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Abstract: The performance of model based fault detection and isolation systems can be 
improved by designing more accurate estimation methods. This work presents a novel 
implementation of a nonlinear Kalman filter based on the Takagi–Sugeno (TS) fuzzy 
structure, for a mobile robot. First, a TS model is derived from the robot kinematic 
equations, which is optimized through genetic algorithms to obtain an accurate model. 
Based on this model, several linear Kalman filters are combined using fuzzy logic, 
designing a nonlinear state estimator. Finally, the resulting fuzzy nonlinear observer is 
compared with the conventional Extended Kalman Filter, showing an improvement in 
performance and robustness.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Over the last decade the use of mobile robots has 
increased, especially in dangerous tasks such as 
space exploration, land mines extraction, and rescue 
operations, keeping human operators away from 
harm. Mainly due to the dynamic and complex 
environments in which mobile robots work, a large 
number of different faults may appear, reducing the 
capabilities or even disabling the robot. Recent 
studies show that the mean time between failures is 
less than 20 hours for field robots, after which the 
robots must be repaired, consuming time and 
resources (Carlson, 2004). This means that when 
faults are taken into account, the advantages of using 
mobile robots are cut back, as repairs are not always 
possible, like in space exploration, or is very 
dangerous to retrieve the robot to do them. These 
facts imply that accurate fault detection and isolation 
(FDI) systems are required, increasing the reliability 
of the robots and reducing the costs associated to 
fault appearance. 
 
The use of system models and system observers is 
one of the most effective methods for detecting and 
isolating faults (Basseville and Nikiforov, 1998). As 
state estimation becomes more accurate, the 

performance of the associated FDI system increases, 
detecting faults sooner and reducing confusions 
during the isolation process. 
 
The Kalman filter is an optimal state estimator for 
linear systems which uses the model of the system 
and the measurements to minimize the error in the 
estimation (Kalman, 1960), making it an excellent 
tool for implementing a model based FDI system. 
This filter can be extended to nonlinear systems, such 
as mobile robots as shown in (Larsen, et al., 1999), 
by using a linearization of the process on each 
operating point. Although the Extended Kalman 
Filter (EKF) gives a good estimation of the state 
vector of the system, it is very difficult to tune it 
accurately, as it is very sensitive to modelling errors 
and noise estimation. The main problem is that the 
noise covariance matrices needed must be precisely 
determined to get good results, which is seldom 
achieved in nonlinear systems. 
 
To solve the problems related with nonlinearities, 
several authors have used fuzzy logic to tune the 
EKF dynamically, determining the covariance 
matrices needed as the operating point changes 
(Sasiadek and Hartana, 2002; Wang and Goh, 1999). 
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2.2. Kinematic Equations 
 

1. Mobile robot model and basic parameters.  
is work, a novel implementation of a nonlinear 
an filter based on the Takagi-Sugeno fuzzy 

ture is described. First, a kinematic and dynamic 
l of a mobile robot is presented. Next, a TS 
l of the robot kinematics is constructed, 

wed by the design of the fuzzy Kalman filter. 
ly, the fuzzy filter is compared with the EKF 
gh simulations, showing improvements in the 

racy and robustness of the estimation. 

2. ROBOT MODEL 

plified model of a mobile robot is presented on 
e 1. The body is considered a circular disc of 
s b, with two independent wheels of radius r 
. The angular velocity of the right wheel is 
ed as ω1, whereas the left one is ω2. The posture 
e robot is defined as a three element vector, 
ining the coordinates of the position of the 

t with respect to some reference point and the 
ing angle: X=[x y ϕ]T. The equations that 
ibe the behaviour of the robot can be divided 
two sets, one for the kinematics and one for the 
mics, which includes the model of the motors 
 (Angeles, 1997). 

Dynamic Equations 

implify the simulation problem, very often only 
inematic equations are used to model the robot, 
garding the robot dynamics. In this work, the 
mic equations of the robot are also modelled, 
h helps to analyze the effect they have both on 
uzzy observer and the EKF. These equations 
 the torque applied to the wheels by the motors, 

th the acceleration the robot acquires,ω : 

( )F+ =Mω ω τ  (1) 

quation 1, M represents the inertia matrix and 
is a function that depends on the speed of the 
ls, representing the effects of friction. The DC 
r equations are also included in this model to 
mine the torque each motor applies with a given 
 voltage, vi. As described on figure 2, a PID 
oller is used to control the voltages on each 
r, achieving the reference angular velocity on 
 wheel. 
 
Fig. 2. PID control loop and robot kinematics. 
 
Using simple geometric relations, the linear speed of 
the robot at time step k can be obtained as equation 2 
shows: 
 

( )1, 2,2
r

k kV ω ω= + k  (2) 
 
The kinematic equations of the robot relate the 
angular velocity of each wheel with the variation in 
the posture vector, which is used as state vector 
through this work: 
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3. TAKAGI-SUGENO MODEL GENERATION 
 
The objective of this work is to achieve a more 
accurate model for using in FDI systems on mobile 
robots. The first step to achieve this is to design an 
ideal model that does not consider the effects of noise 
on the process and the measurements. As the 
nonlinearities of this system are only on the robot 
kinematics, the Takagi–Sugeno fuzzy structure is 
used to model these equations, without considering 
the dynamic components. 
 
 
3.1. Model Formulation 
 
The fuzzy structure can be used to fuse together 
multiple linear models of a system, obtaining a 
nonlinear model of the process (Lin and Lee, 1996). 
As there is no single operating point in mobile 
robots, the whole spectrum of possibilities must be 
covered. To achieve this, equations 3 and 4 are 
linearized in five different heading angles: 0, -π/2, 
π/2, π and, -π. Although π and -π are actually the 
same angle, both linearizations are needed as the 
linearization about π will only be valid for values 
near to it. If it is evaluated near -π the approximation 
given is very bad, compromising the accuracy of the 
whole model. Each linear model will have the 
following structure, where ϕn is the linearization 
angle: 
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Fig. 3. Takagi–Sugeno nonlinear model. 
As these two equations are independent, two 
different fuzzy structures are used to fuse together 
the linear models, one for ∆x and one for ∆y, both 

sing ϕ as input for the fuzzyfication, as figure 3 
hows. The output of each structure is given by the 
ineal combination of all the linear models, Ln, 
ithin: 
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The values for the coefficients µn and λn are 
determined by the membership function (MF) 
associated to the linear model n. As there are five 
linearization angles, there are five MF for each 
variable: Centre (C) associated to ϕ1=0, Left (L) 
ssociated to ϕ2=π/2, Right (R) for ϕ3=-π/2, Back 1 
B1) associated to ϕ4=-π, and Back 2 (B2) associated 

to ϕ5=π. 
 
 
3.2. Model Optimization 
 
The nonlinearities in the TS model are given by the 
morphology of the MF associated to each linear 
model, thus the accuracy of the model can be 
optimized by modifying each MF. One method that 
has proved to return good results is genetic 
optimization, which can be used to modify the 
morphology of each MF to improve the model. 
 
Genetic optimization is based on the same principles 
as evolution theories, where a group of possible 
solutions, called parents, are combined together 
resulting in new child solutions that tend to be better 
in solving a certain problem (Lin and Lee, 1996). 
One recent development in genetic programming 
(Jung, 2003) uses the same method as bee colonies, 
where only the best member of the parent population, 
also called the queen, is used to create the new 
population, reducing the computational needs and 
complexity of the optimization. 
 
Several assumptions can help in reducing of the 
number of free variables in the optimization process. 
First, as each linearization gives an exact 
approximation of the nonlinear function at the 
linearization point, the degree of membership of the 
associated MF at that point must be 1, whereas the 
other MF must be 0. Another consideration is that 
due to the geometric characteristics of the problem, 
the MF can be assumed to be symmetric about the 
linearization point. Taking these considerations into 
account, each MF is coded as a 7 element vector, 
where each element contains the degree of 
 
Fig. 4. X position membership functions. 
 
Fig. 5. Y position membership functions. 
 

 
Fig. 6. Comparison between the initial and optimized

fuzzy models. 
membership or height of the MF at constant intervals 
in the angle variable. The values in between are 
obtained through a cubic interpolation of the 
neighbours. 

 

 
The optimization is made by comparing the 
performance of the TS model using each individual 
in the population, with the result of the exact 
nonlinear model of the robot, given a certain input 
vector U. Then, the best individual is selected to 
produce the next generation of solutions. 
 
Using an initial population of 30 individuals with 
triangular MF, the system is optimized for 100 
generations resulting in the MF of figures 4 for the x 
variable, and figure 5 for the y variable. Figure 6 
shows a comparison between the estimation given by 
the model using the initial triangular MF, and the 
optimized model. 



 
The simulation of the exact nonlinear model and the 
TS model for several different trajectories shows that 
the fuzzy model is extremely accurate. 
 
 

4. FUZZY KALMAN FILTER DESIGN 
 
When noise is taken into account, the difference 
between the estimation of the previous model and the 
real posture of the robot increases over time, so some 
correction method is needed. Due to the fact that 
process disturbances and measurement errors can be 
characterized as Gaussian white noise, Kalman filters 
can be used to reduce the deviation caused by these 
disturbances. 
 
 
4.1. Kalman Filter 
 
As the TS nonlinear model is based on several linear 
models, conventional linear tools can be used over 
each of them. In this case, a Kalman filter can be 
implemented for each model, obtaining an optimal 
estimation of the state vector for each of them, and 
thus reducing the effect of noise over them. 
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Equation 10 represents a linear system, where Xk is 
the state vector, Uk the input, and Yk the 
measurement vector, at time k. The process and 
measurement Gaussian noise at time k are denoted 
by ε1 and ε2 respectively. 
 
The Kalman filter is an iterative algorithm that uses 
both the system equations and actual measurements 
to correct the prior estimation. First, the state and 
measurement vectors, and the covariance matrix, P, 
are estimated using the system equations, as shown 
in (11), where Q represents the process noise 
covariance matrix: 
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Once this estimation is made, the Kalman gain is 
calculated using R, the measurement covariance 
matrix: 
 

( ) 1T T
k k k

−− −= +C C C RK P P  (12) 
 
Finally, using this gain and the measurement vector 
Yk, the estimation is updated: 
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4.2. Fuzzy Observer 
 
As described on figure 7, for each of the linear 
models Ln, a Kalman filter KFn is implemented, 
which gives an optimal estimation for that model, 
 
Fig. 7. Takagy-Sugeno based fuzzy observer. 
reducing the effect of the process and measurement 
noise. Also, each linear model has its own process 
noise covariance matrix Qn, which in the case of 
linear systems can be easily determined to obtain the 
best possible performance. Then, each KFn is 
specifically tuned with these matrices. This is one of 
the main advantages of this method, compared with 
the EKF, where generally it is very difficult to 
determine the covariance matrices needed to achieve 
a good performance, resulting in a significant 
reduction of the tuning process. 

 

 
In the same way in which the nonlinear TS fuzzy 
model fuses together the different linear models, this 
structure can be used to fuse the estimation given by 
each Kalman filter, resulting in a fuzzy nonlinear 
observer. 
 
For each time step k, the previous state estimation 

-1
ˆ

kX  is used together with the input vector Uk-1 and 
measurement vector Yk, to obtain an optimal 
estimation from each linear Kalman filter KFn. The 
different estimations for the heading angle ϕk,n, which 
are almost the same on each model, are averaged 
together to determine the best estimation ˆkϕ . This 
value is used as an input to the fuzzy structure to fuse 
together the estimations for x and y given by each 
Kalman filter. The same membership functions 
determined through the optimization of the nonlinear 
TS model of the robot kinematics are used to fuse the 
estimations and obtain ˆkx  and . The covariance 
matrix Pk is obtained as a linear combination between 
the different covariance matrices. The relative weight 
for each covariance matrix is given by the MF 
associated to the corresponding model, using the 
membership functions for the x variable for models 1, 
4, and 5 as they are more related to movements on 
the X axis, whereas for models 2 and 3 the weights 
are obtained from the y related membership 
functions. 

ˆky

 
 

5. RESULTS 
 
To analyze the robustness and performance of the 
fuzzy observer, the estimation error is compared with 
the one obtained from an EKF for several different 
conditions. The EKF is tuned to obtain the best 
possible estimation given a certain trajectory, 
whereas the different linear Kalman filters in the 
fuzzy observer are tuned using the linear equations, 
without considering the trajectory. 
 
Due to the fact that these are statistical tools that are 
used to reduce the effect of noise, for each different 



2.6% of the simulations done, the EKF outperformed 
the fuzzy observer. 

 

 

 
 
5.2. Effect of the Robot Dynamics 
 
The effect that the dynamic equations have on both 
methods must be also checked, as none of them 
include the robot dynamics in their structure. To 
achieve this, instead of using U, the reference angular 
velocities, as input vector for each method, the actual 
applied angular velocities are used, eliminating the 
effect of the robot dynamics. Through this test it is 
observed that both methods improve their estimation, 
but the improvement of the EKF is higher. This 
means that the effect of the robot dynamics has less 
effect on the fuzzy observer compared with the EKF, 
which needs more accurate equations to achieve a 
good performance. 
 
 
5.3. Sensitivity To Measurement and Process Noise 
 
For this test, the standard deviation for the 
measurements and the process noise were modified 
by a 30% up and down, analyzing the effect on both 
methods. 
 
When the measurement noise is incremented, the 
estimation error increases in both methods, but it 
affects less the output of the fuzzy observer. The 
same happens when the process noise is augmented. 
 
 
5.4. Sensitivity To Noise Estimation 
 
More important than the sensitivity towards the noise 
 

Fig. 9. Estimation error for both methods. 
 
Fig. 8. Robot localization using the EKF and the

fuzzy nonlinear observer. 
situation 1000 simulations are made choosing 
random seeds for the noise generation. This allows a 
more suitable comparison between the two 
estimations. On each simulation it is assumed that 
every 0.1 [s] the mobile robot can measure the 
heading angle (with a magnetic compass for 
example) and the position (with a GPS or radio 
beacons). 
 
 
5.1. Basic Comparison 
 
The basic comparison considers that the value for the 
standard deviation of both the angle measurement 
Gaussian noise and process Gaussian noise is 10% of 
the maximum possible value. The standard deviation 
for the position measurement noise is considered to 
be 1 [m]. One of the simulation results is shown on 
figures 8 and 9. On both figures it can be observed 
that the fuzzy observer is more accurate than the 
EKF, even though the tuning for the fuzzy observer 
is faster and simpler. For these simulations, the 
average RMS error for the EKF was 0.018 [m], 
whereas the fuzzy observer presents an average error 
of 0.006 [m].  
 
The average error of the fuzzy observer in the 1000 
simulations was more than 3 times smaller than the 
error of the EKF. It was also observed that only in 

 
is the sensitivity towards the noise estimation. In 
most cases it is very difficult to estimate the noise 
level on the measurements and it is even more 
difficult to do it on the process. This makes important 
to analyze the effect that a wrong estimation has on 
both methods.  
 
For these tests the measurements and process noise 
standard deviation is estimated to be between a 30% 
more and 30% less than the actual level used in the 
exact robot model. The results show that when the 
noise level is estimated incorrectly the estimation 
error increases for both methods, but in average the 
improvement of the fuzzy observer over the EKF 
increases. 
 
It is important to mention that considering all the 
different tests made, the fuzzy observer gives an 
estimation error that is at least 50% smaller than the 
one given by the EKF, whereas the EKF 
outperformed the fuzzy method in less than a 4% of 
the simulations. 
 
 

6. CONCLUSIONS 
 
Through this work a novel nonlinear fuzzy observer 
is presented. This observer is based on several linear 
Kalman filters and a Takagi–Sugeno fuzzy model 
which is used to combine the different estimations, 
resulting in a more accurate observer for the posture 



of the robot, compared with the conventional 
Extended Kalman Filter. 
 
The simulations also show several other interesting 
advantages of the fuzzy observer. First and more 
important, as the fuzzy observer is based on linear 
models, the covariance matrices needed are easily 
determined, implying that less tuning is required to 
achieve a good performance, compared with the 
EKF, which requires more work. 
 
Also, the fuzzy observer is more robust that the EKF 
as the effect of not considering the robot dynamics 
and errors in the estimation of the process and 
measurement noise affects more the performance of 
the EKF than the performance of the fuzzy observer. 
 
Based on this new nonlinear observer, less noise 
contaminated residuals can be obtained, which will 
be used to design a more accurate fault detection and 
isolation system for mobile robots. 
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