

 1

Abstract—This work presents both a novel control scheme for

a mobile robot and an optimization method for improving its
performance. The analyzed control problem will be to move a
two wheeled robot from an initial posture to a final destination
using the minimum amount of time and arriving at a low speed
to be able to stop. First the control strategy, based on a fuzzy
logic controller for the robot kinematics and a PID controller for
the robot dynamics, is presented. The fuzzy controller is then
optimized using a new type of genetic algorithm that replies the
reproduction method of bees. The optimized fuzzy controller
presents an important improvement on its performance. Finally,
several optimal controllers are combined together to create an
adaptive controller that can handle general cases in an efficient
way.

Index Terms—Fuzzy control, Genetic algorithms, Mobile
robots, Optimization methods.

I. INTRODUCTION
he use of robotics and mobile automation systems is
increasing every year, and with it, the necessity of more
robust and flexible products that solve problems

efficiently. One of the most difficult robotic systems to create
is autonomous vehicles, due to the fact that they have to deal
with dynamic and changing environments which make the
task very challenging [1].

With the aid of robotic competitions like RoboCup [1], and
the acceptance, by the consumers, of new robotic products
such as vacuum cleaners or robotic pets, the interest in mobile
robotics has increased. This has led to a great number of
research studies aiming to improve autonomous vehicles,
making them capable of dealing with the surrounding
environment. Several solutions have emerged from these
studies, from robust guidance mechanisms, to simple robots in
colonies, able to help each other to complete a certain task.

One of the most important components of a mobile robot is
the control loop, which enables the robot to follow a certain
trajectory determined by higher level decision system. This
work presents a novel control scheme, consisting of two
layers of control systems that are able to work efficiently with
the nonlinearities inherent to the mobile robot, but without
adding too much extra computational cost. A simple fuzzy
logic controller, based on heuristic rules, is presented as a
way of dealing with the nonlinear elements of the system,

1 This work was presented at the IEEE First Latin American Conference on
Robotics and Automation (November 2003)

which are optimized afterwards using new genetic techniques.
Evolutionary computational systems are one of the tools

that have shown excellent results when used to optimize
complex systems [2]-[4]. In this work, a new genetic
algorithm that emulates the evolution principles of bee
colonies is used as a way of optimizing the position of each
membership function, improving through this method, the
overall performance of the robot controller [2]. The results of
the optimization are analyzed and tested, simulating the
system in a Simulink model and showing that the performance
of the resulting controller is better than the one of the original
fuzzy controller. The optimization is done several times using
different destination points to check if the solutions are
equivalent. Based on these optimized solutions for specific
cases, a new adaptive fuzzy controller is then designed, which
generates the best solution for all general cases, but based on
the optimized controllers obtained for specific destination
points.

II. MOBILE ROBOT MODEL
Figure 1 shows the mobile robot model with the basic

parameters used in the system. The body of the robot is
considered to be circular disc of radius b and mass M, with
two wheels of radius r and mass m each. The right wheel
rotates at an angular speed of 11 θω = , and the left at 22 θω = .
Each wheel is connected to an independent DC motor using a
gear system of ratio G:1.

Fig. 1. Robot model showing the main dynamic parameters

“Queen Bee” genetic optimization of an heuristic
based fuzzy control scheme for a mobile robot1

Rodrigo A. Carrasco Schmidt
Pontificia Universidad Católica de Chile

T

 2

A. Robot Kinematics
The kinematics equations for the robot relate the state or

posture of the robot, with the angular velocities of each
wheel. The posture of the robot is defined as the vector X=[x
y ϕ]T, where x and y are the coordinates of the center of mass
of the robot on a reference plane, whereas ϕ is the angle of
the direction of motion of the robot, with respect to the X
axis.

Equations 1 and 2 show the relation between the angular
speed of each wheel, and the rotational and tangential speed
of the robot, as obtained from [5]:

()1 2

2

r

b

θ θ
ϕ

−
= (1)

()1 2

2

r
V

θ θ+
= (2)

The posture elements x and y are obtained projecting the

velocity of the robot on the X and Y axes. Equations 3, 4, and
5 give the position of the center of mass and the angle of
direction of the robot due to the speed of the wheels:

() ()
() ()() ()()1 20 cos

2

t

o

r t t
x t x t dt

θ θ
ϕ

+
= + ∫ (3)

() ()
() ()() ()()1 20 sin

2

t

o

r t t
y t y t dt

θ θ
ϕ

+
= + ∫ (4)

() ()
() ()()1 20

2

t

o

r t t
t dt

b

θ θ
ϕ ϕ

−
= + ∫ (5)

These equations also make the system non-linear, due to

the trigonometric equations needed for the projection of the
velocity over each axis.

B. Robot Dynamics
The dynamic equations of the robot relate the torque

applied to the wheels, with the angular acceleration they
acquire, considering the mass inertia of the different elements
in the model. These equations can be deduced using the
Lagrangian formulation, which is based on the calculation of
the energy of the system [6]. The total energy of the robot can
be calculated as the sum of the kinetic energy of the body and
the kinetic energy of each wheel, shown on equation 6,
whereas the potential energy is not used, as the robot is
considered to move on a single level plane.

1 2B w wK K K= + +L (6)

Each of these terms will consist on a term due to the linear

movement and one due to the rotation:

2 21 1
2 2B BK MV I ϕ= + (7)

2 21 1
2 2 , 1, 2

iw i w iK mv I iθ= + = (8)
In equation 7, IB represents the moment of inertia of the

robot whereas in equation 8, Iw represents the moment of
inertia of each wheel. As both body and wheels are
considered solid discs:

21

2BI Mb= and 21
2wI mr= (9)

Replacing these values for the inertia, and using equations

1 and 2 on equation 6, the Lagrangian expression is obtained:

() ()
2 2

2 2
1 2 1 2

3 4
16 8
r MrM m θ θ θ θ

⎡ ⎤ ⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
L (10)

The relation between the angular acceleration of each

wheel and the torques applied is obtained from equation 10,
using the following relation:

i i

d
dt

τ
θ θ

⎛ ⎞∂ ∂
−⎜ ⎟∂ ∂⎝ ⎠

i = L L (11)

In equation 12 iθ represents the acceleration of wheel i,

and τi the applied torque.

()

()

12 2

11
2 2

22

3 4
8 8

3 4
8 8

r MrM m

Mr r M m

τθ
τθ

−
⎡ ⎤

+⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ +⎢ ⎥⎣ ⎦

(12)

C. DC Motor Model
To complete the model of the robot, the DC motors

attached to each wheel must be also added. These motors will
apply the needed torque to achieve the desired acceleration.
The simplified equations that relate the voltage applied to
each motor, Vi, with the applied torque are as follows:

, 1, 2i
i i m i

diL Ri V K G i
dt

θ+ = − = (13)

, 1, 2i a iGK i iτ = = (14)

L represents the electric inductance of the motor, R the

electric resistance, Km is the motor constant and Ka is the
armature constant. G represents the mechanical gear reduction
that connects each wheel to its motor.

III. CONTROL STRATEGY

A. Control Problem
The objective of the control strategy is to generate the

necessary voltages on each DC motor, to move the robot from
a starting posture X0=[x0 y0 ϕ0]T, to a final goal (xf, yf),
without constrains on the final angle ϕf.

 3

Fig. 2. Cascade control scheme

The main difficulty of this control strategy is that the

kinematic equations of the robot are non-linear and there is no
unique operating point, which could help the design by using
a linearization [12]. Another problem is that the posture
equations (3 and 4) are coupled, as they both depend on ω1
and ω2, or τ1 and τ2 which are the actual manipulated
variables. On the other hand, the dynamic and DC motor
equations are linear, and although they are also coupled, the
use of a classical controller, such as a PID controller, to
control the velocity of each wheel could return good results.
However, the use of a PID controller for solving the whole
control problem is very inefficient, especially because there
are no general methods to tune the gain parameters in the case
of non-linear plants such as this one.

A strategy that has shown to be very efficient to control
non-linear plants is fuzzy logic [7],[8]. The problem with this
method is that the amount of input variables needed in this
case is high, due to the fact that the manipulated variables are
acceleration related, whereas the control is done over position
related variables. This means that the controller needs not
only the distance and relative angle to the final destination,
but also the approaching velocity and angular speed of the
robot. As a way to reduce the amount of input variables on the
fuzzy controller and simplify the computational requirements,
a cascade control scheme is used. First, a tuned PID controller
is implemented to control the velocity of each wheel by
modifying the voltage applied to the motors. On top of this
controller, a fuzzy logic controller is used to generate the
needed angular velocities so the robot moves to the desired
reference. Figure 2 shows the proposed control scheme.

B. PID Controller Design
Although the dynamic equations of the robot are coupled,

the implemented PID stage is based on two independent
controllers, one for each wheel. As figure 2 shows, each PID
controller senses the angular speed of the corresponding
wheel and uses the detected error to increase or reduce the
voltage applied to the motor. The reference for this loop is
given by the fuzzy logic controller. As in real life robots have
a limited voltage range to apply to the motors and the motors
have a maximum input voltage, the PID output is limited to
±5 [V]. This also ensures that the torques applied by the
motors to the robot wheels stay in a limited range.

The gains for each PID controller are tuned, having as a
goal a quick settling time and no more than 1% overshoot [9].

Fig. 3. Angular speed control

As the simulation on figure 3 shows, the PID controller is

able to meet the requirements using the following gains:
Kp=450, Ki=1, and Kd=20.

The PID control stage was tested in several conditions,
showing in all the tests that the design constrains were
respected, even in the worst scenario: when one wheel is set
to move in one direction while the other is set to another. The
simulations also showed that changes in one of the references
made no significant disturbances on the velocity of the other
wheel.

C. Fuzzy Controller
The objective of this controller is to create the necessary

references for the angular velocities of each wheel, in order to
move the robot from its starting posture to the final
destination.

Considering the problem from a qualitative point of view, it
is possible to create a set of rules that takes into account the
distance to the objective (named D) and the relative angle,
between the direction of the robot and the final destination
(named ∆ϕ), to determine the velocity of each wheel, which
will be the manipulated variable. The rules will be of the
form:

If D is LD and ∆ϕ is L∆ϕ then ω1 is Lω1 and ω2

is Lω2
(15)

In equation 15, LD is one of the distance related

membership functions, L∆ϕ is related to the relative angle,
and Lω1 and Lω2 are the membership functions for the speed
of each wheel. Figures 4, 5, and 6 show the membership
functions used for the fuzzy controller.

The distance between the center of mass of the robot and
the objective is used as a way of controlling the arrival speed.
This is done later, in the creation of the rule base, by relating
membership functions (MFs) associated with smaller
distances to MFs associated with slower speeds for each
wheel. Three MFs were created for the distance: Close (C),
Far (F), and Very Far (VF), as shown in figure 4.

The other input of the fuzzy controller is the relative angle
∆ϕ, which was divided into five MFs, covering from –π to π.
The used MFs relate the position of the objective with respect
to the angle of the robot: Back Right (BR), Front Right (FR),
Center (C), Front Left (FL), and Back Left (BL).

 4

Fig. 4. Distance membership functions.

Fig. 5. Relative angle membership functions.

Fig. 6. Membership functions for the angular velocity of the wheels.

Figure 5 shows the different MFs created for the relative

angle. This variable is used to control the rotation speed of the
robot, making it turn quickly when the relative angle is high,
whereas it moves in a straight line when the relative angle is
close to zero. The width of the center membership function,
C, is responsible of deciding when the robot is going to start
to move forward. If C is too narrow, the robot starts moving
towards its goal only when it is in front, loosing time and
energy in a rotation without advancing. On the other hand, if
C is too wide, the robot starts moving before it is facing the
objective, doing long and curved trajectories that are not
efficient.

Finally, five MFs are implemented for the speed of each
wheel: Back Fast (BF), Back Slow (BS), Zero (Z), Front Slow
(FS), and Front Fast (FF). These are presented on figure 6.

The rule base for the fuzzy logic controller is shown on
tables 1 and 2, one for each wheel. These rules associate the
state of the robot with respect to the objective (distance and
relative angle), with the needed velocity for each wheel. The
rule base is designed to make the robot turn quickly when it is
far away from the goal, and then continue on a straight line.
In this way the trajectory followed by the robot is minimal
and no energy is wasted in log turns. The rule base must also
make the robot move fast when it is far away, and slow down
at the time of arrival.

TABLE I
RULE BASE FOR ω1

C BF BS Z FS FF
F BF Z FS FS FF

VF BF FS FF FF FF D

 BR FR C FL BL
 ∆ϕ

TABLE II

RULE BASE FOR ω2
C FF FS Z BS BF
F FF FS FS Z BF

VF FF FF FF FS BF D

 BR FR C FL BL
 ∆ϕ

The rules of the fuzzy controller are inspired on heuristic

knowledge of the behavior the robot must have in order to
accomplish the task. The behavior is similar to what humans
do in order to go from one point to another. For example, if
the objective is at the back and to the left, then the right wheel
must go forward, while the left one must go backwards,
making the robot turn till the objective is almost in front.
Then the robot must start moving forward towards the goal,
correcting slightly the direction of movement if the relative
angle increases while moving. Depending on how far is the
objective, the velocity of the wheels will increase to move
faster (or turn quicker), and when the goal is near the speed is
reduced so the robot can stop on arrival. In a more general
way, the robot will turn until it faces the goal and then move
on an almost straight line. The accuracy to face the objective
will be given by how narrow is the C membership function of
the relative angle variable.

D. System Simulation
To test the performance of the controller, the whole system

was simulated using Simulink. The goal of the robot was to
move from and initial position (0,0) and a variable initial
angle, to a final position (-2,1) on the XY plane. Figure 7
shows the simulation results.

Four different initial angles were used: -π, -π/4, π/4, and
3π/4, to consider the behavior of controller in different cases.
As figure 7 shows, the robot moves using small turns by
rotating first from its initial position and then moving in an
almost straight line towards the destination point.

Fig. 7. Robot trajectory for different initial angles: -π, -π/4, π/4, and 3π/4.

 5

IV. GENETIC OPTIMIZATION OF THE FUZZY CONTROLLER

A. Method Description
The simulations show that the performance of the controller

is very sensitive to the position of each MF on the fuzzy
controller, indicating that it could be optimized to improve the
performance. An interesting way to do this is by using
evolutionary computation algorithms, to determine a better
position for each MF based on a performance parameter also
known as “fitness” [3],[4].

Genetic optimization algorithms work in a similar way to
what evolution theories describe. The algorithm starts with an
initial population of possible solutions. Each one is tested and
a fitness value is assigned to them depending on the
performance of the solution, which helps to determine the
better solutions within the population. Using one of the
several methods [4], a group of solutions (generally the ones
with a higher fitness) are selected to be combined, with some
probability, with the other solutions of the population, hoping
that the mixture between them could create a better solution.
The cycle is repeated several times and it is stopped after a
certain number of generations. There is a large number of
ways to implement a genetic algorithm [10], depending on the
goals of the optimization. Most of them use “elitism”, which
means that the best solutions are always copied directly into
the next generation, ensuring that the “genes” of these
solutions remain in the population. The use of elitism gives an
advantage over other implementations, because the process
can be stopped at any time and it will always have a better or
at least equal solution to the best solution in the initial set. On
the other hand, when using genetic algorithms there is no
demonstration that the achieved solution is the global
optimum.

Another evolutionary element added is the use of mutation
within the genetic algorithm. This means that with a certain
probability the genes from some individuals change
randomly, adding new elements to the population and
eliminating or at least diminishing the possibilities that the
whole population is kept within a local optimum.

Several researchers have applied genetic optimization on
fuzzy logic systems, achieving a better performance on their
systems compared to benchmark solutions. This optimization
approaches include parameter tuning on the MFs and rule
optimizations as in [11].

In this work, a recently applied method for selecting the
better solutions of the population is used [2]. This algorithm is
based on the evolution scheme used by bees, in which only
one single member of the colony, the queen, is able to
combine with the rest of the population to create a new
generation. This makes easier choosing the parent solutions
and helps to keep the best solutions within the population.

The optimization will only modify the MFs of the distance
and relative angle variables, leaving the MFs of the speed of
each wheel without change. As the MFs are triangular, they
can be expressed as a three element vector containing the
start, peak, and stop coordinates of each of them. Each

controller contains 3 distance MFs and 5 relative angle ones,
making it possible to describe the whole controller by a 8x3
matrix, called Ci. Each matrix describes one element in the
population. On every generation, all solutions are tested and
the one with the highest fitness is combined with all the other
solutions using a certain probability. The combination is done
by averaging both individuals:

2i

best i
new

C CC +
= (16)

Elitism and mutation is used within the optimization to

ensure that the best solution is kept and to minimize the
chance that the population converges to a local optimum. The
two conditions of the control problem are that the robot
achieves the goal as fast as possible, and that the end velocity
is low enough so the robot is able to stop. As a way of
including these two restrictions, the fitness function used is a
linear combination of both, as described in equation 17, where
T is the time used to reach the objective and ωi is the final
speed of each wheel:

()1 2F T rα ω ω= + + (17)

The optimization seeks to get the lowest possible fitness,

which means that the robot must reach the goal fast, and with
low final speed. The α factor is used to give a relative weight
between the time and speed constrains, having units of
[sec2/mt] to leave the fitness in [sec]. A higher value of α will
imply that the optimum will have a slower end speed than the
one with a low α value.

B. Optimization
The optimization is done using an initial population of 20

different fuzzy controllers. Each of these is created using the
original robot fuzzy control as a base, but with all its genes
modified randomly. The combination probability is set to
95% and a mutation probability to 5%, with a simulation time
of 50 generations. Each individual is tested using [0 0 0]T as
the initial posture, and setting the goal at (-1,1). The α factor
in the fitness function is set to 1600 [sec2/m], to make the time
taken to reach the goal and the final speed comparables.
Using these parameters the fitness value for the original
control system is 67,81 [sec].

The optimization cycle is repeated 3 times to check if the
achieved solutions have things in common. In all three cases
the fitness of the best solution is in average 26 [sec], needing
25,88 [sec] to achieve the objective and arriving at a speed of
7,47x10-5 [m/sec]. The MFs obtained after the optimization
are shown on figures 8 and 9. In all three cases the best
solutions share an element in common: the Far (F)
membership function is moved away from the operating
range, which was from 0 to 1,4 [m]. This means that this MF
is not needed in the system and only introduces delays,
making the controller less efficient.

 6

Fig. 8. Optimized set of MFs for the distance variable.

Fig. 9. Optimized set of MFs for the relative angle variable.

For the relative angle MFs, a similar effect occurred. All
the optimal solutions eliminated the Front Left (FL)
membership function from the operating range, either by
making it so narrow that it never becomes activated (as shown
on figure 9) or by moving it away from the operating rage in
the simulation, which was from 0 to 3π/4. This also implies
that this MF is not needed in the control system. As the MFs
associated to the right side of the robot are never active, no
important changes are observed on them, whereas the Center
(C) MF is deformed sideways in all 3 solutions.

To check if the optimum position for the relative angle MFs
is symmetrical, the optimization is done again with the goal
set on (-1,-1). The optimization shows that the optimal
solution for the distance variable is the same, whereas the
solution for the relative angle variable is almost symmetrical
to the ones obtained before.

As all solutions indicate that some MFs are not needed,
these are eliminated from the fuzzy controller, and the
optimization is done again to check if some improvement is
possible. With the goal set on (-1,1) the optimization
algorithm is able to reduce the fitness function of the optimal
controller to 25,12 [sec]. The MFs obtained after the second
optimization are shown on figures 10 and 11. Notice the non
symmetrical shape of C on the relative angle MFs.

Fig. 10. Optimized set of MFs for the distance variable, after eliminating the
Far (F) MF from the original set.

Fig. 11. Optimized set of MFs for the relative angle variable, after eliminating
both Front Right (FR) and Front Left (FL) MFs from the original set.

V. DESIGN OF AN ADAPTIVE FUZZY CONTROLLER
The different solutions show that the optimal positions for

the MFs depend on the position of the goal. The optimum
solution for going from the origin to the coordinate (-1,1) is
not as good if the goal is set on (-1,-1). To create a general
adaptive control system, the optimal solutions for both cases
are combined depending on the final destination, creating a
controller that is able to go efficiently from one point to
another, with an overall performance better than the
optimized controllers by themselves, outperforming the
original fuzzy controller, and without the need of optimization
cycles for every new destination goal.

The adaptive controller is created by a linear combination
of the two solutions obtained in the optimization stage. This is
done by combining the matrices that describe the controller as
equation 18 shows:

() ()1 21C C Cλ λ λ= + − (18)

Where C1 is the control matrix that describes the fuzzy

controller optimized to go to the point (-1,1), whereas C2
describes the controller optimized to go to (-1,-1). The value
of λ, the adaptation parameter, is selected depending on the
angle of the goal with respect to the angle of the robot.

This type of adaptive controller can be used for trajectories
based on checkpoints, where the control system can
recalculate the fuzzy MFs parameters every time a checkpoint
is reached, adapting the controller to have an improved
performance depending on the position of the next
checkpoint. In this way, the control strategy is optimized
based on the actions the robot must take on the future.

To compare the adaptive controller with the previous
control systems, the robot is set to move from the origin to
(1,1) and then to (2,0). Three controllers are used in the
simulation: the original fuzzy controller, one of the optimized
controllers from section IV, and the adaptive controller. For
all three cases the different trajectories are compared, as well
as the angular speed of the wheels over time.

 7

Fig. 13. Trajectory comparison between the original fuzzy controller (1), one
of the optimized controllers (2) and the general controller (3).

Fig. 14. Angular speed for the original fuzzy controller (1), one of the
optimized controllers (2) and the general controller (3).

As figure 13 shows, the general controller makes the robot

move almost in straight lines towards the checkpoints, using
less time and wasting less energy than the other controllers.
Figure 14 shows that the general controller also allows the
robot to move faster, arriving in less time and with a lower
end speed than the other controllers. The fitness value for the
different controllers in this test is: 132,14 [sec] for the original
controller, 48,89 [sec] for the optimized one, and 47,52 [sec]
for the adaptive controller.

VI. CONCLUSION
Through this work it is showed that the new described

control scheme results in an excellent control system for a 2
wheel mobile robot. It is also demonstrated, that the “Queen
Bee” based genetic optimization algorithm is a very good tool
to optimize the performance of fuzzy logic controllers, and
that by modifying the parameters that create each membership
function the efficiency can be improved.

Finally, this work presents an adaptive fuzzy controller that
can modify its membership functions based on the goals
ahead, without the need of an optimization cycle every time
the goal is changed.

REFERENCES
[1] S. Coradeschi, S. Tadokoro, A. Birk, “RoboCup 2001: Robot Soccer

World Cup V”, Springer Verlag, 2002.
[2] S. H. Jung, “Queen-Bee Evolution for Genetic Algorithms”, IEE

Electronic Letters, 20 March 2003, pp. 575-76.
[3] W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, “Genetic

Programming : An Introduction”, Morgan Kaufmann, 1997.
[4] M. Michell, “An Introduction to Genetic Algorithms”, MIT Press, 1998.

[5] P. Goel, G. Dedeoglu, S. Roumeliotis, G. Sukhatme, “Fault Detection
and Identification in a Mobile Robot using Multiple Model Estimation
and Neural Network”, Proceedings of the IEEE International
Conference on Robotics and Automation, San Francisco, USA, 2000.

[6] J. Craig, “Introduction to Robotics: Mechanics and Control”, 2nd ed.,
Addison-Wesley Pub. Co., 1989.

[7] R. Palm, D. Driankov and H. Hellendoor, “Model Based Fuzzy
Control”, Springer Verlag, 1997.

[8] M. Reinfrank, H. Hellendoorn, D. Driankov, “An Introduction to Fuzzy
Control”, 2nd ed., 1996

[9] G. Goodwin, S. Graebe, M. Salgado, “Control System Design”, Prentice
Hall, 2000.

[10] X. Yao, “Evolving artificial neural networks”, Proceedings of the IEEE,
September, 1999, vol. 87, no. 9, pp. 1423-1447.

[11] M. Maniadakis, H. Surmann, “A Genetic Algorithm for Structural and
Parametric Tuning of Fuzzy Systems”, European Symposium on
Intelligent Techniques, 1999.

[12] L. Kleeman, “Optimal estimation of position and heading for mobile
robots using ultrasonic beacons and dead-reckoning”, IEE International
Conference on Robotics and Automation, Nice, France, 1992, vol. 3, pp.
2582-2587.

[13] The Mathworks Inc., “Fuzzy Logic Toolbox. User’s Guide”, 1998.

