj

} with hj → 0 as j → ∞,
such that ‖v − vj‖Tσ

→ 0 as j → ∞.
ii) {Tσ,h, σ ∈ [0, ∞), h ∈ (0, h0]} is asymptotically dense in T∞, i.e., ∀ v ∈ T∞,

there exists a sequence {vj ∈ Tσj ,hj
}hj →0, σj →∞ as j → ∞ such that ‖v −

vj‖T∞ → 0 as j → ∞.

It has been noted in [35] that Assumption 4-i ensures the convergence of approx-
imations to Tσ as h → 0 for each σ , whereas Assumption 4-ii is used for studying
the limit of both h → 0 and σ → ∞.

We now consider a family of variational problems parameterized by σ ∈ [0, ∞]
and their approximate problems: for f ∈ T ∗

σ ,

find uσ ∈ Tσ such that aσ (uσ , v) = 〈f, v〉 ∀ v ∈ Tσ . (10)

find uσ,h ∈ Tσ,h such that aσ (uσ,h, v) = 〈f, v〉 ∀ v ∈ Tσ,h. (11)

The existence and uniqueness of uσ and uσ,h follow from Assumption 2.
We may also express (10) and (11) in strong forms as Aσ uσ = f , and Ah

σ uσ,h =
πh

σ f respectively, where πh
σ denotes the T0 projection operator onto the subspace

Tσ,h and Ah
σ : Tσ,h → T ∗

σ,h is the operator induced by the bilinear form aσ in Tσ,h

(or the solution operator of Eq. 11 in the specified subspace).
An abstract framework of asymptotically compatible schemes for the analysis of

above parametrized problems is established in [35] to study the various limits of
{uσ,h} as we take limits in the parameters.

Definition 5 The family of convergent approximations {uσ,h} defined by Eq. 11 is
said to be asymptotically compatible to the solution u∞ defined by Eq. 10 with σ =
∞ if, for any sequence σj → ∞ and hj → 0, we have ‖uσj ,hj

− u∞‖T0 → 0.
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Note that because uσj ,hj
and u∞ may live in different spaces, the space T0 is the

most natural space that contains all the elements involved.
We first recall a convergence result for the solutions of the parametrized variational

problem (10) as σ → ∞.

Theorem 6 [35, Theorem 2.5] Convergence of variational solutions as σ → ∞.
Given the Assumptions 1–3 on the family of spaces and the bilinear forms and
operators, for f ∈ T0, we have ‖uσ − u∞‖T0 → 0 as σ → ∞.

The convergence of approximations as h → 0 for a fixed σ is given below.

Theorem 7 [35, Theorem 2.6] Convergence as h → 0 for fixed σ ∈ [0, ∞]. For
any σ ∈ [0, ∞] and f ∈ T0, given the Assumptions 1–4, there exists a constant C >

0 with value independent of h such that ‖uσ,h−uσ ‖Tσ
≤ C infv∈Tσ,h

‖v−uσ ‖Tσ
→ 0

as h → 0.

To study the limiting behaviors as both σ → ∞ and h → 0 simultaneously and
possibly independently, we have

Theorem 8 [35, Theorem 2.9] Asymptotic compatability. Under Assumptions 1–4,
for f ∈ T0, the family of approximations {uσ,h} is asymptotically compatible to u∞.

We now move on to the analog of Theorem 6 for numerical solutions, that is, the
convergence as σ → ∞ but for a fixed h > 0. We recall the following additional
assumptions given in [35] on the approximation spaces are required for this purpose.

Assumption 9 i) Limit of approximate spaces: T∞,h = T∞ ∩ ( ⋂
σ≥0 Tσ,h

)
.

ii) Limit of bilinear forms as σ → ∞: aσ (uh, vh) → a∞(uh, vh), ∀ uh, vh ∈ T∞,h.
iii) A strengthened continuity property: for any sequence {uσ,h ∈ Tσ,h} with uni-

formly bounded {‖uσ,h‖Tσ
} and satisfying uσ,h → 0 in T0 as σ → ∞, we have

as σ → ∞, aσ (uσ,h, v) → 0, ∀ v ∈ T∞,h.

Theorem 10 [35, Theorem 2.7] Convergence of approximations as σ → ∞ for
fixed h > 0. For uσ,h satisfying (11) with σ ∈ [0, ∞] and f ∈ T0, we have, under
Assumptions 1–4 and 9, ‖uσ,h − u∞,h‖T0 → 0 as σ → ∞.

4 Asymptotically compatibility of approximations of fractional
Laplacian problems

Following notations introduced in Sections 1–3, we identify the parameter λ used in
Sections 1 and 2 with the parameter σ used in Section 3. Let Aσ = −Lλ and A∞ =
(−Δ)α . To apply the abstract framework of Section 3 to the fractional Laplacian
problem, we need to verify the assumptions made in that section.

First, it is clear that the inequality ‖u‖Tλ
≤ ‖u‖T∞ for λ > 0 and any u ∈ T∞

immediately follows from the definition of the norms. Then, for λ = 1, the Poincaré
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type inequality [23] ‖u‖L2(Rn) = ‖u‖L2(Ω) ≤ C‖u‖T1 , ∀ u ∈ T1, implies that
‖u‖T0 ≤ C‖u‖Tλ

for λ ≥ 1. Because we only consider the asymptotic behavior as
λ → ∞, we can ignore the case λ < 1.

Let us establish the particular relationship between the spaces Tλ and T∞.

Lemma 11 {Tλ}λ≥1 and T∞, as defined in Section 2.1, are equivalent, i.e.,
C1‖u‖T∞ ≤ ‖u‖Tλ

≤ C2‖u‖T∞ for λ ≥ 1 where C1 and C2 are constants with
values independent of λ. Moreover, as λ → ∞, ‖u‖Tλ

→ ‖u‖T∞ , ∀ u ∈ T∞.

Proof For the norm equivalence, we only have to prove the left-hand inequality
because ‖u‖Tλ

≤ ‖u‖T∞ is obvious. For λ = 1, it is proved in [12] that T1 is
equivalent to the fractional order Sobolev space Hα

Ω(Ω ∪ Ω1) := {w ∈ Hα(Ω ∪
Ω1), w|Ω1 = 0} where for a general domain Ω̃ , the space Hα(Ω̃) is defined by

Hα(Ω̃) := {w ∈ L2(Ω̃) :
∫

Ω̃

∫
Ω̃

(
w(y) − w(x)

)2
|x − y|n+2α

dydx < ∞} .

Thus, ‖u‖Hα
Ω(Ω∪Ω1) ≤ C‖u‖T1 .

In addition, it is shown in [39] that Hα
Ω(Ω ∪Ω1) is equivalent to T∞ := Hα

Ω(Rn).
Thus we have ‖u‖T∞ ≤ C̃‖u‖T1 ≤ C̃‖u‖Tλ

for λ ≥ 1. To complete the proof of
Lemma 11, we note that

1λ(x, y)
Cn,α

2|x − y|n+2α

(
u(y) − u(x)

)2 → Cn,α

2|x − y|n+2α

(
u(y) − u(x)

)2
almost everywhere in R

n as λ → ∞, Thus, we have that ‖u‖Tλ
→ ‖u‖T∞ by the

dominated convergence theorem.

Together with the above lemma, we may complete the verification of Assump-
tion 1 with the result below.

Lemma 12 Suppose uj ∈ Tλj
with λj → ∞. If

sup
j

‖uj‖Tλj
< ∞ , (12)

then uj is precompact in L2
0(Ω). Moreover, any limit point u ∈ T∞.

Proof By Lemma 11, Eq. 12 implies supj ‖uj‖T∞ < ∞. Thus the result is true
because Hα is compactly embedded in L2.

We next verify the Assumption 2 on the bilinear forms. Note that aλ(·, ·) is exactly
the inner product defined on Tλ so that Assumption 2 is naturally satisfied with C1 =
C2 = 1.
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Moving onto the Assumption 3, we need to establish the convergence of the oper-
ator Lλ to the fractional Laplacian (−Δ)α on a dense subspace of T∞; we state this
here as a lemma.

Lemma 13 For Lλ in Eq. 3 and ∀ w ∈ C∞
c (Ω) with zero extension outside Ω , we

have Lλw ∈ L2
0(Ω ∪ Ωλ) and ‖Lλw − (−Δ)αw‖L2(Rn) → 0 as λ → ∞.

Proof Fixing any w ∈ C∞
c (Ω), we know that (−Δ)αw ∈ L2(Rn). Also, it is not

difficult to see, becauseLλw is bounded, thatLλw ∈ L2
0(Ω∪Ωλ) (which is the space

with functions in L2(Ω ∪Ωλ) with zero extension outside Ω ∪Ωλ). In addition, it is
easy to see that Lλw(x) converges to (−Δ)αw(x) pointwise and uniformly because

|Lλw(x) − (−Δ)αw(x)| ≤ C‖w‖∞
∫
Rn\Bλ(x)

1

|x − y|n+2α
dy → 0 .

Now that both Lλw and (−Δ)αw are in L2, we conclude by the dominated
convergence theorem that Lλw converges to (−Δ)αw in the L2 norm.

Before we verify Assumptions 4 and 9 and consider the proof of convergence of
discrete solutions, for the sake of completeness we provide the following theorem.
It states the existence and uniqueness of solutions of the nonlocal diffusion problem
(2) land the fractional Laplacian problem (1) and addresses some technical difficul-
ties encountered in [39]. In addition, it also proves the convergence, as λ → ∞, of
the solution uλ of the nonlocal diffusion problem to the solution u of the fractional
Laplacian problem under minimal regularity assumptions.

Theorem 14 For any λ ∈ (0, ∞] and f ∈ L2(Ω), there exists a unique solution uλ

of Eq. 7. Moreover, ‖uλ − u∞‖Hα → 0 as λ → ∞.

Proof The existence and uniqueness follows from the Lax-Milgram theprem. Now,
as a direct application of Theorem 6, we know that ‖uλ − u∞‖L2 → 0 as λ → ∞.
In addition, we know from Lemma 12 that uλ converges to u∞ weakly in T∞. Now,
because uλ and u∞ are solutions of Eq. 7, we have

aλ(uλ, uλ) = 〈f, uλ〉 → 〈f, u∞〉 = a∞(u∞, u∞) ,

which is equivalent to ‖uλ‖Tλ
→ ‖u∞‖T∞ as λ → ∞. We know that uλ|Ωc = 0 so

that, for λ large enough, Here Ωc is the complement of Ω .

‖uλ‖2T∞ − ‖uλ‖2Tλ
= Cn,α

2

∫
Rn

∫
Rn\Bλ(x)

(
uλ(y) − uλ(x)

)2
|x − y|n+2α

dydx

= Cn,α

2

∫
Ω

u2λ(x)
∫
Rn\Bλ(x)

1

|x − y|n+2α
dydx

= C‖uλ‖L2

∫
Rn\Bλ(0)

1

|z|n+2α
dz → 0 .
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Thus we have ‖uλ‖T∞ → ‖u∞‖T∞ . This implies ‖uλ − u∞‖T∞ → 0 because

‖uλ − u∞‖2T∞ = ‖uλ‖2T∞ + ‖u∞‖2T∞ − 2(uλ, u∞)T∞

= ‖uλ‖2T∞ + ‖u∞‖2T∞ − 2〈uλ, (−Δ)αu∞〉
→ 2‖u∞‖2T∞ − 2‖u∞‖2T∞ = 0 .

Next, we consider the numerical solution uλ,h of the discretized nonlocal diffusion
problem (9) and show that it converges to the solution u = u∞ of the fractional
Laplacian problem.

For Tλ,h, let us focus on using finite-dimensional spaces associated with a regular
triangulation τh = {K} of the domain Ω with h denoting the maximum element
diameter of the elements in τh. For example, we consider standard conforming finite
element spaces with piecewise polynomials:

Tλ,h = Th := {v ∈ T∞ = Hα
Ω(Rn), v|K ∈ P(K) ∀K ∈ τh} (13)

where P(K) = Pp(K) is the space of polynomials on K ∈ τh of degree less or equal
than p. We note that functions in Tλ,h vanish automatically outside of Ω . For each
given α, as h → 0, {Th} is dense in Tλ and T∞ = Hα

Ω(Rn), i.e., for any v ∈ Tλ, there
exists a sequence {vh ∈ Th} such that

‖vh − v‖Tλ
→ 0 as h → 0 , (14)

‖vh − v‖Hα → 0 as h → 0 . (15)

Since the solution space is the closure of compactly supported smooth functions
in Ω , these properties can be established as in standard finite element approximation
theory [10].

A couple of comments on the choices of discrete finite element spaces are in
order. For 0 < α < 1/2, because the space of piecewise constant functions and the
space of continuous piecewise linear functions are both dense in Hα , we can apply
any finite element space containing either of these two finite element spaces as a
subspace to the nonlocal diffusion equation to obtain an asymptotically compatible
scheme for the fractional Laplacian, i.e., regardless of how λ and h change, the solu-
tion of (9) always approximates the solution of the fractional equation (7) properly
as λ → ∞ and h → 0. On the other hand, for α ≥ 1/2, discontinuous piecewise
constant functions are no longer dense in Hα , but the space of continuous piecewise
linear functions remains dense. Thus, to guarantee the asymptotical compatibility, we
require the finite element spaces to contain the space of continuous piecewise linear
functions as a subspace whenever 1/2 ≤ α < 1. Naturally, the piecewise linear func-
tions can be replaced by some generalized or extended finite element functions [4]
or any other discrete space that are conforming and enjoy the density properties in
Hα

Ω(Rn) as h → 0.
The standard approximation properties (14) and (15) ensure that Tλ,h = Th sat-

isfies Assumption 4. For Assumption 4-ii, we note that the zero extension of the
elements in Tλ can be identified with those in T∞ and vice versa, and the respective
norms in those spaces are equivalent uniformly with respect to λ → ∞.
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By Theorem 7 and the approximation property (14), we obtain the following
convergence result for Galerkin approximations for any fixed λ ∈ (1, ∞].

Theorem 15 For any given λ ∈ (1, ∞], let uλ and uλ,h be defined by Eqs. 10 and 11,
respectively for f ∈ L2(Ω). Given the approximate spaces Tλ,h = Th ⊂ Hα

Ω(Rn)

defined in (13) with (14), there then exists a constant C > 0 with value independent
of h such that ‖uλ,h − uλ‖Tλ

≤ C infvλ,h∈Th
‖vλ,h − uλ‖Tλ

→ 0, as h → 0.

With all of Assumptions 1–4 verified, the following theorem provides a criterion
for asymptotically compatible schemes for solving the nonlocal diffusion problem
as an approximation of the fractional Laplacian problem. The theorem is basically a
direct application of Theorem 8. However, for the specific setting we consider here,
we can prove convergence in the energy norm and not just in the L2 norm.

Theorem 16 Let uλ and uλ,h denote the solutions of Eqs. 7 and 9, respectively, for
f ∈ L2(Ω) with Tλ,h = Th ⊂ Hα

Ω(Rn) defined in Eq. 13 with Eq. 14. We then have
‖uλ,h − u∞‖Hα → 0 as λ → ∞, h → 0.

Proof First, as a direct application of Theorem 8, we know that

‖uλj ,hj
− u∞‖L2 → 0 , as j → ∞

for any sequence λj → ∞ and hj → 0. Now, the T∞, or more specifically, the
Hα convergence is essentially the same as the proof of Theorem 14. In more detail,
because uλj ,hj

converges to u∞ weakly in T∞ and they are solutions of Eqs. 9 and 7,
respectively, we have

aλj
(uλj ,hj

, uλj ,hj
) = 〈f, uλj ,hj

〉 → 〈f, u∞〉 = a∞(u∞, u∞)

which is equivalent to ‖uλj ,hj
‖Tλj

→ ‖u∞‖T∞ as j → ∞. Then, we can show
‖uλj ,hj

‖T∞ → ‖u∞‖T∞ as in the proof of Theorem 14, and this implies ‖uλj ,hj
−

u∞‖T∞ → 0 because

‖uλj ,hj
− u∞‖2T∞ = ‖uλj ,hj

‖2T∞ + ‖u∞‖2T∞ − 2(uλj ,hj
, u∞)T∞

= ‖uλj ,hj
‖2T∞ + ‖u∞‖2T∞ − 2〈uλj ,hj

, (−Δ)αu∞〉
→ 2‖u∞‖2T∞ − 2‖u∞‖2T∞ = 0 .

Finally, we consider the limit of the discrete schemes. To do so, we have to verify
the Assumption 9, which is needed for applying the Theorem 10. Note that this addi-
tional assumption is not required for Theorem 8 which is used for establishing the
asymptotical compatibility property in Theorem 16.

With Tλ,h = T∞,h for any λ, Assumptions 9-i and 9-ii are straightforward to
verify. Moreover, Assumption 9-iii follows because we know that a sequence {vλj

}
with strong convergence to 0 in L2(Ω) and having bounded norms {‖vλj

‖Tλn
} is
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automatically uniformly bounded and weakly convergent to 0 in T∞ = Hα
Ω(Rn). We

now have the final result of this paper.

Theorem 17 For given spaces Tλ,h = Th ⊂ Hα
Ω(Rn) defined in Eq. 13 with Eqs. 14

and 15, we have
‖uλ,h − u∞,h‖T∞ → 0 as λ → ∞. (16)

Proof With all of Assumptions 1–4 and Assumption 9 verified, we obtain the strong
convergence of uλ,h to u∞,h in T0 by Theorem 10. Now, following a similar line of
arguments as that in the proofs of Theorems 14 and 16, we can conclude that the
convergence holds in T∞, which leads to the desired result.

Let us note that while the above discussion is devoted to the limit λ → ∞, the
same argument and analysis carry out to any limiting process λ → λ∗ for some
positive constant λ∗ ∈ (0, ∞) as well. The case λ∗ = 0 requires special consideration
which was the subject studied in [35].

5 Local, nonlocal and fractional models and their approximations

Let us first present a summary of the results obtained on the relations between
the nonlocal and fractional diffusion models and their numerical approximations
in Fig. 1. The vertical (respectively, horizontal) arrows in the figure refer to con-
vergence with respect to the spatial grid size h → 0 (respectively, the interaction
radius λ → ∞), the right side (respectively, left side) refers to solutions of the
fractional Laplacian problem (respectively, the nonlocal diffusion problem) and its
spatial approximation, and the curved path refers to taking simultaneous but inde-
pendent limits of h → 0 and λ → ∞. The diagram is similar to that given in [35]
that connects the approximations of the nonlocal models and their local limits (as
λ → ∞).

Fig. 1 A diagram for asymptomatically compatible schemes and convergence for the fractional Laplacian
problem (with solution denoted by u∞) and the nonlocal diffusion problem with solution denoted by uλ
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Our study took the fractional Laplacian operator as a limit of the linear nonlocal
diffusion operator developed in [12, 13], which is similar in spirit to the work pre-
sented in [11]. Careful a priori error estimates on the solution were derived in [11]
under additional regularity assumptions compared to the ones invoked in this paper;
in [11] the results of numerical experiments were provided that illustrated the pre-
dicted order of convergence with respect to λ and h when one of them is sufficiently
small. However, it is not clear from [11] whether the correct solution to the fractional
Laplacian could be ensured when λ and h change simultaneously, given that there is
no simple specific dependence of some of the error terms on λ which also involves
h. Here, we eliminate such concerns by showing theoretically that any conforming
Galerkin finite element method for the nonlocal equation is asymptotically compati-
ble, no matter how the nonlocal interaction parameter λ changes with discretization
parameter h. Moreover, the convergence of uλ,h to u in the Hα norm is given under
minimal regularity assumption (only Lλu ∈ H−α) as well as general geometric
meshes for conforming Galerkin finite element approximation of the nonlocal diffu-
sion equations. This is another major contribution of our work because there are still
many open questions concerning the regularity of solutions for fractional differential
equations. Furthermore, based on numerical results, it was conjectured in [11] that
for fixed h, convergence of solutions is observed as λ → ∞. Theorem 17 provides a
clean affirmative answer to the conjecture.

The current study can also be viewed as complementary to the studies made in
[34, 35] on the approximations of nonlocal diffusion models (associated with the
nonlocal operator Lλ) and local diffusion models (partial differential equations asso-
ciated with the Laplacian operator L0 = Δ) as the nonlocal interaction horizon
λ → 0, as illustrated in Fig. 2. With the current paper, we now also have the limit
as λ → ∞ of the nonlocal diffusion models associated with the fractional Laplacian
operator L∞ = (−Δ)α . The fact that we can demonstrate the asymptotic compati-
bility of numerical schemes for nonlocal diffusion models as the horizon λ increases
in size means that one may effectively simulate the fractional models associated with
a global nonlocal interaction by a nonlocal model which is less global (i.e., is more
localized) resulting in a gain computational efficiency without a loss of fidelity.

As noted at the end of the last section, we in fact have established a complete
theory for the asymptotic compatibility of numerical schemes with respect to any
limiting process λ → λ∗ ∈ (0, ∞). Furthermore, we can advocate asymptotic com-
patible schemes as robust algorithms for approximating local, nonlocal and fractional
models in the sense that the convergence to the correct continuum limit is assured

Fig. 2 Different limits of nonlocal diffusion equations: partial differential equations as local limits (λ →
0) and fractional Laplacian equations as global limits (λ → ∞)



1378 X. Tian et al.

for any values of the parameter λ and in any of its limiting regimes as the numerical
resolution is increased.

6 Concluding remarks

In this paper, our central goal was to obtain convergence results for approximations,
due to both domain truncation and spatial discretization, of solutions of the fractional
Laplacian problem (1). The abstract framework developed in [35] for asymptotically
compatible schemes was applied to the specific setting of the fractional Laplacian
problem. In meeting our goal, we obtained intermediate results about the convergence
of approximations of the nonlocal diffusion problem (4).

In this work, we only considered conforming methods for nonlocal equations
which may or may not allow discontinuous finite element methods, depending on the
value of α. There may be possible extensions to nonconforming methods even for
α ≥ 1/2, such as those recently developed in [36]. It is also feasible to consider prob-
lems involving inhomogeneous nonlocal Dirichlet volumetric constraints or different
types of nonlocal boundary conditions.

As for other future works, interesting numerical experiments, especially in two
or higher space dimensions may be carried out to illustrate the optimal choices of h

and λ for both smooth solutions and solutions with limited regularity. Relations and
approximations of the nonlocal diffusion models to fractional diffusion equations in
unbounded domains can also be studied. The effect of numerical quadratures may
also be of great practical interest and can possibly be analyzed in the same frame-
work. Finally, it is feasible that connections between the general nonlocal diffusion
Eq. 6 with kernels other than ones considered here or nonlocal convection diffusion
equations [14] and other fractional derivative models can be exploited in much the
similar manner as the connection with fractional Laplacian models was exploited in
this paper.
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