
 
 

 

  

Abstract— This work presents an architecture that can help 
to increase the reliability in groups of cooperative mobile 
robots by taking advantage of analytical and sensor 
redundancy. First, the design of the architecture is portrayed 
and the faults to be detected are described. The different layers 
of the system are then explained and analyzed, using 
simulations to test their capabilities and limitations. Finally, the 
architecture is implemented on a group of small mobile robots 
to validate the results of the simulations. 

I. INTRODUCTION 
HE use of robotic systems in environments hostile to 

human beings or in dangerous tasks, such as land mines 
extraction and rescue operations, has increased over the last 
years, making the work safer for human operators. But the 
advantages of operating with robotic systems are cut back 
when faults are taken into account, as they disable the robot 
in some of its functions, or in worst cases, they make the 
robot unable to work at all. Recent studies show that the 
mean time between failures is less than 20 hours for field 
robots [1], after which they require some sort of repair, 
consuming time and resources. This implies that an 
increment in reliability is needed, increasing the mean time 
between failures or reducing the repairing time. 

Two main methods have been used to increase the 
reliability of robots. One method is to construct more robust 
mobile robots, which can be done either by adding 
mechanical or sensory redundancy to the robot. The other 
method to increase the reliability is to add FDI systems, 
which identify present problems and thus reduce the time 
and effort needed for repairs [2]. As these systems are also 
used in most fault tolerant control systems, as in [3], this 
work is centred in the design and development of a FDI 
architecture for cooperative mobile robots, which can obtain 
information regarding the state of each robot for future 
control decisions or repairs.  

Several FDI methods have been developed for mobile 
robots [4]. The core of the FDI algorithm used in this paper 
is presented in [5], where only two possible faults are 
analyzed: a reduction in the radius of one tire and a periodic 
bump. In [6], the concept is further developed using a bank 
of Kalman filters to determine faults on sensors and 
actuators of a four wheeled robot. Another FDI method is 
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presented in [7], where a bank of Kalman filters is combined 
with a Markov model representation to identify the faults 
through probability calculations. Other approaches to FDI in 
mobile robots include the use of more advanced filtering 
techniques to identify the faults, which incorporate the 
nonlinear robot dynamics, as seen in [8]. 

Also aiming towards an improvement in the reliability, 
several researchers have proposed a multiple robot 
approach. In [9], the authors explain how the redundancy 
present in cooperative mobile robots can be used to increase 
the robustness of the group and thus improving the 
efficiency. In the same line of study, the ALLIANCE 
architecture presented in [10] shows a simple FDI system for 
cooperative robots based on behavioural programming. 
Regretfully, with exception of [11], which describes a 
simple FDI method for cooperative manipulators, none of 
works mentioned above contain an analysis on the FDI 
limitations, nor of the efficiency of the isolation (number of 
false positives or wrongly isolated faults), so no reliability 
comparisons can be made between them. 

This paper presents the basis for a FDI framework for 
mobile robots, defining an ordered structure over which 
future FDI methodologies can be developed and 
implemented. Taking advantage of the different benefits that 
single and multiple robots’ FDI mechanisms show, this work 
shows a layered architecture for FDI on cooperative robots, 
where the different layers can be implemented on the robot 
system depending on the capabilities and resources present. 
The idea behind this architecture is to combine methods 
behind single and cooperative robot FDI systems to achieve 
an architecture capable of detecting a wide range of faults. 

The multiple layer approach allows to take advantage of 
the different information, control, and redundancy levels that 
exist within the control structure, designing each layer of the 
FDI architecture according to the level of information 
available at its corresponding level in the control structure. 
This permits an efficient use of the available information. 

Multiple layers have been used by other authors to 
achieve FDI in different classes of robotic systems, adapting 
the FDI system depending on the redundancy that exists, 
[12]-[13], but the idea of having a cooperative layer within 
the architecture has not been implemented yet. 

Fig. 1 illustrates the framework used, describing the 
control structure for each robot Ri, according to the level of 
control, and the interaction with the different layers of the 
FDI system. 

The control structure has five main layers. First, the 
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physical layer consists of the body, sensors, and actuators 
needed. The Actuator Control Layer controls the robot’s 
hardware in order to follow a determined trajectory. Next, 
the Navigation Control is dedicated to design the trajectories 
needed to achieve the different objectives. The highest 
control layer in a single robot is the Control of Objectives 
Layer, which designates the tasks that must be done and 
where the robot must go in order to do them. Finally, in 
cooperative robots another layer is added: the Multirobot 
Coordination Layer. This layer can be either centralized or 
distributed among the robots, and is the one that designates 
the objectives of each robot, to achieve their common goal. 

This work is divided into five sections. First, section 2 
presents a description of the robot system over which the 
FDI architecture is implemented. Next, section 3 describes 
the first layer of the architecture, presenting the method used 
and an analysis of the fault detection capabilities and 
limitations. Section 4 continues with the description of the 
second layer of the architecture, indicating how the 
cooperative robots approach is used. Section 5 then 
describes the interaction between both layers. Finally, 
section 6 shows the experimental results of each layer. 

II. SYSTEM DESCRIPTION 
The FDI architecture’s design is based on simulations, for 

an analysis of its capabilities, being then implemented on a 
group of small mobile robots, for validation. 

The simulations were done in Matlab, using a the same 
mathematical model described in [14], which has the 
kinematic and dynamic equations for each robot. The 
sensors readings are also simulated in the model by adding 
noise to the measurements, using a 10% of the maximum 
value of the measurement as standard deviation. 

A group of homogeneous small mobile robots, 
constructed at our university, is used to test each layer of the 
architecture and validate the data obtained through 
simulations. The group is composed by three robots, as the 
one showed in Fig. 2. Each robot moves using two 
independent actuated wheels, enabling differential steering. 
They have two low cost microcontrollers for programming 
and control purposes, and are equipped with optical 

encoders on both wheels to achieve relative localization. The 
robots are also equipped with a digital compass, to measure 
the heading angle. Each robot has a frontal sonar and a low 
resolution CMOS camera, for navigation purposes. For this 
work, the camera is only used to recognize other robots, 
which is done by identifying the red marker that each one 
has on top. 

Faults can be divided into two groups: those that can be 
continuously monitored on a single robot, and those that can 
be detected through cooperation between them. Although 
some faults can actually be detected through both methods, 
they are grouped were it is easier to detect them. 

For the first layer of the FDI architecture, seven different 
faults on sensors and actuators are considered: 1-2: slippage 
of one of the wheels, 3-4: one of the wheels gets stuck, 5: 
both wheels get stuck, and 6-7: one of the encoders gets 
stuck (i.e.: the velocity of that wheel is read as zero). The 
cooperative layer isolates faults on sensors that are 
redundant in the robot team. This layer is designed to detect 
four different faults: 1: additive fault on the sonar, 2: the 
sonar gives a constant value, 3: additive fault on the 
compass, 4: the compass gives a constant value. 

III. CONTINUOUS FDI LAYER 

A. Method Description 
The use of multiple models has shown to be a good tool 

for continuous monitoring of faults in mobile robots. As all 
the faults this layer must detect can be modelled within a 
Kalman filter, a bank of eight Kalman filters is used: one for 
modelling normal operation (M0), and seven for modelling 
the faults (M1-M7). The basic structure of each model Mi is 
as follows:  
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In (1), Xk,i is the state vector for the robot at time k using 

model i, whereas Zk,i is the measurement. The matrices Ai, 
Bi, and Ci are the state equation matrices for model i, and Uk 
is the control input at time k. The process and measurements 

 
Fig. 1.  Control and FDI Structures for robot Ri. 

 
Fig. 2.  Mobile Robot used with marker. 
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additive white noise are represented by wk and vk 
respectively. 

To obtain an optimal estimation of the state and 
measurement vectors of each model Mi, a Kalman filter is 
applied. Using these estimations, faults are detected by 
calculating the probability of hypothesis Hi, which states that 
model Mi represents the actual operation mode of the robot. 
The conditional probability that hypothesis Hi is true at time 
k+1, is given by the following expression, according to [15]: 
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In (2), f(.) is the conditional probability density function 

of measurement Yk+1, conditioned on the model Mi and the 
previous measurements, which is given by:  
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With Dk+1,i (the Mahalanobis distance at time k+1) and 

βk+1,i being defined by: 
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The parameter m, used in (5), is equal to the number of 

elements in the measurement vector, and Sk+1,i is the residual 
covariance matrix at time k+1 for model Mi. The residual 
rk+1,i is obtained as the difference between the measurements 
and the estimation of the measurement vector given by 
model Mi: 

 
1, 1 1,k i k k ir Y Z+ + += −  (6) 

 
It is important to notice in (2) that if the probability of a 

certain hypothesis reaches 0, it can not return to another 
value. To eliminate this problem, the minimum probability is 
artificially set to 0.0001. 

To reduce the computational requirements of the Kalman 
filters, only three variables are taken into account for the 
state and measurement vectors: the rotation speed of the 
robot, and the speed of each wheel. 
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Each Kalman filter uses a simple kinematic relation, 

which is modified according to the operation mode: 
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This equation relates the speed of each wheel, with the 

rotation speed of the robot. In (8), r1 and r2 are the radii of 
the right and left wheels respectively and 2b is the axle 
length. λ and μ are parameters used to represent the different 
faults: for M0 λ=μ=1; for M1 λ=0.4 μ=1; for M2 λ=1 μ=0.4; 
for M3 λ=0 μ=1; for M4 λ=1 μ=0; for M5 λ=μ=0; and for M6-7 
λ=μ=1 as the fault affects only the measurements and not the 
process. The value 0.4 used in the model for faults 1 and 2 is 
determined empirically, to eliminate false alarms due to the 
small slippage that mobile robots always have. 

B. Fault Detection and Isolation 
Once the probability for each hypothesis is calculated, 

FDI is done by using thresholds. First, a fault is detected 
when the probability of H0 is smaller than the threshold PDT. 
This value is a free parameter that allows tuning, affecting 
the response time of the detection. If the value is too high, 
the detection is fast (less than 0.2 [s]), but the number of 
false alarms is important, whereas if the value is low, the 
detection takes longer, but false alarms are reduced. Due to 
the effect of noise, the probability of H0 can sometimes be 
lower than PDT for some time intervals, creating a false 
alarm. To reduce this, the detection is activated if the 
probability of H0 is smaller than PDT=0.01 for three 
consecutive time intervals, reducing false alarms, without 
increasing the detection time too much. 

After fault detection is done, isolation is achieved by 
detecting which probability surpasses a threshold PIS. If the 
probability of a fault related hypothesis is above PIS=0.99, it 
is assumed that that fault is present. These values for PDT 
and PIS were empirically determined through the simulations 
done, reducing wrongly isolated faults. 

C. Simulation Results 
Using the mathematical model of a single robot, the 

continuous FDI layer is tested through several simulations. 
The system is simulated 1000 times with random chosen 
operation modes (normal and faulty ones), using a sampling 
time of 0.1 [s]. These simulations allow a statistical analysis 
of the performance of the layer. Four different criteria are 
used: the amount of false alarms, the confusion matrix, the 
fault detection time, and the fault isolation time. 

False alarms indicate the number of times that faults are 
detected when nothing is wrong. The simulations show that 
no false alarms appear thanks to the detection criteria used. 

The confusion matrix, Cm1 (9), shows the relation between 
the faults that appear on the robot and the faults isolated by 
the FDI layer. Each element cij of Cm1 represents the 
percentage of times the operating mode Mi is isolated as Mj, 
showing the isolation effectiveness. 

WeA11.4

2952



 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000000000
0100000000
0010000000
4.2006.970000

09.1001.98000
0000010000
0000001000
0000000100

1mC

 

(9) 

 
The results show that only 0.4% of the total simulated 

operating modes are wrongly identified. The wrong isolation 
only affects faults 3-4 (stuck wheels), which are isolated as 
faults 6-7 (encoder faults) respectively, as the effect of both 
faults is similar during the first time intervals. This 
confusion can be eliminated by rising the threshold used for 
isolation, but that would affect the response time. 

Table I shows the average detection and isolation times. 
Due to the method used, the isolation takes slightly longer 
than the detection in some of the cases. It can be observed 
that both detection and isolation require only a small amount 
of time intervals. 

D. Interaction with the Control Structure 
The interaction between the FDI architecture and the 

control structure can not only be used to inform the control 
system that a fault is present. It can also be used to increase 
the isolation capabilities, obtaining more information about 
the present state of the robot. 

When the robot collides with an obstacle, the wheels can 
either slip or get stuck depending on the friction coefficient 
at that moment. In both cases, the FDI system will give a 
false alarm, as no real fault is present. If no further actions 
are taken, the robot can be considered disabled even though 
it can still work. 

To eliminate this problem a control routine is added, 
which allows to differentiate a real fault from a collision. 
Whenever a slippage or stuck condition is detected, instead 
of activating a fault detection flag, the FDI system asks for a 
change in the rotation direction of the affected wheel. If the 
probability of H0 returns to be high again, it means that the 
robot had collided with an undetected object and not that a 
fault has occurred. Alternatively, if the probability of the 
faulty condition continues to be high, a real fault is present. 
This simple algorithm creates a “virtual bumper sensor” that 
improves the fault isolation capabilities of the layer.  

The biggest limitation this first layer has, is that it must be 
possible to model the effects of the faults within a Kalman 
filter. If this is not possible, other isolation method must be 
used, as there will be no residual covariance matrix available 
for the probability calculation. 

IV. FDI ON COOPERATIVE ROBOTS 
The idea behind this layer, is to take advantage of the 

sensor redundancy that exists within a cooperative robot 
group, which can be done by implementing simple routines. 

A. Redundant Sensor Fault Detection and Isolation 
Fault detection on redundant sensors can be achieved if at 

least two independent measurements can be made. If the 
difference between the readings of two sensors is above a 
threshold DTH, a fault is detected although there is no 
enough information to isolate the fault. When there are more 
than two sensors available, the faulty sensor can be isolated 
from within the group by detecting which has the biggest 
difference, as indicated in [11]. 

Because the robots might not always be close together, 
the Cooperative FDI layer works only when two or more 
robots meet, testing the different redundant sensors 
available. If a fault is detected and only two robots are 
present, it is assumed that both robots have faulty sensors, 
till a new robot is found. To identify between additive and 
stuck type faults, the magnitude of both measurements is 
stored by each robot. If the difference is similar in two 
independent tests, it is assumed to be an additive fault, being 
the amount of the fault this difference, and thus achieving 
fault diagnosis. 

As there is noise in the measurement made by the sensors, 
the threshold must be optimized to reduce the occurrence of 
false alarms. The problem is that sometimes the threshold 
needed is higher that the accepted fault tolerance, and 
reducing the threshold will result in a useless system with a 
huge amount false alarms. In this case, the use of a multiple 
measurements test can help to resolve the problem. It was 
observed experimentally that the sensors used in the robots 
present an almost additive white noise, with known standard 
deviation σi. Considering this, the difference between the 
measurements of two sensors, mi and mj, has the following 
error probability distribution: 

 

( )2~ N 0,i j dm m σ− ; with 2 2 2
i jdσ σ σ= +  (10) 

 
If n measurements are done, the standard deviation of the 

average difference is reduced to σn, where: 
 

2 21
n dnσ σ=  (11) 

 
Depending on the desired threshold DTH, the optimal 

number of measurements needed in order to have a false 
alarm probability of 1-Pn, is determined by (12), allowing 
the user to set the sensitivity of the system: 
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TABLE I 
AVERAGE DETECTION AND ISOLATION TIMES FOR LAYER 1 

Fault 1 2 3 4 5 6 7 

Detection [s] 1.1 1.3 0.7 0.6 0.7 0.3 0.3 

Isolation [s] 1.1 1.3 0.8 0.8 0.7 0.3 0.3 
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Where DP is obtained from the standard normal 
distribution table such that: 
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If the robot can do only a limited number of 

measurements, nmax, using (12) and (13), the optimal 
threshold DTH must be increased to keep the same false 
alarm probability. 
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σ
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Every time two robots in the group meet, the sonar and 

magnetic compass are used to determine the distance and 
direction of each other. The number of measurements 
needed is calculated previously using (12), and the average 
measurement is transmitted between the robots in order to 
detect the fault. For the sonar, if the difference between both 
readings is above DTHs, a fault is detected, whereas for the 
magnetic compass, the difference between both readings 
must be 180 [°], so if the difference is outside the range 
180°±DTHc, the fault is detected. 

B. Simulation Results 
Using the same methodology applied to the first layer, the 

capabilities of the Cooperative Layer are tested. The FDI 
layer is simulated 1000 times with randomly chosen faults, 
and on each simulation it is assumed that the robots can 
detect each other whenever a sensor check is made. For 
every sensor, the probability Pn is set to 99.99%. The 
standard deviation for the error on the compass is set to 
σc=0.15[°] and for the sonar is σs=0.02 [m]. Given that 
DTHc=0.5[°] and DTHs=0.05[m], then the needed values for n 
are 2 for the compass and 3 for the sonar, to achieve the 
desired Pn. For this layer only two criteria are used to test 
the performance: the number of false alarms and the 
confusion matrix. Due to the fact that Pn is 99.99%, no false 
alarms appear during the simulations of this FDI layer. On 
the other hand, the confusion matrix obtained is perfectly 
diagonal as no confusion can be made in the isolation of the 
faults. Once a fault is detected, simulations show that it is 
correctly isolated and the amount of the fault (for additive 
faults) is determined with 96% of accuracy. 

V. EXPERIMENTAL RESULTS 
Due to the computational limitations of our robots, both 

layers are tested offline using data collected from each 
robot, which is then processed in a computer. The first layer 
faults are injected in the following way: wheel slippage is 
done by using the robot over a slippery surface with plastic 
wheels; the stuck wheel fault is emulated using the robot 
over thick carpet, with rubber wheels; and finally, the 

encoder faults are injected by putting a dark piece of paper 
between the sensor and the encoder wheel. 

Figs. 3 and 4 show the results corresponding to two 
different faults, injected after about 30 [s]. After the fault is 
injected, the probability of H0 reduces, whereas the 
probability of the corresponding fault increases. It is 
important to notice that other hypotheses (H3 in Fig. 3 and 
H4 in Fig. 4) also suffer an increase their probability. This 
effect does not appear in the simulations, and can be 
attributed to the differences that exist between the 
parameters used in the model and the ones of the real robot. 
The system is tested 10 times for every fault, correctly 
detecting and isolating 100% of the cases. 

As this layer is tested offline, the interaction with the 
control layer must be done artificially. To test the “virtual 
bumper sensor”, the robot is set on a rough surface and is 
directed towards a wall, making only the right wheel collide 
with the wall. After 30 [s] the direction of the wheel is 

 
Fig. 3.  Experimental result for Fault 3: Right Wheel Gets Stuck. 
 

 
Fig. 4. Experimental result for Fault 7: Left Encoder Fault. 
 

 
Fig. 5. Experimental result for the "Virtual Bumper Sensor". 

WeA11.4

2954



 
 

 

inverted. Fig. 5 shows the result of the experiment. 
Following the robot’s collision, the probability of fault 3 
increases, decreasing when the direction of the wheel is 
inverted. This indicates that no real fault is present, 
activating the “virtual bumper sensor”. 

Before implementing the Cooperative FDI Layer, the 
sensors are analyzed to determine the standard deviation of 
the noise, observing that σc=0.157[°] and σs=1.31 [cm]. To 
test this layer, robots are set in pairs, detecting each other 
using the CMOS camera and taking all the measurements 
needed. Then, another pair of robots is used so the fault can 
be isolated. Every time, the robot randomly chooses one of 
the possible faults and injects it to the measurement via 
software. The values are stored in an external memory for 
later analysis, and the number of measurements nc and ns are 
calculated using (12). Considering that the tolerated 
thresholds are defined as DTHc=0.5[°] and DTHs=3 [cm], with 
Pn=99.99%. then nc=2 and ns=3.  

This test is done 30 times in total. The results of the 
experiments show that no false alarms are activated, and 
100% of the faults are correctly isolated. In the case of the 
additive faults, as the robots stored the amount of the fault 
injected, it is possible to check the accuracy of the fault 
diagnosis. In these cases, the amount of the fault is 
diagnosed with less than 5% of error. 

VI. CONCLUSIONS AND FUTURE WORK 
Through this work, a layered architecture for fault 

detection and isolation in cooperative mobile robots is 
successfully designed and implemented. The reliability of 
the architecture is measured through simulations, showing 
excellent results as it is capable of detecting all the simulated 
faults and isolating correctly 99.6% of them. The 
architecture is then validated by an off-line implementation, 
which shows similar results, with no false alarms and 100% 
accuracy in the isolation of the faults. It is clear that the 
algorithm used in the Cooperative FDI Layer can also be 
used to isolate faults on GPS or other types of sensors, 
without adding too much complexity to the system, which is 
difficult using other current techniques. 

As future work, an on-line implementation of the 
architecture must be made, which means that a more 
powerful processor must be added, together with a wireless 
link that allows information exchange between the robots. 
Although these first experiments show good results, more 
experiments in different environments are needed to analyze 
the robustness of the architecture, specially towards the 
nonlinearities of the system, uncertainties and perturbations.  

About the architecture itself, more layers can be designed 
and added to take advantage of the information available at 
other levels in the control structure, and the redundancy 
existing at the navigation and objective control levels. This 
could mean for example, monitoring systems that check if 
the objectives are being achieved, which could help to 
detect, isolate and even identify new faults (specially those 

related to robot coordination and trajectory designs). 
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