

NetApp Overview

» Informal session!

» General NFS performance concepts
» General NFS tuning

» Application-specific tuning

» NFS/RDMA futures

» Q&A

Who We Are

» Network Appliance

» “Filer” storage server appliance family
— NFS, CIFS, ISCSI, Fibre Channel, etc
— Number 1 NAS Storage Vendor — NFS

| ‘ | 4
- — _P
e = . CJ

L= TR =
_ gFiler™ NetCache® FAS200 Series
FAS900 Series NearStore® Intelligent Accelerated Remote and
Unified Economical gateway for and secure small office
Enterprise- secondary existing accesstoweb storage

class sto rage storage storage content

Why We Care

What the User Purchases and Deploys
An NFS Solution

Linux, Solaris, AlX,
HPUX Product

UNIX Host

NFS Client

NetApp Filer
NFS Server

O
NetApp Our Message

» NFS = Delivers real management/cost value

» NFS - Core Data Center

» NFS - Mission Critical Database Deployments
» NFS - Deliver performance of Local FS ??7?

» NFS - Compared directly to Local FS/SAN

Our Mission

» Support NFS Clients/Vendors
« We are here to help

» Ensure successful commercial deployments
 Translate User problems to actionable plans

» Make NFS as good or better than Local FS
e This Is true under many circumstances already

» Disseminate NFS performance knowledge
 Customers, Vendors, Partners, Field, Engineers

NFS Client Performance

» Traditional Wisdom

* NFS is slow due to Host CPU consumption
 Ethernets are slow compared to SANs

» Two Key Observations

 Most Users have CPU cycles to spare
 Ethernetis 1 Gbit =100 MB/s. FCis on 2x

NFS Client Performance

» Reality — What really matters

« Caching behavior

* Wire efficiency (application I/O : wire I/O)

e Single mount point parallelism

Multi-NIC scalability

Throughput IOPs and MB/s

Latency (response time)

Per-10 CPU cost (in relation to Local FS cost)
 Wire speed and Network Performance

NetApp Tunings

ne Interconnect
ne Client
ne Network buffers

ne Server

Don’t overlook the obvious!

» Use the fastest wire possible

— Use a quality NIC (hw checksumming, LSO, etc)
— 1GbE
— Tune routing paths

» Enable Ethernet Jumbo Frames
— 9KB size reduces read/write packet counts
— Requires support at both ends
— Requires support in switches

More basics

» Check mount options

— Rsizel/wsize
— Attribute caching

 Timeouts, noac, nocto, ...

e actimeo=0 !=noac (noac disables write caching)
— llock for certain non-shared environments

* “local lock” avoids NLM and re-enables caching
of locked files

e can (greatly) improve non-shared environments,
with care

— forcedirectio for databases, etc

More basics

» NFS Readahead count
— Server and Client both tunable

» Number of client “biods”

— Increase the offered parallelism
— Also see RPC slot table/Little’s Law discussion later

Network basics

» Check socket options
— System default socket buffers
— NFS-specific socket buffers
— Send/receive highwaters
— Send/receive buffer sizes
— TCP Large Windows (LW)

» Check driver-specific tunings

— Optimize for low latency
— Jumbo frames

Server tricks

» Use an Appliance
» Use your chosen Appliance Vendor’s support

» Volume/spindle tuning

— Optimize for throughput
— File and volume placement, distribution

» Server-specific options
— “no access time” updates
— Snapshots, backups, etc
— etc

War Stories

» Real situations we’'ve dealt with

» Clients remain Anonymous
— NFS vendors are our friends
— Legal issues, yadda, yadda
— Except for Linux — Fair Game

» S0, some examples...

Caching — Weak Cache Consistency

» Symptom

» Application runs 50x slower on NFS vs Local
» Local FS Test

o dd if=/dev/zero of=/local/file bs=1m count=5

» See I/O writes sent to disk

» dd if=/local/file of=/dev/null

 See NO I/O reads sent to disk

 Data was cached in host buffer cache

» NFS Test

dd if=/dev/zero of=/mnt/nfsfile bs=1m count=5
See I/O writes sent to NFS server

dd if=/local/file of=/dev/null

See ALL 1I/O reads send to disk ?!?

Data was NOT cached in host buffer cache

Caching — Weak Cache Consistency

» Actual Problem

 Threads processing write completions
« Sometimes completed writes out-of-order

 NFS client spoofed by unexpected mtime in post-op
attributes

 NFS client cache invalidated because WCC processing
believed another client had written the file

» Protocol Problem ?

e Out-of-order completions makes WCC very hard
 Requires complex matrix of outstanding requests

» Resolution
* Revert to V2 caching semantics (never use mtime)

» User View
e Application runs 50x faster (all data lived in cache)

Oracle SGA

» Consider the Oracle SGA paradigm
e Basically an Application I/O Buffer Cache

Configuration 1 Configuration 2

Host Main Memory Host Main Memory

Oracle Shared Global Area

Oracle Shared Global Area
Host Buffer Cache

Host Buffer Cache

» Common w/32 bit Arch » Common w/64 bit Arch
» Or Multiple DB instances » Or Small Memory Setups

Oracle SGA — The “Cache” Escalation

» With Local FS

Host Main Memory

» With NFS

Host Main Memory

Oracle Shared Global Area

D

Host B (\Cache

R
\\O

» Very Little Physical I/0O
» Application sees LOW latency

Oracle Shared Global Area

» Lots of Physical I/O
» Application sees HIGH latency

File Locks

» Commercial applications use different locking techniques
 No Locking
« Small internal byte range locking
 Lock Oto End of File
 Lock O to Infinity (as large as file may grow)

» NFS Client behavior
 Each client behaves differently with each type
« Sometimes caching is disabled, sometimes not
« Sometimes prefetch is triggered, sometimes not
 Some clients have options to control behavior, some don’t

» DB Setups differ from Traditional Environment
* Single host connected via 1 or more dedicated links
* Multiple host locking is NOT a consideration

» Why does It matter so muc
e Consider the Oracle SGA paradigm again

Configuration 1 Configuration 2

Host Main Memory Host Main Memory

Oracle Shared Global Area

Oracle Shared Global Area
Host Buffer Cache

Host Buffer Cache

» NOT caching hereis deadly » Caching here is a waste of resources
» Locks areonly relevant locally » Simply want to say “don’t bother”

Cache Control Features

» Most of the NFS clients have no “control”
 Each client should have several “mount” options
— (1) Turn caching off, period

—(2) Don’t use locks as a cache invalidation
clue

—(3) Prefetch disabled

» Why are these needed
« Application needs vary
* Default NFS behavior usually wrong for DBs
e System configurations vary

Over-Zealous Prefetch

» Problem as viewed by User
 Database on cheesy local disk
—Performance is ok, but need NFS features
o Setup bake-off, Local vs NFS, a DB batch job
—Local results: Runtime X, disks busy
* NFS Results
—Runtime increases to 3X

» Why Is this?
—NFS server is larger/more expensive
—AND, NFS server resources are SATURATED
—?1? Phone rings...

Over-Zealous Prefetch

» Debug by using a simple load generator to emulate DB workload
» Workload is 8K transfers, 100% read, random across large file
» Consider I/O issued by application vs I/O issued by NFS client

Latency App Ops NFS 4K ops NFS 32K ops 4Kops/App Op 32K ops/App op
8K 1 Thread 19.9 9254 21572 0
8K 2 Thread 7.9 9314 32388 9855
8K 16 Thread 510.6 9906 157690 80019

» NFS Client generating excessive, unneeded prefetch

» Resources being consumed needlessly

» Client vendor was surprised. Created a patch.

» Result: User workload faster on NFS than on Local FS

Poor Wire Efficiency — Some Examples

» Some NFS clients artificially limit operation
size
e Limit of 8KB per write on some mount options

» Linux breaks all I/0 into page-size chunks

 If page size <rsize/wsize, I/O requests may be
split on the wire

 If page size >rsize/wsize, operations will be split
and serialized

» The User View

 No idea about wire level transfers
 Only sees that NFS is SLOW compared to Local

RPC Slot Limitation

» Consider a Linux Setup
» Beefy server, large 1/O subsystem, DB workload
 Under heavy I/O load
—ldle Host CPU, Idle NFS server CPU
—Throughput significantly below Wire/NIC
capacity
—User complains workload takes too long to
run

» Clues
* Using simple I/O load generator
o Study I/O throughput as concurrency increases

 Result: No increase in throughput past 16
threads

RPC Slot Limitation

» Little’s Law
 1/O limitation explained by Little’s Law
« Throughput is proportional to latency and concurrency
e To increase throughput, increase concurrency

» Linux NFS Client
« RPC slot table has only 16 slots

At most 16 outstanding I/O’s per mount point, even when
there are hundreds of disks behind that mount point

e Artificial Limitation

» User View
e Linux NFS performance inferior to Local FS
« Must Recompile kernel or wait for fix in future release

Writers Block Readers

» Symptom
 Throughput on single mount point is poor

 User workload extremely slow compared to
Local

e No identifiable resource bottleneck

» Debug
« Emulate User workload, study results
 Throughput with only Reads is very high
« Adding a single writer kills throughput
e Discover writers block readers needlessly
> Fix
 Vendor simply removed R/W lock when
performing direct I/O

Applications Also Have Issues

» Some commercial apps are “two-brained”
— Use “raw” interface for local storage
— Use filesystem interface for NFS storage
— Different code paths have major differences
e Async I/O
« Concurrency settings
* Level of code optimization

» Not an NFS problem, but is a solution inhibitor

Why Is this Happening?

» Is NFS a bad solution? Absolutely not!

» NFS began with a specific mission
« Semi-wide area sharing
* Home directories and shared data

» Note: problems are NOT with NFS protocol
 Mostly client implementation issues

» Are the implementations bad? ...

Why Is this Happening?

» The implementations are NOT bad.

» The Mission has changed!
e Narrow sharing environment
e Typically dedicated (often p2p) networks
e Data sharing - High-speed I/O Interconnect
 Mission evolved to Mission Critical Workloads

» Actually, NFS has done ok

e Credit a strong protocol design

e Credit decent engineering on the
Implementations

Why are things Harder for NFS?

» What makes Database + NFS different than
Local FS?
— For Local Filesystem Caching is simple
e Just do it
 No multi-host coherency issues
— NFS is different
* By default must be concerned about sharing
e Decisions about when to cache/not, prefetch/not

Why are things Harder for NFS?

» Database + Filesystem Caching is complex
— Most database deployments are single host
(modulo RAC)
e S0, cross host coherency not an issue
« However, Users get nervous about relaxing locks
— Databases lock files (many apps don't)
e Causes consternation for caching algorithms

— Databases sometimes manage their own cache (ala
Oracle SGA)
« May or may not act in concert with host buffer
cache

Whitepaper on Solaris, NFS, and Database

» Joint Sun / NetApp White Paper

— NFS and Oracle and Solaris and NetApp
— High level and Gory Detail both

» Title

— Database Performance with NAS: Optimizing Oracle
on NFS

» Where

— http://www.sun.com/bigadmin/content/nas/sun_neta
pps_rdbms_wp.pdf
— (or http://www.netapp.com/tech_library/ftp/3322.pdf)

Darrell

NFS Performance Considerations

NFS Implementation Network Configuration
— Up-to-date Patch levels — Topology — Gigabit, VLAN
— NFS Clients — Not all Equal — Protocol Configuration
« Strengths/Weaknesses/ « UDP vs TCP
Maturity « Flow Control
— NFS Servers « Jumbo Ethernet Frames
* NetApp filers —most

advanced

NFS Configuration

— Concurrency and
Prefetching
— Data sharing and file locking Infrastructure

— Client caching behavior

NFS Scorecard — What and Why

» Comparison of all NFS clients
 On all OS platforms, releases, NICs

» Several major result categories
 Out of box basic performance

— Maximum IOPs, MB/s, and CPU Cost of NFS
vs Local

— Others
 Well-Tuned Basic Performance
e Mount Features
* Filesystem Performance and Semantics
* Wire Efficiency
e Scaling / Concurrency
 Database Suitability

NFS Scorecard - caveat

» This Is a metric, not a benchmark or measure
of goodness

» “Goodness” is VERY workload-dependent

» For example
— High 4KB IOPS is key metric for databases
— But possibly not for user home directories
— Low overhead is also key, and may not correlate

» But this Is a start...

7
~
a
=
k=,
C
©
7
al
O
_
e
©
&)
2
®)
O
N
N
LL
Z

» 4K IOPs Out-of-box

4K |I0OPs - Out of Box

@4k [OPs

28 505

0eHS

0'6HH

chnb | ZSwHH

0 E1dHd

EC LLAndH

| SAI¥

CSAlY

al-gj0g

aliys-gos

afi-gog

dl-p|05

aliys-gos

afi-gog

8J-Chgl0i5

aliys-Ghig|os

ah-gngos

26000
20000

NFS Scorecard — IOPs and MB/s

» 64K MB/s Out-of-box

64KB MB/s - Out of Box

140000

120000
100000 H =)

g0000

ROOO0 —+ -
40000
20000

I

o BB MBS

I]JIJJIJJI]JIJJIJJI]JI]JIJJW‘_.D-'DD‘.IDI:IED
@9 9 » oo Q9 wow 4 g 2 o T
0 m 8 D p @ ®m o om X X = - T
> 9 & 5 2842 f T T xarto
8 = B = = - F W —
LD = 0 L1 LA L =T L1
= i 6]

o -

H I B

0 8H4

0 6H4H

cnb| zsvwHY
) 0 e 1dHS

e L LXKNdH

| SHIY
¢ Gl

80-2|05
abs-g|

ab-g|0g

-/ |05
ab45-6105
ab-5105

80-GMNR [0S

4KB and 8KB Cost (NFS/Local) - Out of Box

afs-Gng oS

(7))
)
(7))
@)
O
|
©
| -
©
&)
()]
| -
@)
O
)
p)
LL
Z

8b-GnploS

» 4K and 8K Cost per I/O — NFS / Local

» Bigger is Worse!

IOPs

m4KE Cost (NFS/Local) m8KE Cost (MFS/AL ocal)

SIO — What and Why

» What i1s SIO?

— A NetApp authored tool
« Available through support channel
— Not magic. Similar tools exist. Just useful.
— Simulated I/O generator
* Generate I/O load with specifics:
—read/write mix, concurrency, data set size
—1/O size, random/sequential
 Works on all devices and protocols: files, blocks,
ISCSI
 Reports some basic results
—10Ps, MB/s (others also)

SIO — What and Why (cont)

» Why use SIO?

— Controlled workload is imperative
— Same tool on all platforms
— Emulate multiple scenarios
— Easy to deploy and run
— Better than
 dd — single threaded (most cases)
 cp —who knows what is really happening
e real world setup — often hard to reproduce
— Demonstrate performance for
e Users, validation, bounding maximum
— Find performance bottlenecks

NFS Futures — RDMA

& [What is NFS/RDMA
NetApp’

» A binding of NFS v2, v3, v4 atop
RDMA transport such as Infiniband,
IWARP

» A significant performance
optimization

» An enabler for NAS in the high-end
— Databases, cluster computing, etc
— Scalable cluster/distributed filesystem

& [Benefits of RDMA
NetApp’

» Reduced Client Overhead

» Data copy avoidance (zero-copy)
» Userspace I/O (OS Bypass)

» Reduced latency

» Increased throughput, ops/sec

Inline Read

Client

Send Descriptor

Appli

cation

Buffer

Server

Receive

Descriptor

Recd
Descr

Ve
ptor

Server
Buffer

_ Send Descriptor

Direct Read (write chunks)

Client

Send Descriptor

Application
Buffer

Recelve
Descriptor

Server

RDMA Write

Receive
Descriptor

Server
Buffer

Send Descriptor

Direct Read (read chunks) — Rarely used

Client Server
Send Descriptor _
1 Receive
Descriptor
Receive 2

Descriptor

Send Descriptor

Server
Buffer

Application

RDMA Read 3
Buffer

Inline Write

Client

Send Descriptor

Application
Buffer

A

3

Recelve
Descriptor

Server

Receive
Desyiptor

Server
Buffer

Send Descriptor

Direct Write (read chunks)

Client

Send Descriptor

Application

Buffer

Recelve
Descriptor

Server

\
RDMA Read

Receive
Descriptor

Server
Buffer

Send Descriptor

NFS/RDMA Internet-Drafts

» IETF NFSv4 Working Group

» RDMA Transport for ONC RPC
— Basic ONC RPC transport definition for RDMA
— Transparent, or nearly so, for all ONC ULPs

» NFS Direct Data Placement
— Maps NFS v2, v3 and v4 to RDMA

» NFSv4 RDMA and Session extensions
— Transport-independent Session model

— Enables exactly-once semantics
— Sharpens v4 over RDMA

ONC RPC over RDMA

» Internet Draft
— draft-ietf-nfsv4-rpcrdma-00
— Brent Callaghan and Tom Talpey

» Defines new RDMA RPC transport type

» Goal: Performance

— Achieved through use of RDMA for copy avoidance
— No semantic extensions

N\
NetQApp"’ NFES Direct Data Placement

» Internet Draft
— draft-ietf-nfsv4-nfsdirect-00
— Brent Callaghan and Tom Talpey

» Defines NFSv2 and v3 operations mapped to
RDMA
— READ and READLINK

» Also defines NFSv4 COMPOUND
— READ and READLINK

NFSv4 Session Extensions

» Internet Draft
— draft-ietf-nfsv4-session-00
— Tom Talpey, Spencer Shepler and Jon Bauman

» Defines NFSv4 extension to support:

— Persistent Session association
— Reliable server reply caching (idempotency)
— Trunking/multipathing
— Transport flexibility
e E.g. callback channel sharing w/operations
e Firewall-friendly

Others

» NFS/RDMA Problem Statement

— Published February 2004
— draft-ietf-nfsv4-nfs-rdma-problem-statement-00

» NFS/RDMA Requirements
— Published December 2003

NetApp’ Q&A

» Questions/comments/discussion?

