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This paper studies nonlocal diffusion models associated with a finite nonlocal horizon pa- 

rameter δ that characterizes the range of nonlocal interactions. The focus is on the vari- 

ational formulation associated with Neumann type constraints and its numerical approx- 

imations. We establish the well-posedness for some variational problems associated and 

study their local limit as δ → 0. A main contribution is to derive a second order conver- 

gence to the local limit. We then discuss the numerical approximations including standard 

finite element methods and quadrature based finite difference methods. We study their 

convergence in the nonlocal setting and in the local limit. 
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1. Introduction 

Nonlocal diffusion equations and their numerical approximations have been subjects of recent studies. Such models arise

in the studies of stochastic jump processes [10,18] and they also share common features with the peridynamic model of

continuum mechanics proposed by S. Silling [29] . The latter has been shown to be effective in modeling material singulari-

ties [4,8,13,27,31,32] since the model avoids the explicit use of spatial derivatives. Nonlocal models such as peridynamics are

often parametrized by a parameter δ that is called the horizon measuring the range of nonlocal interactions. 

A feature of nonlocal models, different from the local PDEs, is the treatment of interfaces and domain boundaries. Unlike

local boundary conditions, the nonlocal analog may be attributed to how the law of nonlocal interactions gets modified

in the presence of physical boundary. Discussions on a variety of nonlocal constraints has been given in [17] . It is known

that Neumann type problems presents substantial differences from that on Dirichlet type problems for nonlocal equations,

see [2,3,5,6,12,14,17,25,37] for various studies devoted to nonlocal Neumann type problems. Our study here provides new

understanding to the proper formulation of Neumann conditions. In particular, we demonstrate how a suitable formulation

leads to the second order convergence of the nonlocal models to their local limit in the horizon parameter δ as δ → 0.

Such results are new and are expected to be of optimal order while previous studies have provided at most linear (first

order) convergence [19] . Neumann problems are not only interesting on their own but also play important roles in interface

problems, free boundary problems, the coupling and domain decomposition of nonlocal problems. 

Parallel to the derivation of Neumann problems and their mathematical analysis, it is natural to consider their numer-

ical approximations. For nonlocal models characterized by the parameter δ, it has been known in the literature that as
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δ → 0, one often encounter consistency issues at both continuum and discrete levels between the nonlocal models and

the local PDEs, when the latter remain valid. On the continuum level, the consistency has been established either formally

using Taylor expansions of sufficiently smooth solutions [29,30] , or more rigorously via functional analytic means without

extra regularity assumptions [23,25,34] . With the increasing interests in developing efficient codes for nonlocal models, it

is often asked if numerical schemes developed for nonlocal models would produce results consistent with that produced

by the local limit models when the horizon is small and with sufficient numerical resolution. Answering such questions

on the discrete level is an important task of code validation and verification. In [34] , a theory of asymptotically compatible

schemes was developed. It was successfully applied to nonlocal models with Dirichlet type nonlocal volumetric constraints.

Given the extra complications involved in the nonlocal Neumann type problems, a separate study of similar issues in the

Neumann setting is worthwhile. Hence, another contribution of this paper is to demonstrate the applicability of the theory

on asymptotically compatible scheme for Neumann type problems. 

To highlight the main issues addressed in this manuscript, we summarize several different limiting processes that are of

our particularly concern, namely: (1) limit of nonlocal continuum models as the horizon δ → 0; (2) limit of discrete schemes

for nonlocal models as δ → 0 for a fixed mesh parameter h ; (3) limit of discrete schemes of nonlocal models as h → 0 for

fixed δ; (4) limit of the discrete schemes for the nonlocal models with both δ → 0 and h → 0. We present findings on these

processes in this work. A one-dimensional model is used for the simplicity in presentation. Our results offer a rigorous

mathematical theory behind the nonlocal Neumann type problems and an optimal order error bound between the solutions

of nonlocal models and their local limit. They also demonstrate the general applicability of the framework on asymptotically

compatible scheme to the numerical discretization of Neumann type problems. 

The paper is organized as follows. In Section 2 , we introduce the nonlocal Neumann type constrained value problems

associated to nonlocal variational problems. The well-posedness of the variational problem is given. A number of key results

are stated in Section 3 , we analyze the asymptotic compatibility of our nonlocal model. The convergence of nonlocal models

to linear local problems is established. Furthermore, we formally estimate the convergence rate as the interaction horizon

tends to zero, which is new with regards to previous works. Discussion on the inhomogeneous Neumann type constraints

is also made. In Section 4 , we present both quadrature based finite difference and finite element discretization schemes. In

Section 5 , we first discuss how to numerically impose the Neumann constraints and then give related numerical results to

further substantiate our theoretical studies. Different limiting processes are examined numerically in this section. Finally, we

give some conclusions and remarks in Section 6 . 

2. Nonlocal variational problems 

In this section, we first introduce a nonlocal variational problem with Neumann type volume constraints, along with

the associated nonlocal operators and the class of nonlocal interactions kernel to be focused on in this paper. Later, in

Sections 2.3 and 2.5 , the natural energy space and the well-posedness of nonlocal problems are studied. The studies here

are parallel to the traditional analysis of local second order elliptic equations as well as the analysis of nonlocal diffusion

models with Dirichlet type constraints, but with necessary modifications. We refer to [17] for more discussions on the

differences and connections between local and nonlocal steady-state diffusion problems. 

2.1. Nonlocal variational problems 

Let � ⊂ R 

d denote a bounded, open domain with a piecewise planar boundary. Consider the nonlocal energy functional 

E(u ) = 

1 

2 

∫ 
�

∫ 
�
ρδ( x 

′ , x ) 
(
u (x 

′ ) − u (x ) 
)2 

d x 

′ d x , (1)

where ρδ( x 
′ , x ) = ρδ( x , x 

′ ) is a symmetric, nonnegative interaction kernel with the property that ρδ( x 
′ , x ) = 0 if | x ′ − x | > δ.

Here | x ′ − x | denotes the distance between x ′ and x . 

Without loss of generality, for given data f = f (x ) defined on �, with the total net-flux assumed to be zero, the following

compatibility condition is assumed: ∫ 
�

f (x ) dx = 0 . (2)

This type of compatibility is also present in Neumann type problems associated with local elliptic operators. We then define

the total energy 

E f (u ) = 

1 

2 

∫ 
�

∫ 
�
ρδ( x 

′ , x ) 
(
u (x 

′ ) − u (x ) 
)2 

d x 

′ d x −
∫ 
�

f (x ) u (x ) dx . (3)

2.2. Nonlocal kernel 

We assume that the symmetric, non-negative kernel ρ satisfies, for all x , x ′ ∈ R 

d , 

ρδ(x 

′ , x ) = 

{
ρδ(| x 

′ − x | ) ≥ 0 , if | x 

′ − x | ≤ δ, 

0 , if | x 

′ − x | > δ, 
(4)
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and ∫ 
R d 

ρδ( x , x 

′ ) | x 

′ − x | 2 dx 

′ = 

∫ 
| x ′ −x |≤δ

ρδ( x , x 

′ ) | x 

′ − x | 2 dx 

′ = 1 . (5) 

We note that, in this work, the normalization is taken over R 

d and independent of the domain �. Other formulations

such as heterogeneously defined or position aware horizons [26,35] are beyond the scope of the current work and will be

examined in the future. We will have more detailed discussions on the assumption (5) in later sections. A popular case to

study is given by 

ρδ( x , x 

′ ) = 

c 

δd+2 
γ

( | x − x 

′ | 
δ

)
for all x , x 

′ ∈ R 

d , (6) 

with γ being a non-increasing function having compact support in a unit ball. Here c is the scaler to make ρδ satisfy

condition (5) . We will not attempt to make the study applicable to the most general kernels. 

2.3. Function space 

The space of interest to us, denoted by S(�) , is a subspace of L 2 ( �) given by 

S(�) = 

{ 

u ∈ L 2 (�) : 

∫ 
�

∫ 
�
ρδ( x , x 

′ ) | u (x 

′ ) − u (x ) | 2 d x 

′ d x < ∞ 

} 

. 

S(�) is often called the nonlocal energy space. Furthermore, with the compatibility condition (2) , the nonlocal constrained

energy space is defined by 

S δ(�) = 

{ 

u ∈ S(�) : 

∫ 
�

udx = 0 

} 

. 

which is a real inner product space with the inner product ( ·, ·) s defined as 

(u, w ) s = B δ(u, w ) . 

We use ‖ u ‖ s to denote the induced norm 

√ 

(B δ (u, u )) of u in S δ (�) . For { S δ} defined earlier, ‖ · ‖ s is equivalent to a full

norm, as demonstrated by the Poincaré inequality given later. Following the same argument as in [23] , it can be established

that, for any nonnegative, radial kernel with a constant horizon δ, the constrained energy space S δ (�) is a Hilbert space

with the norm ‖ · ‖ s . 
2.4. The variational problem 

Consider the constrained minimization problem 

min u ∈S(�) E f (u ) subject to E c (u ) = 0 , 

where E c = E c (u ) denotes a constraint functional. For example, let 

E c (u ) := 

∫ 
�

u (x ) dx = 0 . (7) 

We then have the equivalent formulation as min u ∈S δ (�) E f (u ) . 

With the compatibility condition (2) , the Euler–Lagrange equations for (3) becomes 

B δ(u, v ) = 

∫ 
�

∫ 
�
ρδ( x 

′ , x ) 
(
u (x 

′ ) − u (x ) 
)(

v (x 

′ ) − v (x ) 
)
d x 

′ d x = ( f, v ) (8) 

where 

( f, v ) = 

∫ 
�

f (x ) v (x ) dx 

and B δ( ·, ·) defines a symmetric bilinear form. The Lagrange multiplier for the constraint on u vanishes for compatible f .

Thus, by defining the nonlocal operator 

u �→ L δu := −2 

∫ 
�
ρδ( x 

′ , x ) 
(
u (x 

′ ) − u (x ) 
)
dx 

′ , (9) 

we end up with a nonlocal integral equation {
L δu = f in � , ∫ 
� u = 0 

(10) 

for data f satisfying ∫ 
f (x ) dx = 0 . 
�
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One can see that the compatibility condition on f is a consequence of the anti-symmetry of ρδ( x 
′ , x ) (u (x ′ ) − u (x )) in x and

x ′ so that ∫ 
�

f (x ) dx = 

∫ 
�
L δu (x ) dx = −2 

∫ 
�

∫ 
�

ρδ( x 

′ , x ) 
(
u (x 

′ ) − u (x ) 
)
d x 

′ d x = 0 . 

We note that the difference between the above problem (10) with those corresponding to the Dirichlet type volumetric

constraints is that no values of the solution u is specified in any subdomain of �, this is consistent to the nature of Neumann

conditions which are natural conditions implied by the variational principle. Moreover, for nonlocal models, the information

of the Neumann type conditions is encoded in the equations themselves, see [15,16] for detailed accounts on how one

may symbolically rewrite (10) as a combination of balance laws in a subset of � and a (nonlocal) flux condition in its

complement. 

We also note that the operator L δ can be written as L δ = −D ρδD 

∗ where D and D 

∗ are the basic nonlocal divergence

operator and its adjoint defined in a nonlocal vector calculus given in [16] . Such a formulation draws the natural analogy be-

tween nonlocal operators and local second order elliptic differential operators (or more specifically, second order derivative

operators in our current setting). 

2.5. Well-posedness of nonlocal Neumann problems 

Well-posedness of nonlocal Neumann volume-constrained problems has been shown in many previous studies with

some conditions imposed on the kernel. see for instance [3,5,6,15,23] and the references cited therein. For completeness,

we include a brief discussion on Neumann type problems here. The study utilizes extensions of the ideas in [9] , see also

[1,21,22,24,25,28] for additional discussions. A key is the following nonlocal Poincaré-type inequality that holds over all

subspaces of functions in L 2 ( �) satisfying certain compatible constraints. We begin with Proposition 1 of [23] . 

Proposition 2.1. [25 , Proposition 1] Suppose that ρδ satisfies (4) , (5) and V is a closed subspace of L 2 ( �) that intersects R 

d

trivially. Then there exists C = C(ρδ, V, �) such that 

‖ u ‖ 

2 ≤ C 

∫ 
�

∫ 
�
ρδ(x 

′ , x ) | x 

′ − x | 2 (u (x 

′ ) − u (x )) 2 d x 

′ d x , ∀ u ∈ V. (11)

A strengthened nonlocal Poincaré inequality is given later with a sharper constant C independent of the horizon δ. A con-

sequence of the nonlocal Poincaré-type inequality is the coercivity of the bilinear form B = B δ (u, v ) . A standard application

of Lax–Milgram theory or Riesz representation theorem then yields the well-posedness of the variational problem. 

Proposition 2.2. Suppose that ρδ satisfies (4) , (5) and V is a closed subspace of L 2 ( �) that intersects R 

d trivially. Then there

exists κ = κ(ρδ, V, �) such that 

‖ u ‖ 

2 
s ≤ κB δ(u, u ) , for all u ∈ V ∩ S(�) . 

Consequently, for a given f ∈ L 2 satisfying (2) , by taking V = S δ (�) , we see that there exists a unique u ∈ S δ (�) such that 

B δ(u, v ) = ( f, v ) , ∀ v ∈ S δ(�) . (12)

Moreover, | u | s = | f | S ∗
δ
(�) where S ∗

δ
(�) denote the dual space of S δ (�) . 

It follows then that the operator L δ restricted on S δ (�) , that is, L δ : S δ (�) → S ∗
δ
(�) is an isometry. In addition, the

restriction of the inverse operator L 

−1 
δ

to L 2 ( �), that is, L 

−1 
δ

: L 2 (�) → S δ (�) and satisfies the inequality |L 

−1 
δ

f | s ≤ C‖ f ‖ L 2 .
This follows from the continuous embedding of L 2 ( �) into S ∗

δ
(�) and ‖ f ‖ S ∗

δ
(�) ≤ ‖ f ‖ L 2 (�) for any f ∈ L 2 ( �). 

3. The local limit with vanishing horizon 

Although we are interested in studying nonlocal models, it is important to get consistency with classical local models

when the latter are valid and applicable. For suitably defined kernels, limiting local models of nonlocal models are indeed

well-defined. While there have been existing studies on similar limiting process for Dirichlet type volume constraints, the

case for Neumann type problem presents some different issues. 

For a point x ∈ �δ = { x ∈ � | dist (x , ∂�) > δ} , we know that ∫ 
�
ρδ( x 

′ , x ) (x 

′ − x ) dx 

′ = 0 , (13)

and ∫ 
�
ρδ( x 

′ , x ) | x 

′ − x | 2 dx 

′ = 1 , 

∫ 
�
ρδ( x 

′ , x ) (x 

′ − x ) k dx 

′ = o(1) ∀ k > 2 . (14)

With these assumptions, for any smooth enough function u we have formally that L δ represents a nonlocal diffusion

operator with a local limit 

L u (x ) → L 0 u (x ) := −�u (x ) 
δ
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for x ∈ �δ , which is a fact widely stated in many earlier studies. What concerns us is, when taking into account the modi-

fications in the layer around the boundary of �, the formal order of convergence rate as δ → 0. 

To better illustrate our idea, we let � be a finite bar in R . Without loss of generality, we can let � = (0 , 1) . Given data

f = f (x ) , we introduce a modified body force 

f δ(x ) = f (x ) − 1 

2 

(∫ 
�

ρδ(x + y )(y 2 − x 2 )( f (x ) + f (y )) dy + 

∫ 
�

ρδ(x + y − 2)(x + y − 2)(y − x )( f (x ) + f (y )) dy 

)
. 

(15) 

It is simple to check that: 

Lemma 3.1. The modified function f δ satisfies the compatibility condition (2) and f δ (x ) = f (x ) for x ∈ �δ . 

Instead of (10) , we consider the following nonlocal equation {
L δu = f δ on � , ∫ 
� u = 0 . 

(16) 

The limiting local model of (16) is given by {
L 0 u = f in � , u 

′ (0) = u 

′ (1) = 0 , ∫ 
�u (x ) dx = 0 . 

(17) 

Let 

S 0 = { u ∈ H 

1 (�) : 

∫ 
�

u (x ) dx = 0 } 
with an inner product and norm 

(u, v ) S 0 = 

∫ 
�

u 

′ (x ) v ′ (x ) dx, ‖ u ‖ S 0 = 

(∫ 
�
| u 

′ (x ) | 2 dx 

) 1 
2 

, 

and a bilinear form 

B 0 (u, v ) = (u, v ) S 0 = 

∫ 
�

u 

′ (x ) v ′ (x ) dx , (18) 

for u, v ∈ S 0 . The weak formulation of (17) can be cast in the same form as (12) with δ = 0 . 

3.1. Convergence of variational solutions 

To study the asymptotic property of the nonlocal model as δ → 0, we need a “sharper” version of Poincaré inequality,

that is, the Poincaré constant in the inequality should be independent of the horizon δ. This can be worked out, for instance,

by following [24] to consider a sequence of radial kernels ρn ( n ≥ 1) satisfying: 

ξ−2 ρn (ξ ) is nonnegative and nonincreasing in | ξ | , (19) 

∫ 
R 

ρn (| ξ | ) dξ = 1 , (20) 

and lim 

n →∞ 

∫ 
| ξ |≥r 

ρn (| ξ | ) dξ = 0 , ∀ r > 0 . (21) 

Note that in our case, if we let ρδ(| ξ | ) = ξ−2 ρn (| ξ | ) and δ = 

1 
n , then the kernel satisfies all the assumptions above. So

we have the following variant of the Poincaré-type inequality 

Lemma 3.2. [26 , Lemma 4.1] There exists C > 1 and δ0 ≤ 1 such that 

‖ u ‖ 

2 ≤ C 

∫ 
�

∫ 
�
ρδ(x ′ , x )(u (x ′ ) − u (x )) 2 d x ′ d x (22) 

for all u ∈ S δ and all δ ≤ δ0 . 

From the lemma, we can get that 

‖ u ‖ 

2 ≤ CB δ(u, u ) 

with the same constant C for all u ∈ S δ, independent of δ. The uniform boundedness of L 

−1 
δ

in L 2 norm then follows from

the uniform Poincaré inequality ( Theorem 3.2 ). 
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Theorem 3.3. There exists a constant C which is independent of the horizon δ such that 

‖L 

−1 
δ

‖ L 2 ≤ C, 

To study the limiting behavior of the nonlocal solution, we also need a compactness lemma that can be found in [24] . 

Lemma 3.4. Suppose u n ∈ S δn 
with δn → 0 . If 

sup 

n 

∫ 
�

∫ 
�
ρδn 

(x ′ , x )(u n (x ′ ) − u n (x )) 2 d x ′ d x ≤ ∞ , 

then u n is precompact in L 2 ( �) . Moreover, any limit point u ∈ S 0 . 

Now we state some convergence results for the solutions of the parametrized variational problems as δ → 0. We consider

the original problem (10) first and the same result for (16) with data f δ is given in the subsequent Corollary. 

Theorem 3.5. Suppose u δ is the weak solution of (10) and u 0 is the weak solution of (17) . Then we have 

‖ u δ − u 0 ‖ L 2 → 0 as δ → 0 . 

Proof. Since B δ (u δ, v ) = ( f, v ) L 2 for any v ∈ S δ, by Lemma 22 and uniform Poincaré inequality, for some constants C 1 and

C 2 we have 

C 1 ‖ u δ‖ 

2 
S δ ≤ B δ(u δ, u δ ) = ( f, u δ ) L 2 ≤ ‖ f‖ L 2 ‖ u δ‖ L 2 ≤ C 2 ‖ f‖ L 2 ‖ u δ‖ S δ , 

which leads to the uniform boundedness of { u δ ∈ S δ} . Thus by the asymptotically compact embedding property, we get the

convergence of a subsequence of { u δ} in L 2 to a limit point u ∗ ∈ S 0 . For notational convenience, we use the same { u δ} to

denote the subsequence. We claim that 

B 0 (u ∗, v ) = ( f, v ) L 2 , ∀ v ∈ C ∞ (�) . 

Moreover, since C ∞ ( �) is dense in H 

1 ( �), we see that u ∗ is the unique weak solution u 0 of (17) and the convergence of the

whole sequence also follows. 

Indeed, let φε be standard mollifiers so ∫ 
B (0 ,ε) 

φε(x ) dx = 1 . 

Let 

u δ,ε = u δ ∗ φε = 

∫ 
B (0 ,ε) 

u δ(x − y ) φε(y ) dy . 

Define �ε = { x ∈ � : dist (x, ∂�) > ε} . Then for all v ∈ C ∞ (�) , ∫ 
�ε

∫ 
�ε

ρδ(x, x ′ )(u δ,ε (x ′ ) − u δ,ε (x ))(v (x ′ ) − v (x )) d x ′ d x 

= 

∫ 
B (0 ,ε) 

φε(y ) 

(∫ 
�ε

∫ 
�ε

ρδ(x, x ′ )(u δ(x ′ − y ) − u δ(x − y ))(v (x ′ ) − v (x )) d x ′ d x 
)

dy. 

Denote 

B 

ε
δ (u, v ) = 

∫ 
�ε

∫ 
�ε

ρδ(x, x ′ )(u (x ′ ) − u (x ))(v (x ′ ) − v (x )) d x ′ d x , 

B 

ε
0 (u, v ) = 

∫ 
�ε

u 

′ (x ) v ′ (x ) dx 

and u 
y 

δ
(x ) = u δ (x − y ) , we have 

B 

ε
δ (u δ,ε , v ) = 

∫ 
B (0 ,ε) 

φε(y ) B 

ε
δ (u 

y 

δ
, v ) dy. (23)

We want to show that by letting δ → 0 first and then letting ε → 0, the left hand side of (23) goes to B 0 (u ∗, v ) and the

right hand side goes to ( f, v ) L 2 . 
Consider the left hand side of (23) , for fixed ε and small enough δ, �ε ⊂�δ . Then 

B 

ε
δ (u δ,ε , v ) = 

∫ 
�ε

∫ 
�

ρδ(x, x ′ )(u δ,ε (x ′ ) − u δ,ε (x ))(v (x ′ ) − v (x )) d x ′ d x 

−
∫ 
�ε

∫ 
�\ �ε

ρδ(x, x ′ )(u δ,ε (x ′ ) − (x ))(v (x ′ ) − v (x )) d x ′ d x. 



288 Y. Tao et al. / Applied Mathematics and Computation 305 (2017) 282–298 

 

 

 

For the first term, by the fact u δ,ε → u ∗,ε in C ∞ ( �) and Dominated Convergence Theorem, we have 

lim 

ε→ 0 
lim 

δ→ 0 

∫ 
�ε

∫ 
�

ρδ(x, x ′ )(u δ,ε (x ′ ) − u δ,ε (x ))(v (x ′ ) − v (x )) d x ′ d x = lim 

ε→ 0 
B 

ε
0 (u ∗,ε , v ) = B 0 (u ∗, v ) . 

For the second term, since the integrand is uniformly bounded, we have 

lim 

ε→ 0 
lim 

δ→ 0 
| 
∫ 
�ε

∫ 
�\ �ε

ρδ(x, x ′ )(u δ,ε (x ′ ) − u δ,ε (x ))(v (x ′ ) − v (x )) d x ′ d x | 
≤ C lim 

ε→ 0 
| �ε || � \ �ε | = 0 . 

Thus we have 

B 

ε
δ (u δ,ε , v ) → B 0 (u ∗, v ) . 

For the right hand side of (23) , define 

�ε = | B 

ε
δ (u 

y 

δ
, v ) − B δ(u δ, v ) | . 

Since B δ (u δ, v ) = ( f, v ) L 2 for all smooth v , it suffices to show that �ε is bounded by some constant which is independent

of δ and �ε → 0 as ε → 0. Now define �y 
ε = { x ∈ � : x − y ∈ �ε} , since the kernel is translation invariant, i.e. ρδ(x + y, x ′ +

y ) = ρδ(x, x ′ ) if x + y and x ′ + y are in �, we have ∫ 
�ε

∫ 
�ε

ρδ(x, x ′ )(u δ(x ′ − y ) − u δ(x − y ))(v (x ′ ) − v (x )) d x ′ d x 

= 

∫ 
�y 

ε

∫ 
�y 

ε

ρδ(x, x ′ )(u δ(x ′ ) − u δ(x ))(v (x ′ + y ) − v (x + y )) d x ′ d x. 

Therefore, 

�ε ≤ I + I I , 

where 

I = 

∣∣∣∣
∫ 
�y 

ε

∫ 
�y 

ε

ρδ(x, x ′ )(u δ(x ′ ) − u δ(x ))(v (x ′ ) − v (x )) d x ′ d x −
∫ 
�

∫ 
�

ρδ(x, x ′ )(u δ(x ′ ) − u δ(x ))(v (x ′ ) − v (x )) d x ′ d x 
∣∣∣∣

and 

II = 

∣∣∣∣
∫ 
�y 

ε

∫ 
�y 

ε

ρδ(x, x ′ )(u δ(x ′ ) − u δ(x ))(v (x ′ + y ) − v (x ′ ) − (v (x + y ) − v (x ))) d x ′ d x 
∣∣∣∣. 

Note that 

I = 2 | 
∫ 
�\ �y 

ε

∫ 
�

ρδ(x, x ′ )(u δ(x ′ ) − u δ(x ))(v (x ′ ) − v (x )) d x ′ d x | 

≤ 2 ‖ u δ‖ S δ

(∫ 
�\ �y 

ε

∫ 
�

ρδ(x, x ′ )(v (x ′ ) − v (x )) 2 d x ′ d x 
) 1 

2 

≤ C 

(∫ 
�\ �2 ε

∫ 
�

ρδ(x, x ′ )(v (x ′ ) − v (x )) 2 d x ′ d x 
) 1 

2 

. 

The last inequality holds because of �2 ε ⊂ �y 
ε . Since v is also in S δ, by Bounded Convergence Theorem, we can get I → 0

as ε → 0. 

Consider II , since v is smooth, we have 

II ≤ ‖ u δ‖ S δ‖ v (x + y ) − v (x ) ‖ S δ (�y 
ε ) 

≤ C‖ u δ‖ S δ‖ v (x + y ) − v (x ) ‖ S 0 (�y 
ε ) 

, 

which also goes to 0 when ε → 0 since | y | < ε. �

Corollary 3.6. Suppose u δ is the weak solution of (16) and u 0 is the weak solution of (17) . Then we have 

‖ u δ − u 0 ‖ L 2 → 0 as δ → 0 . 

Proof. Let us assume that ˜ u δ is the weak solution of (10) . By the theorem stated above, it suffices to show that ‖ ̃  u δ −
u δ‖ L 2 → 0 as δ → 0, which can be derived from Theorem 3.3 and the fact that 

‖ f − f δ‖ L 2 → 0 as δ → 0 . 

Indeed, denote by φδ(x ) = 

∫ 
� ρδ(x + y )(y 2 − x 2 ) dy, then φδ is compactly supported in x ∈ [0, δ] and 

| φδ(x ) | ≤
∫ 

ρδ(x + y ) | y 2 − x 2 | dy ≤
∫ 

ρδ(x + y )(x + y ) 2 dy , 

� �



Y. Tao et al. / Applied Mathematics and Computation 305 (2017) 282–298 289 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is bounded for any x ∈ [0, δ]. Moreover, we also have ∫ 
�

ρδ(x + y − 2)(x + y − 2)(y − x ) dy = φδ(1 − x ) , 

which is compactly supported in x ∈ [1 − δ, 1] and is also bounded. Therefore, when x ∈ [0, δ], 

| f (x ) − f δ(x ) | ≤ | f (x ) | 
2 

∣∣∣∫ 
�
ρδ(x + y )(y 2 − x 2 ) dy 

∣∣∣ + 

1 

2 

∣∣∣∫ 
�
ρδ(x + y )(y 2 − x 2 ) f (y ) dy 

∣∣∣ . 

The first integral is bounded and by Schwarz’s inequality, ∣∣∣∫ 
�
ρδ(x + y )(y 2 − x 2 ) f (y ) dy 

∣∣∣2 

≤
∫ 
�
ρδ(x + y )(y − x ) 2 dy 

∫ 
�
ρδ(x + y )(x + y ) 2 f (y ) 2 dy 

≤
∫ 
�
ρδ(x + y )(x + y ) 2 dy 

∫ 
�

f (y ) 2 dy 

≤ ‖ f‖ L 2 . 

Then we can get that 

‖ f − f δ‖ L 2 [0 ,δ] ≤ C 1 ‖ f‖ L 2 [0 ,δ] + C 2 δ , 

which vanishes as δ → 0. Similarly, we also have 

‖ f − f δ‖ L 2 [1 −δ, 1] → 0 

as δ → 0. Then the claim is true since f (x ) − f δ (x ) = 0 for x ∈ [ δ, 1 − δ] . �

The above theorem finally confirms that (17) is the limiting local problem of our nonlocal diffusion problems with Neu-

mann type constraints. 

3.2. Order of convergence 

Our next aim is to estimate the formal order of convergence rate as δ → 0, in the presence of Neumann type constraints.

Towards this goal, we consider an even more general setting by imposing a mixed type of volume constraints. For simplicity

in presentation, we consider the case � = (0 , 1) with a Neumann type volume constraint at x = 0 and a nonlocal Dirichlet

type constraint at �D = [1 , 1 + δ] . In this case, the nonlocal operator given by (9) should be properly modified as 

u �→ L δu := −2 

∫ 
�∪ �D 

ρδ( x 
′ , x ) 

(
u (x ′ ) − u (x ) 

)
dx ′ , (24)

Then the nonlocal equation to be solved is {
L δu = f L 

δ
on � , 

u = 0 on �D , 
(25)

where the one-sided modified body force f L 
δ

is given by 

f L δ (x ) = f (x ) − 1 

2 

∫ 
�∪ �D 

ρδ(x + y )(y 2 − x 2 )( f (x ) + f (y )) dy 

for any x ∈ �. The corresponding limiting local model of (25) is given by {
L 0 u = f in � , 

u 

′ (0) = 0 , u (1) = 0 . 
(26)

Note that we always choose f such that the exact solution u 0 of the local problem (26) decays smoothly to zero on the

Dirichlet side and therefore we can zero extend u 0 to �D smoothly. We first remark that the use of the nonlocal δ-layer

(such as �D = [1 , 1 + δ] for the 1-D case) for imposing Dirichlet type of constraints is a feature of nonlocal interaction

that has been discussed in many previous works [15] . Effectively, we are now treating � ∪ �D = [0 , 1 + δ] as the material

body but assuming that u = 0 over [1 , 1 + δ] , the δ neighborhood on the right end, which is a typical feature of nonlocal

interaction that has been discussed in many previous works [15] . Due to mixed volume constraints, we have the nonlocal

maximum principle stated below. 

Lemma 3.7 (Maximum principle) . Let ρδ satisfy (13) . If u ∈ C( �) and L δu (x ) ≤ 0 for all x ∈ �, then 

sup 

x ∈ �
u (x ) ≤ sup 

x ∈ �D 

u (x ) . 

Proof. Step 1. We are going to show that the claim is true if L δu (x ) ≤ −ε for x ∈ �, where ε > 0. Assume that sup x ∈ � u (x ) >

sup x ∈ �D 
u (x ) . Then since u ∈ C( �) , we can find x ∗ ∈ � such that u (x ∗) = sup x ′ ∈ � u (x ′ ) ≥ u (x ) for any x ∈ �∪ �D . Thus 

L δu (x ∗) = −
∫ 
�∪ �D 

ρδ(| x − x ′ | )(u (x ′ ) − u (x ∗)) dx ′ ≥ 0 , 

which contradicts with L δu (x ) ≤ 0 , ∀ x ∈ �. So it must be true that sup x ∈ � u (x ) ≤ sup x ∈ � u (x ) . 

D 
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Step 2. Now we show that the claim is true if L δu (x ) ≤ 0 . Let w (x ) = u (x ) + εx 2 , then one can show that 

L δw (x ) ≤ −ε

∫ 
�∪ �D 

ρδ(| x − x ′ | )(x ′ 2 − x 2 ) dx ′ ≤ −ε . 

Therefore, from step 1 we know that for any ε > 0 

sup 

x ∈ �
w (x ) = sup 

x ∈ �
u (x ) + ε ≤ sup 

x ∈ �D 

w (x ) = sup 

x ∈ �D 

u (x ) + ε(1 + δ) 2 . 

So we have the claim verified by letting ε → 0. �

Assume that u δ and u 0 are the solutions to (25) and (26) respectively. Let us denote e δ (x ) = u δ (x ) − u 0 (x ) and T δ (x ) =
(L 0 u 0 − L δu 0 ) + ( f L 

δ
− f ) , then L δe δ (x ) = L δu δ (x ) − L δu 0 (x ) = T δ(x ) . By Taylor expansion and the symmetry of the kernels,

we can get the following truncation error estimate. 

Lemma 3.8 (Truncation error) . Suppose u 0 is the solution to local problem (26) . Then 

T δ(x ) = 

⎧ ⎨ 

⎩ 

O (δ2 ) for x ∈ [ δ, 1) , (∫ δ

x 

(
2 s 2 x − s 3 

6 

− 3 x 2 s 

)
ρδ( s ) ds 

)
u 

′′′ 
0 ( 0) + O ( δ2 ) for x ∈ ( 0 , δ) . 

To get the formal order of convergence, we need the following important lemma. 

Lemma 3.9. Suppose that a nonnegative continuous function �( x ) is defined on �∪ �D , and 

−L δ�(x ) ≥ G (x ) > 0 . 

Then 

sup 

x ∈ �
| e δ(x ) | ≤ sup 

x ∈ �D 

�(x ) · sup 

x ∈ �

| T δ(x ) | 
G (x ) 

Proof. Let K δ = sup x ∈ �
| T δ (x ) | 

G (x ) 
. Then consider K δ�(x ) + e δ (x ) , we have L δ (K δ� + e δ ) ≤ 0 . By applying the maximum principle

Lemma 3.7 (noticing that it can be applied since u δ ∈ C( �) if f L 
δ

∈ C( �) which implies e δ ∈ C( �) ), we have 

sup 

x ∈ �
e δ(x ) ≤ sup 

x ∈ �
(K δ�(x ) + e δ(x )) ≤ sup 

x ∈ �D 

(K δ�(x ) + e δ(x )) = K δ sup 

x ∈ �D 

�(x ) , 

where e δ (x ) = 0 for x ∈ �D is used. Similarly, we can also get 

sup 

x ∈ �
−e δ(x ) ≤ K δ sup 

x ∈ �D 

�(x ) , 

which completes the proof. �

Now to find �( x ), the so-called barrier function (as in the PDE literature), we suppose that it is of the form 

�(x ) = x 2 + 2 x . 

Then �( x ) is nonnegative on �D . Moreover, let 

G (x ) = −L δ�(x ) = 

⎧ ⎨ 

⎩ 

2 for x ∈ (δ, 1) , 

2 

∫ δ

−x 

ρδ(s ) 
(
s 2 + 2 sx + 2 s 

)
ds for x ∈ [0 , δ] . 

Therefore, G ( x ) > 0 for x ∈ � since when x ∈ [0, δ], 

G (x ) = 2 

∫ δ

−x 

ρδ(s ) s 2 ds + 4(1 + x ) 

∫ δ

x 

ρδ(s ) sds > 0 . 

Now if we pick a specific kernel, namely (6) with γ being the characteristic function on (0, 1): 

ρδ(x, x ′ ) = 

3 

2 δ3 
χ[0 , 1] 

( | x − x ′ | 
δ

)
for all x, x ′ ∈ R . (27) 

Then we have 

K δ = sup 

{ 

sup 

x ∈ (0 ,δ) 

| δ4 − 16 δ3 x − 36 δ2 x 2 + 51 x 4 || u 

′′′ 
0 (0) | + O (δ4 ) 

16 

(
δ3 + 3 δ2 (1 + x ) − x 2 (3 + 2 x ) 

) , O (δ2 ) 

} 

, 
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where the first term can be proved to be O ( δ2 ). Indeed, let x = αδ, α ∈ (0, 1), then the first term is equivalent to 

(1 − α) | 1 − 15 α − 51 α2 − 51 α3 || u 

′′′ 
0 (0) | δ4 + O (δ5 ) 

48 

(
1 − α2 

)
δ2 + O(δ3 ) 

= O (δ2 ) . 

Combining Lemma 3.9 and the above calculations, we have the desired O ( δ2 ) estimate. 

More generally, for rescaled kernels (6) , we have 

K δ = sup 

⎧ ⎨ 

⎩ 

sup 

x ∈ (0 ,δ) 

∣∣∣∫ δx ρδ(s ) 
(
2 s 2 x − s 3 

6 
− 3 x 2 s 

)
ds 

∣∣∣∫ δ
−x ρδ(s )(2 s + 2 sx + s 2 ) ds 

| u 

′′′ 
0 (0) | , O (δ2 ) 

⎫ ⎬ 

⎭ 

. 

Let x = αδ where α ∈ (0, 1). We can simplify the fraction in the above equation by plugging (6) into it and apply a change

of variable t = s/δ to get: ∣∣∣∫ δx ρδ(s ) 
(
2 s 2 x − s 3 

6 
− 3 x 2 s 

)
ds 

∣∣∣∫ δ
−x ρδ(s )(2 s + 2 sx + s 2 ) ds 

= δ2 ·

∣∣∣∫ 1 α γ (s ) 
(
2 αs 2 − s 3 

6 
− 3 δα2 s 2 

)
ds 

∣∣∣∫ 1 
−α γ (s )(2 s + 2 αδs + δs 2 ) ds 

, 

which can be proved to be O ( δ2 ). Indeed, by (14) we can get ∫ 1 

−α
δs 2 γ (s ) ds = O (δ) . 

Moreover, the numerator on the right hand side ∣∣∣∣
∫ 1 

α
γ (s ) 

(
2 αs 2 − s 3 

6 

− 3 δα2 s 2 
)

ds 

∣∣∣∣ ≤ (2 α + 3 δα2 ) 

∫ 1 

α
γ (s ) s 2 ds + 

1 

6 

∫ 1 

α
γ (s ) s 3 ds 

≤
(

2 α + 3 δα2 + 

1 

6 

)∫ 1 

α
γ (s ) sds . 

and the denominator can be simplified to ∫ 1 

−α
γ (s )(2 s + 2 αδs + δs 2 ) ds = (2 + 2 αδ) 

∫ 1 

α
γ (s ) sds + O (δ) . 

Then there exists a constant C independent of δ and α, such that ∣∣∣∣∫ 1 α γ (s ) 

(
2 αs 2 − s 3 

6 

− 3 δα2 s 2 
)

ds 

∣∣∣∣∫ 1 
−α γ (s )(2 s + 2 αδs + δs 2 ) ds 

≤ C , 

which again gives the O ( δ2 ) convergence order. We summarize in to the following key result of this paper. 

Theorem 3.10. Suppose u δ solves the nonlocal problem (25) and u 0 is the solution to local problem (26) . Then when δ < δ0 for

some constant δ0 , there exists a constant C > 0 independent of δ such that 

sup 

x ∈ �
| u δ(x ) − u 0 (x ) | ≤ Cδ2 . 

3.3. Inhomogeneous Neumann conditions 

Now we discuss the nonlocal analog to the classical diffusion problem with inhomogeneous Neumann boundary condi-

tions. The latter is given by {
L 0 u = f in � , 

u 

′ (0) = a , u (1) = 0 , 
(28)

where a � = 0. 

We aim to impose Neumann type volume constraint at the left end point x = 0 . In order to have the consistency, we

assume in addition that the first moment of γ exists for any δ > 0, namely ∫ 1 

0 

γ (s ) s ds < ∞ . (29)

Note that (29) may not hold for all kernels given by (6) , for example, γ (s ) = 1 /s 2 . However, among practical choices of γ ,

one often takes it to be integrable in many numerical simulations, then (29) is automatically satisfied. 
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Instead of (25) , the nonlocal equation to be solved is {
L δu = 

˜ f L 
δ

on � , 

u = 0 on �D , 
(30) 

where L δ remains the same as (24) but 

˜ f L δ (x ) = f L δ (x ) + 2 a 

∫ 0 

−δ
ρδ(x, x ′ )(x ′ − x ) dx ′ . (31) 

By (30) , it is easy to check that the extra integration in (32) is well defined since γ ( s ) does not have singularities when

x � = 0. Moreover, Lemma 3.8 and Lemma 3.9 still hold in this case since the last term in (32) cancels the new terms of

truncation errors due to the inhomogeneous conditions. Therefore, we still have the following result. 

Theorem 3.11. Suppose u δ solves the nonlocal problem (31) and u 0 is the solution to local problem (29) . Then when δ < δ0 for

some constant δ0 , there exists a constant C independent of δ such that 

sup 

x ∈ �
| u δ(x ) − u 0 (x ) | ≤ Cδ2 . 

Remark 1. We can generalize the last term in (32) . Indeed, to solve for inhomogeneous Neumann boundary conditions, we

introduce an auxiliary function u b which is supported on (−δ, 0) . Define 

L 

N 
δ u b = −2 

∫ 0 

−δ
ρδ(x, x ′ )(u b (y ) − u b (x )) dy . 

Then (32) can be written as 

˜ f L δ (x ) = f L δ (x ) + 2 L 

N 
δ u b , 

where u b (x ) = −ax for x ∈ (−δ, 0) . Here a � = 0 is the local Neumann boundary data and the negative sign comes from the

outward normal direction at x = 0 . The work [12] also discussed how to impose the inhomogeneous nonlocal Neumann

conditions, which shares some similarities with the discussions here. 

In general, u b does not have to be a linear function and the kernel in L 

N 
δ

does not have to be the same as that in L δ . It

is sufficient to choose the kernel βδ for L 

N 
δ

and the auxiliary function u b such that ∫ 0 

−δ
βδ(x, x ′ )(u b (x ′ ) − u b (x )) dx ′ = a 

∫ 0 

−δ
ρδ(x, x ′ )(x ′ − x ) dx ′ + O(δ) , (32) 

where O(δ) is some higher order term that is at least uniformly bounded by a constant multiple of δ. We note that one can

use a similar approach to solve inhomogeneous Neumann problems in high dimensional spaces, details will be presented in

a separate work. 

4. Numerical schemes 

In this section, two classes of discrete schemes for (16) are studied, including the quadrature/collocation schemes which

are analogous to the ones presented in [33] , and conforming finite element Galerkin approximations with piecewise constant

and piecewise linear finite element spaces. We refer to [7,11,34,36] for more discussions on different numerical schemes and

additional references. In this and the followed section we still use the kernel (27) which provides a good illustration of the

more general case without messy notations. 

4.1. Geometric discretization 

We consider a uniform mesh (grid) in this section. For a positive integer N, we set h = 1 /N and let δ = rh for an integer

r ≥ 1. Furthermore, we assume δ < 

1 
3 . Introduce grid points on � as { x i = (i − 1) h } i ∈ �N 

where the index set is defined by

�N = { 1 , 2 , . . . , N + 1 } . Denote by I j = (( j − 1) h, jh ) for 1 ≤ j ≤ r . We also define the standard piecewise constant basis

functions by 

φ0 
i (x ) = 

{
1 for x ∈ (x i −1 , x i ) , 

0 otherwise , 
for i ∈ �N , (33) 

and the standard continuous piecewise linear hat basis functions by 

φ1 
i (x ) = 

⎧ ⎨ 

⎩ 

( x − x i −1 ) /h for x ∈ (x i −1 , x i ) , 

( x i +1 − x ) /h for x ∈ [ x i , x i +1 ) , 

0 , otherwise 

for i ∈ �N . (34) 

4.2. Quadrature based finite difference discretization 

For x ∈ � , since the integrating interval is symmetric with respect to x , we can follow [33] to get 
δ
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L δu (x ) = 

∫ δ

0 

ρ(s )(u (x − s ) − 2 u (x ) + u (x + s )) ds 

= 

∫ δ

0 

u (x − s ) − 2 u (x ) + u (x + s ) 

s α
s αρδ(s ) ds. (35)

We consider the discrete operator L 

h 
δ,α

given by 

L 

h 
δ,αu i = 

r ∑ 

m =1 

u i −m 

− 2 u i + u i + m 

(mh ) α

∫ 
I m 

s αφ1 
i (s ) ρδ(s ) ds. i = r + 1 , . . . , N − r, (36)

where { u i } are approximations of { u ( x i )}. 

If we take α to be 1, then the discrete operator above can be written by 

L 

h 
δ, 0 u i = −3 h 

δ3 

r−1 ∑ 

m =1 

( u i −m 

− 2 u i + u i + m 

) − h 

2 (3 r − 1) 

2 δ4 
( u i −r − 2 u i + u i + r ) , (37)

for i = r + 1 , . . . , N − r. 

In [33] , it was shown that such quadrature-based schemes are asymptotically compatible for linear nonlocal equations

with Dirichlet-type constraints. We now demonstrate in our numerical experiments that it is also true for Neumann volume-

constrained problems. 

A distinction from [33] is that we also need to discuss here the case that x ∈ ���δ , for which the integrating interval

is no longer symmetric. We can either directly use the composite trapezoid rule to approximate the integral, or separate

the interval into a symmetric part where we can again exploit the quadrature scheme mentioned above and the remainder

where we can consider other quadratures. The details are omitted. 

Given the above discrete nonlocal difference operators, the proposed quadrature based finite difference scheme of

(16) is 

−L 

h 
δ, 0 u i = f δ(x i ) i ∈ { 1 , . . . , N + 1 } (38)

Let U be a column vector with entries { u i } N+1 
i =1 

, and F be that with entries { f δ (x i ) } N+1 
i =1 

, we may rewrite the corresponding

linear systems as 

A D U = F . (39)

Note that the above stiffness matrix is obtained without any compatibility constraints, so the matrix is singular and the

solution of corresponding linear system is not unique. This issue is to be discussed in Section 5 . 

4.3. Finite element discretization 

Given the constrained energy space S δ (�) and the bilinear form in Section 2.3 , the associated weak formulation of (16) is

given by: finding u ∈ S δ (�) such that ∀ v ∈ S δ (�) , 

B (u, v ) = ( f δ, v ) �. 

Let S h 
δ

⊂ S c be a family of finite element spaces corresponding to a uniform mesh { x i } parameterized by the mesh size h , as

described earlier, with { φk 
i 
} N h 

i =1 
being the nodal basis. Let u h ∈ S h 

δ
be the Galerkin approximation of u given by 

B (u h , v h ) = ( f δ, v h ) � ∀ v h ∈ S h δ . (40)

Now suppose u h = 

∑ N h 
i =1 

u i φ
k 
i 
(x ) , we pay particular attention to the cases k = 0 and 1 with the case k = 0 corresponding

to piecewise constant basis functions (34) (if the energy space admits such functions, which is guaranteed if ρδ has finite

first order moment), and the case k = 1 corresponding to standard continuous piecewise linear elements with hat basis

functions given by (35) (which works for ρδ that has finite second order moment). 

Similar to difference approximations, let U be the column vector composed of the nodal values { u i } N h i =1 
, and F k being

the vector with entries { ( f δ, φ
k 
i 
) �/h } N h 

i =1 
that represent the weighted average of f δ around x i . Then (41) gives linear systems

A E,k U = F k with { A E,k } 1 k =0 
being the nonlocal stiffness matrices for the finite element approximation. The issue of uniqueness

of solution will again be discussed later. 

5. Numerical studies 

We now report results of numerical experiments which substantiate the analysis given earlier and offer quantitative

pictures to the behavior of numerical solutions especially in the local limit. We first discuss how to impose the Neumann

constraint numerically in order to ensure the uniqueness of the numerical solution. The order of convergence for some

limiting processes are also examined. Through the numerical experiments, we can recover results analogous to those in

[33] for pure Dirichlet constraints. The kernel used in this section is again taken as (27) . 
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Table 1 

Errors of quadrature collocation and piecewise finite element 

approximations for fixed δ = 

1 
4 

to solution x 4 − 2 x 3 + x 2 . 

Quadrature collocation p.w. linear fem 

h ‖ U 

h − R h u ‖ ∞ Order ‖ u h − I h u ‖ ∞ Order 

2 −3 4 . 59 × 10 −3 – 8 . 23 × 10 −3 –

2 −4 1 . 19 × 10 −3 1.95 3 . 85 × 10 −3 1.10 

2 −5 3 . 00 × 10 −4 1.98 1 . 22 × 10 −3 1.66 

2 −6 7 . 53 × 10 −5 1.99 3 . 37 × 10 −4 1.85 

2 −7 1 . 88 × 10 −5 2.00 8 . 82 × 10 −5 1.93 

2 −8 4 . 71 × 10 −6 2.00 2 . 25 × 10 −5 1.97 

2 −9 1 . 18 × 10 −6 2.00 5 . 69 × 10 −6 1.98 

2 −10 2 . 94 × 10 −7 2.00 1 . 43 × 10 −6 1.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Numerically imposing the compatibility constraints 

After numerical discretization, we get the stiffness matrices A that can be A D , A E, 0 or A E, 1 . However, they all have a

one-dimensional kernel due to the non-uniqueness. We may impose the constraint that the average of the solution being

zero. Or we may modify the stiffness matrix obtained from numerical discretization. Let E be the column vector with entries

all 1. Then E is in the kernel of stiffness matrix A . Let B = A + EE 

T , we solve the linear system B U 

′ = F instead of solving

A U = F , where F is the right hand side corresponding to different stiffness matrices. Then the vector U 

′ has the property

of mean zero. For homogeneous nonlocal Neumman condition, U 

′ is the numerical solution we want. If the compatibility

constraint is that average of u in (0, 1) is C n but not zero, we need to set U 

h = U 

′ + C h E , where C h → C n as h → 0 ( h is the

mesh size). 

In our experiments, we adopt the second approach for the following reasons: (1) the order of convergence with mixed

type volume constraints is derived theoretically in Section 3.2 . We want to see if there is any difference for pure Neumann

volume constraints; (2) previous studies in [33] contained a set of experiments with Dirichlet volume constraints, it is

desirable to impose pure Neumann type constraints numerically as in the model here in order to compare with the results

shown in [33] . 

We note that the compatibility constraint can be avoided if we impose Dirichlet type volume constraint on one end of

the nonlocal boundary region ( �D = [1 , 1 + δ] , for instance) and consider Neumman type constraint on the other end. In

other words, we discretize and solve (25) with the nonlocal operator given by (24) . This also ensures the uniqueness of the

numerical solution without the need for imposing the compatibility constraint. 

5.2. Example 1 

We first fix the horizon δ. In order to get simpler benchmark solutions, we calculate the right hand side of the nonlocal

equation based on an exact solution u (x ) = x 2 (1 − x ) 2 . This naturally leads to a δ-dependent right hand side f = 

˜ f δ(x ) .

Meanwhile, we need to modify our nonlocal constraints to match with u ( x ), which leads to our target inhomogeneous

volume constrained equation: {
L δu = 

˜ f δ on � , ∫ 
� u = C n . 

(41) 

We solve the nonlocal problem on a uniform mesh and take δ to be constant and reduce h to check the convergence

properties. As an illustration we choose δ = 

1 
4 and refine the mesh with decreasing h . For each h , we use the second ap-

proach discussed above to numerically impose the compatibility conditions and the constant C h is chosen as C h = C n = 

1 
30 

which is the integral of u over �. 

Table 1 shows errors and error orders of the finite difference (columns 2 and 3) and the piecewise linear finite element

(columns 4 and 5) approximations to limiting solution x 2 (1 − x ) 2 with a fixed δ = 

1 
4 while refining mesh with a decreasing

h , where R h denotes the restriction to the quadrature points { x i = ih } N 
i =0 

and I h denotes the piecewise linear interpolant

operator. From the data in the table, we see that the convergence rate for fixed δ is O(h 2 ) for both finite difference and finite

element approximations. We remark that the piecewise constant finite element approximation has the same convergence

behavior and the data is omitted. 

5.3. Example 2 

We now report numerical experiments to show the order of convergence at continuum level as δ → 0, which was

discussed analytically in Section 3 . We discretize and solve the following equation: {
L δu δ = f δ on � , ∫ 
� u δ = C δ . 

(42) 
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Table 2 

Errors and error orders of finite difference and piecewise 

linear finite element approximations as δ → 0 to solution 

x 3 / 3 − x 6 / 6 . 

Quadrature collocation p.w linear fem 

δ ‖ U 

h 
δ − R h u ‖ ∞ Order ‖ u h 

δ
− I h u ‖ ∞ Order 

2 −2 3 . 03 × 10 −2 – 2 . 80 × 10 −2 –

2 −3 7 . 26 × 10 −3 2.06 5 . 07 × 10 −3 2.47 

2 −4 1 . 79 × 10 −3 2.02 9 . 50 × 10 −4 2.41 

2 −5 4 . 45 × 10 −4 2.01 1 . 92 × 10 −4 2.31 

2 −6 1 . 08 × 10 −4 2.04 4 . 13 × 10 −5 2.21 

2 −7 2 . 59 × 10 −5 2.06 8 . 48 × 10 −6 2.27 

Table 3 

Errors and error orders of finite difference and piecewise lin- 

ear finite element approximations as h → 0 with fixed r = 2 

to solution x 3 / 3 − x 6 / 6 . 

Quadrature collocation p.w linear fem 

h ‖ U 

h 
δ − R h u ‖ ∞ Order ‖ u h 

δ
− I h u ‖ ∞ Order 

2 −3 4 . 97 × 10 −3 – 1 . 13 × 10 −2 –

2 −4 1 . 20 × 10 −3 2.04 2 . 86 × 10 −3 1.98 

2 −5 2 . 96 × 10 −4 2.02 7 . 21 × 10 −4 1.99 

2 −6 7 . 34 × 10 −5 2.01 1 . 81 × 10 −4 2.00 

2 −7 1 . 83 × 10 −5 2.01 4 . 53 × 10 −5 2.00 

2 −8 4 . 55 × 10 −6 2.00 1 . 13 × 10 −5 2.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f δ is the modified body force given in (15) . The constant C δ in the above equation is dependent of δ, and goes to some

constant C n when δ goes to zero, which means that the limiting local equation is ⎧ ⎨ 

⎩ 

L 0 u = f on � , 

u 

′ (0) = u 

′ (1) = 0 , ∫ 
� u = C n . 

(43)

We specify the local limit of the nonlocal solution as u (x ) = x 3 / 3 − x 6 / 6 , hence the right hand side of the local PDE

would be f (x ) = 5 x 4 − 2 x . Denote by U 

h 
δ

the numerical solution of (43) with horizon δ and mesh size h . Then from example

1, with fixed δ, U 

h 
δ

are known to converge to the interpolant of nonlocal solution u δ with decreasing h . Therefore, when

we keep δ decreasing and pick a relative small enough h as our limit case, the result we get can approximate the limiting

process which we discussed in Section 3 . In this example, since we only care about the limiting behavior of the numerical

solution of u δ , we can directly choose C δ as 5 
84 which is the exact integral of the local limit u . Moreover, we impose such a

constraint on the numerical solution U 

h 
δ

as well by setting 

h (U 

h 
δ[1] / 2 + U 

h 
δ[2] + . . . + U 

h 
δ[ N] + U 

h 
δ[ N + 1] / 2) = 5 / 84 . 

Table 2 shows errors and error orders to the local limit of the quadrature collocation (columns 2 and 3) and piecewise

linear finite element (columns 4 and 5) approximations as δ goes to 0 while fixing a small enough mech size h . From the

data in the table, we can see that the convergence rate to the local limit is O ( δ2 ), which is same as what we showed in

earlier analysis. We remark that the piecewise constant finite element approximations also converge to the local limit with

the same rates. 

We also want to check the asymptotic compatibility of the model. Table 3 shows that the error orders as h → 0 with a

fixed r = δ/h remain O(h 2 ) . 

Furthermore, we now confirm that the nonlocal solution recovers the Neumann boundary conditions as δ → 0 and the

derivatives also converge. For U 

h 
δ

with different δ and h small enough, we have that 

u 

′ 
δ(0) ≈ D 

+ 
h 

U 

h 
δ[1] := (U 

h 
δ[2] − U 

h 
δ[1]) /h 

and 

u 

′ 
δ(1) ≈ D 

−
h 

U 

h 
δ[ N + 1] := (U 

h 
δ[ N + 1] − U 

h 
δ[ N]) /h , 

where D 

±
h 

are the difference quotient operators associated to forward and backward differences respectively. Central differ-

ence quotient is used for other nodes, namely 

u 

′ 
δ(( j − 1) h ) ≈ D h U 

h 
δ[ j − 1] := (U 

h 
δ[ j] − U 

h 
δ[ j − 2]) / 2 h , 

where j = 2 , 3 , . . . , N. Take the finite difference approximation as illustration, Table 4 shows that as δ → 0, the derivatives

of nonlocal solutions converge with an order of O(δ) . For more studies on nonlocal gradient recovery, we refer to [20] . 
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Table 4 

Errors and error orders of numeri- 

cal derivatives of finite difference ap- 

proximations as δ → 0. 

δ ‖ D h U 

h 
δ

− R h u 
′ ‖ ∞ Order 

2 −2 4 . 51 × 10 −1 –

2 −3 2 . 24 × 10 −1 1.01 

2 −4 1 . 17 × 10 −1 0.93 

2 −5 6 . 09 × 10 −2 0.95 

2 −6 3 . 11 × 10 −2 0.97 

2 −7 1 . 57 × 10 −2 0.98 

Fig. 1. The local limit of piecewise constant finite element approximation with fixed r as h → 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Example 3 

In this example, we study another limit process. Recall in [33,34] that in the case with asymptotically compatible finite

difference and piecewise linear finite element discretization, the numerical solutions give the correct local limit but not

the case with piecewise constant finite element. For δ = rh with a fixed integer r ≥ 1, the continuous piecewise linear

finite element approximation provides a consistent difference approximation to the local limit as h → 0. Moreover, for

problems with sufficiently smooth solutions, the order of truncation error is still O(h 2 ) . However, for the piecewise constant

finite element approximation, it goes to a different and wrong local limit as h → 0, confirming that the conclusions in

[33,34] remain valid for the Neumann case. We take r = 1 and start with δ = 2 −4 and choose the local limit as u (x ) =
x 2 (1 − x ) 2 . Fig. 1 shows that with fixed r = 1 , the piecewise constant finite element approximation converges to a local

limit which is no longer u . 

5.5. Discussions 

The numerical experiments reported here are mostly restricted to smooth solutions. We leave experiments involving

singular solutions and more general limits to future works. Based on the results of this section, we see that it is possible to

recover most of the results in [33,34] where nonlocal diffusion and linear peridynamic models with Dirichlet type volume

constraints and a constant horizon have been studied. We also note that similar studies for spatially changing horizon can

also be done, which will be shown in the future works. 

6. Conclusion and remarks 

In this paper, we have analyzed a linear nonlocal diffusion model which is posed as a nonlocal boundary value problem

of Neumann type. We have considered a class of kernels associated with the some variational problems. Basic structural
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properties of the associated nonlocal energy spaces, such as completeness and compactness, are established, leading to

well-posedness for the variational problems. We refer to [21–23,25] for more properties of the energy space. 

One of our main contributions in this work is a study of the limiting processes of both the nonlocal diffusion models and

the discrete approximations, including the quadrature based finite difference and conforming finite element disircretizations.

These are representatives of two classes of methods which can be applied to problems with very general nonlocal interaction

kernels having a finite second order moment. Note that much of the previous studies on Dirichlet type constrained nonlocal

diffusion problems have now been extended to problems with Neumann type volume constraints. We establish the local

limit of the nonlocal diffusion model as the horizon goes to zero, and estimate the convergence rate of such a limiting

process, which is confirmed by numerical experiments. In particular, we are able to numerically recover most of the results

presented in [33] of the problems with Dirichlet volume constraints. In Section 5 , we discuss the similarities and differences

between the limiting behavior of numerical methods. These methods are all convergent with the same rate when applied to

the nonlocal problem with a fixed horizon δ. However, they behave differently depending on the ratio of horizon and mesh

size ( δ/ h ) being fixed. The piecewise constant finite element approximation converges to a different local limit, which is a

scalar multiple of the local limit of other approximations. The surprising findings are again consistent to the results given

for models with homogeneous Dirichlet conditions. 

Finally, the current study is largely based on a simple one-dimensional linear model for the sake of offering insight

without being impeded by tedious calculations. In our analysis here, the computational mesh is taken to be uniform and

the horizon parameter δ is also assumed to be a constant. While these serve the purpose of illustration well, additional

complications may arise in practical implementations. In future works we plan to extend the results obtained in here to the

linear peridynamic model with a spatially varying horizon which mimics a spatial change of scales in nonlocal interactions.

The present work also serves as a useful step towards the study of nonlocal interface problems and the development of

domain decomposition strategies for nonlocal problems. 
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