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Abstract – In order to reduce the false alarms in fault detection 
systems for mobile robots, accurate state estimation is needed. 
Through this work, a new method for localization of a mobile 
robot is presented. First, a Takagi – Sugeno fuzzy model of a 
mobile robot is determined, which is optimized using genetic 
algorithms, creating a precise representation of the kinematic 
equations of the robot. Then, the fuzzy model is used to design a 
new extension of the Kalman filter, based on several linear 
Kalman filters. Finally, the fuzzy filter is compared to the 
conventional extended Kalman filter, showing an improvement 
over the estimation made. The fuzzy filter also presents 
advantages in implementation, due to the fact that the 
covariance matrices needed are easier to estimate, increasing 
the estimation frequency.  
 

I. INTRODUCTION 
 
Over the last few years new commercially available robots 

have appeared in the market, giving a technological solution 
to problems that range from soldering in production lines and 
space exploration to more mundane issues such as vacuum 
cleaning or grass cutting. As more complex tasks are being 
addressed, more sophisticated control, navigation and 
monitoring systems are needed to accomplish these tasks 
efficiently. This is especially true for mobile robots, where 
the design of every subsystem is a challenge, as it must work 
with a dynamic environment, using limited resources. 

One basic requirement of mobile robotics is to accurately 
pinpoint the position and direction of the robot, also known 
as its posture. The simplest way to achieve this is to use a 
technique called dead-reckoning which integrates odometric 
measures over time to estimate the relative posture. The 
problem with this method, as with other relative position 
systems, is that the errors are cumulative, resulting in a 
divergence of the estimation. These errors can range from 
simple measuring discordances in the model or sensors, to 
wheel slippage. Tests such as the UMBmark designed by 
Borestein [1], can be applied to determine the extent of the 
systematic errors in the model, compensate the estimation 
and thus reduce the error, but these cannot compensate for 
external errors such as wheel slippage.   

The use of absolute position systems such as GPS is a 
common practice to improve the estimation, reducing the 
cumulative error, but adding an additional complexity to the 
robot. These measurements are generally fused together with 

the relative position measurements, improving the accuracy 
of the estimation. 

Since its appearance in 1960, the Kalman filter (KF) has 
become a very useful tool to reduce the effect of Gaussian 
white noise and fuse together measurements within a linear 
system [2]. Several works have extended the use of this filter 
to non-linear models, such as mobile robots, improving the 
results of the estimations [3]. The extended Kalman filter 
(EKF) is applied using a linearization of the system on an 
operating point. The main difficulty is that the covariance 
matrices needed, must be precisely determined to get 
optimum results, but this is seldom achieved in non-linear 
systems.  

As fuzzy logic is an excellent tool for working with 
nonlinearities, it has been used to determine dynamically the 
covariance matrices, depending on the system state, thus 
reducing the divergence [4], [5].  

This work first presents a fuzzy model of the kinematic 
equations that describe a mobile robot, based on the Takagi – 
Sugeno fuzzy structure, which is then optimized using 
genetic algorithms. Finally, a new extension of the Kalman 
filter is implemented using fuzzy logic and the optimized 
model is then compared to the EKF. 

 
II. ROBOT MODEL 

 
For simplification purposes the body of the robot is 

considered as a circular disc of radius b, with two 
independent wheels of radius r each. As figure 1 shows, the 
angular velocity of the right wheel is considered to be ω1, 
whereas ω2 describes the velocity of the left one. 

The posture of the robot is defined as a three element 
vector X=[x y ϕ]T, which contains the absolute position of 
the robot in some reference plane, and the direction angle. 

Using simple geometric relations, the linear and angular 
velocities of the robot can be related to the angular velocity 
of the wheels as equations 1 and 2 describe: 
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Fig. 1. Mobile robot model and basic parameters. 

 
As a means of improving the accuracy of the estimation, 

considering that discrete time equations are used, the velocity 
for time k is calculated as the average between the values at 
times k-1 and k. Integrating these two values over time, the 
kinematic relations for this robot can be obtained [6]. These 
will determinate the complete posture vector using the 
angular velocity measured on each wheel, as equations 3, 4, 
and 5 show: 

 
( )1 cosk k k kx x V T ϕ−= + ∆  (3) 

( )1 sink k k ky y V T ϕ−= + ∆  (4) 

1k k k Tϕ ϕ ϕ−= + ∆  (5) 
 
To deal with the localization issue, the test mobile robot 

will be equipped with only two different sensors. Encoders 
are used on each wheel to determine its speed, allowing 
relative localization and posture determination. A magnetic 
digital compass is also used, to obtain an absolute reading of 
the direction angle, as a way of reducing the cumulative error 
of relative positioning. Both sensors are considered as ideal 
sensors, with a white Gaussian noise added, of standard 
deviation σe for the encoders and σc for the compass. 

 
III. TAKAGI – SUGENO FUZZY MODEL 

 
The main objective of this work is to create a more 

accurate modelling scheme that can allow a reliable 
estimation of the posture of the robot.  

The first step is to create an ideal model that does not 
consider the effect of noise and external errors. Although this 
can be done by using equations 3, 4, and 5, these are 
nonlinear equations, limiting the usefulness of statistical 
optimization tools such as the Kalman filter. 

The Takagi – Sugeno Fuzzy Structure (TSFS) allows the 
use of multiple linear models of a system, and fuses them 
together using fuzzy logic [7], [8]. As for mobile robots there 
is no single operating point, the nonlinear equations must be 
linearized in several different ones, covering the whole 
spectrum of possibilities. For this work, the equations are 

linearized in four different angle values: 0, π/2, -π/2, and π. 
Each linear model, Ln, has the following structure, where ϕ0 
is the linearization angle: 
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Due to the fact that ϕ can span from π to -π, there is a 

discontinuity in ϕ when the robot rotates. This raises an 
important issue, because the linearization about π will only 
be valid for values near it, whereas it will be a very bad 
approximation for ϕ=-π, although π and -π are actually the 
same angle of direction. To solve this, a new linearization 
about -π is added, which is used for negative angle values, 
whereas the linearization about π is used for positive ones. 

As two variables need to be modelled, two independent 
TSFS are used, one for x and one for y, using the same 
variable, ϕ, as input for fuzzification. The output of the fuzzy 
model is given by the linear combinations of the outputs of 
each linear model. Equations 8 and 9 describe the output of 
each fuzzy model, where xLn and yLn are the values estimated 
for x and y by linear model n, whereas µn and νn are 
coefficients determined by the membership function (MF) 
associated to the lineal model n. 
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Once the structure is determined, the next step is to design 

the membership functions associated with each linear model, 
and that will determine the values for µn and νn. Because 
each linearization represents exactly the behaviour of the 
system at the linearization point, the output of the associated 
MF at that value must be 1, whereas the rest of the 
membership functions must have a value of 0. Also, it is 
reasonable to conclude that if the input value is between two 
linearization points, the output will consider only the two 
associated linear models, which implies that the rest of the 
membership functions must have a value of 0. 

 

 
Fig. 2. Membership function example. 



Figure 2 shows an approximate description of what each 
MF should be. A critical variable in this model is the form of 
each MF, because this will give the nonlinearity in the 
resulting fuzzy model, and thus it will combine the linear 
models correctly. 

 
IV. QUEEN-BEE GENETIC OPTIMIZATION 

 
A. Method Description 

In order to improve the output of the fuzzy model each MF 
must be optimized. One method that has proved to return 
good results is genetic optimization, which is able to modify 
the morphology of each MF and with it, increase the 
efficiency of the model [9]. 

Genetic optimization is based on the same principles used 
in evolution theories, where a group of possible solutions or 
population is combined to create a new child population, 
whose solutions may be better. For doing this each solution 
must be first coded. The cycle of testing and combining 
solutions is repeated for a certain number of generations, 
hoping to find a better solution at the end. More information 
about the methods for coding and combining can be found on 
[7]. 

The combination is dependant on how effective a solution 
is, also known as its fitness. A new method of doing this is 
based on bee societies, in which only one individual (the 
queen) is able to reproduce and create the new generation, 
reducing the computation needed for the combination step 
[10]. This means that the best solution is used to generate the 
new set, simplifying the process. 

 

 
Fig. 3. Membership function coding. 

 

B. Genetic Optimization Implementation 

To reduce the number of free variables in the optimization 
scheme, each MF is designed symmetrical, with a maximum 
value of 1 at the associated linearization point and with a 
value of 0 at the adjacent linearization points. 

With these parameters, each MF is coded as a 7 element 
vector: MFn=[an bn cn dn en fn gn]T, containing the height of 
the membership function at constant intervals as shown in 
figure 3. Each element of the vector has values between 0 

and 1. The values in each interval are determined as Sinc 
interpolation of both interval limits. 

As five linearizations are used to design the fuzzy model, 
there are five different membership functions, each with its 
coding vector, creating a 5x7 matrix. Two of these matrices 
describe every individual, one for the X position fusion, and 
one for the Y position.  

The first step of the algorithm is to test each individual to 
determine its fitness. This is done by calculating the absolute 
difference between the path described by the robot equations 
and the path described by the fuzzy model, as equation 10 
shows. This is done for several random trajectories and then 
averaged, to eliminate the possibility that the solution is only 
valid for a single trajectory. The solution with the smallest 
fitness is considered to be the best solution. 
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Once the best solution is found, the combination is done 

by averaging the matrices of each member of the population, 
with the matrix that describes the queen, using a certain 
combination probability, PC. Elitism is used to keep the best 
solution in the population, thus assuring that after the 
generations pass the best solution encountered is equal to or 
better than the original best solution. 

Finally, a mutation step is used to reduce the possibility 
that the algorithm converges to a local minimum. This is 
done by changing some elements of an individual randomly, 
with a certain mutation probability, PM. 

 
C. Results 

The optimization was done using an initial population of 
30 individuals, PC=95% and PM=5%. Several different 
trajectories were used to test the fitness of the solutions. 

The resulting membership functions, after simulating for 
100 generations, are shown in figure 4 for the X position and 
in figure 5 for the Y position estimates. The simulation of the 
fuzzy model and the robot model for several different 
trajectories show, that the estimation of the fuzzy model is 
very accurate. 

 

 
Fig. 4. X position membership functions. 

 



 
Fig. 5. Y position membership functions. 

 
For both variables the five membership functions are: 

Centre (C), associated to ϕ=0; Right (R), associated to ϕ=-
π/2; Left (L), associated to ϕ=π/2; Back 1 and 2 (B1 and B2), 
associated to -π and π respectively. 

 
V. KALMAN FILTER DESIGN 

 
If noise is added to the sensor readings in the previous 

model, the distance between the estimation of the fuzzy 
system and the real position increases over time. 

There are several ways to improve the estimation. The use 
of sensor fusion to take advantage of information redundancy 
or the EKF to reduce noise on the estimation, are commonly 
used tools for dealing with the problem. The EKF has shown 
very good results in reducing the estimation error, but several 
problems appear during implementation, such as the 
determination of the covariance matrices that represent the 
noise in the system. 

The KF is an optimal filter that minimizes the mean error 
of the estimation of a linear system, such as the one on 
equation 11, whereas the EKF is applied to nonlinear 
systems, such as the one described on equation 12. 
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In equations 11 and 12 Xk represents the system state at 

time k, Zk the observation, and Uk the applied input. The 
system and measurement Gaussian white noise are 
represented by ε1 and ε2 respectively. 

The KF algorithm first estimates the state of the system at 
time k using the previous information and the system 
equations. Along with this, the covariance matrix Pk is also 
estimated using the system error covariance matrix Q: 

 

1 1
ˆ

k k kX AX BU−
− −= +  (13) 

k kZ CX− −=  (14) 

1
ˆ T

k kP AP A Q−
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Using the measurement error covariance matrix R, the 
Kalman gain is then obtained. This gain indicates how 
reliable the measurement is, with respect to the estimation 
given by the system equations: 

 

( ) 1T T
k k kK P C CP C R

−− −= +  (16) 

 
Finally, the estimations are corrected using the Kalman 

gain and the difference between the estimation and the 
measurement. 

 

( )ˆ
k k k k kX X K Z Z− −= + −  (17) 

( )k̂ k kP I K C P−= −  (18) 
 
The equations for the EKF are very similar, with the 

difference that the system matrices A, B, and C must be 
calculated every time step by a linearization of the system 
equations shown in equation 12 [11]: 
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VI. FUZZY EXTENDED KALMAN FILTER 

 
The fuzzy model implemented before, is composed of 

several linear models, which allow the use of a linear 
Kalman filter on each of them to improve the estimation, 
creating a fuzzy observer [12]. The first advantage of doing 
this is that the estimation results are optimal in reducing the 
noise error for each model. The determination of the 
covariance matrices can also be an advantage. Generally it is 
easier to determine the covariance matrices of the KF than 
the ones of the EKF, especially because in the EKF the 
system equations are nonlinear, resulting in a poor estimation 
of their value. 

As every linear model has its own set of equations, there 
are different covariance matrices Q, depending on the 
direction of movement. This fact gives an advantage over the 
EKF, because each model has its own set of parameters, 
returning an optimal estimation in that sense. 

 
 
 
 



The R covariance matrix is the same for all models, as the 
only measured variable is the absolute angle using the 
magnetic compass: 

 
2
CR σ⎡ ⎤= ⎣ ⎦  (22) 

 
In the same way as it was done with the linear models of 

the robot equations, the different linear KF can be fused 
together using the Takagi – Sugeno Fuzzy Structure as figure 
6 shows. 

 

 
Fig. 6. Fuzzy extended Kalman filter structure. 

 
For every time step k, each of the tuned linear Kalman 

filters give an estimation of the posture of the robot. The new 
estimation is based on the previous knowledge on the posture 
of the robot, the velocity of each wheel (which is an input of 
the model), and the measurements made. Finally, using the 
same membership functions calculated for the fuzzy model 
of the robot, the output of each filter is fuzzified into the 
TSFS. The output of the whole scheme is used as the 
estimation for the time step k, and fed back to the linear 
models for the next step estimation. 

As it is done for the fuzzy model of the robot, one set of 
membership functions is used for obtaining the crisp value of 
X, whereas another set is used for Y.  

It is important to note that the different system covariance 
matrices, given by the linear models must also be fused 
together to determine the covariance matrix used for the 
following step. This can be done by using a linear 
combination of the covariance matrices obtained from each 
KF. When the direction angle is one of the operating points 
chosen, the covariance matrix used is the same as the one 
estimated by the KF associated to the respective linearization 
point. At any other direction angle, only two different linear 
models are active, and due to the operating points used, one 
linear KF is associated with the X position variable, whereas 
the other is associated to Y. In this case, the estimated 
covariance matrix for the fuzzy nonlinear model is obtained 
by combining the estimated covariance matrices of both KF. 
The covariance matrix given by the KF associated to the X 
position variable is multiplied using the coefficient obtained 
from the X variable membership functions, whereas the one 
obtained from a KF associated to Y, is multiplied by the 
coefficient from the Y variable membership functions. This 
implies that the covariance matrix of the fuzzy model uses 

the relative weights between the X related linearization and 
the Y related linearization as shown on equation 23: 
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Apart from the advantages previously described, this 

structure also helps to reduce the number of computations 
needed compared to a conventional EKF. In the EKF, for 
each time k, all system matrices must be calculated using the 
related Jacobian and evaluating it on the operating point, as 
shown on equations 18 to 20. On the other hand, in the Fuzzy 
Extended Kalman Filter (Fuzzy EKF), although more 
matrices are needed, all of them have constant values, 
limiting the calculations to the fuzzification of each KF. 
 

VII. RESULTS 
 
To check the estimation given by the Fuzzy EKF, several 

different trajectories were tested on the mobile robot, and the 
estimation error compared to the one given by a conventional 
EKF. The EKF was designed using equations 19 to 21, on 
the nonlinear system of equations that describes the 
kinematics of the mobile robot. For the EKF, the R 
covariance matrix is kept the same as for the Fuzzy EKF, 
because in both cases the only measured variable is the angle 
of direction. The values of the system error covariance 
matrix Q were determined to obtain the best performance 
possible for all tests. 

Figures 7 and 8 show the estimation, using both methods, 
for the localization of the robot. The standard deviation of 
the noise used was a 20% of the maximum value. It can be 
observed that while the robot is moving on a straight line 
both methods give a very accurate estimation, whereas the 
main differences occur when the robot rotates. In this case, 
the estimation given by the Fuzzy EKF is better than that 
given by the conventional EKF. 

 

 
Fig. 7. Localization estimation using the EKF and the Fuzzy EKF. 

 



 
Fig. 8. Localization estimation using the EKF and the Fuzzy EKF. 

 

 
Fig. 9. Comparison of the error using an EKF and a FuzzyEKF. 

 
Figure 9 shows the evolution over time of the estimation 

error for both methods, for the second example. Thanks to 
the fuzzification mechanism, the output of the Fuzzy EKF is 
smoother than the one given by the normal EKF, and the 
estimation error is less. 

The difference between both estimations can be explained 
by the fact that the Fuzzy EKF contains optimal filters 
especially tuned for each operating point. This means that the 
covariance matrices used for describing the system and 
measurement noise can be estimated better for each linear 
model in the Fuzzy EKF, than for the nonlinear model in the 
conventional EKF. 

It was also noted that for small noise standard deviations, 
both methods gave similar results, whereas if the value is 
increased, the Fuzzy EKF returns a better estimation. For the 
example on figures 7 and 8 the estimation error for the 
conventional EKF was of 6.7x10-3 [mt] RMS, whereas for 
the Fuzzy EKF the error was reduced to 1.7x10-3 [mt] RMS. 

 
VIII. CONCLUSIONS 

 
Through this work, a new way of extending the Kalman 

Filter is presented. Based on the membership functions 
obtained from a fuzzy model of the robot, a Fuzzy Extended 
Kalman Filter is implemented, resulting in a better posture 
estimation for mobile robots, in comparison with the 

conventional Extended Kalman Filter, thus reducing the 
estimation error. 

The presented Fuzzy EKF shows other interesting 
advantages over the conventional EKF. Due to the fact that 
the Fuzzy EKF is based on linear models, the estimation of 
the covariance matrices needed is easier and results in an 
improvement over the posture estimation. This makes the 
implementation simpler and the output smoother, also 
reducing the computation complexity. 

Based on these results, less noise contaminated residuals 
can be obtained to determine the measured behaviour of the 
robot with respect to the expected one. These residuals, 
which are a comparison between a model output and the 
sensors measurements, are used to detect and diagnose faulty 
elements such as sensors or actuators in the mobile robot, 
without the need for extra sensors. 
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