

Abstract— This work presents an architecture that can help
to increase the reliability in groups of cooperative mobile
robots by taking advantage of analytical and sensor
redundancy. First, the design of the architecture is portrayed
and the faults to be detected are described. The different layers
of the system are then explained and analyzed, using
simulations to test their capabilities and limitations. Finally, the
architecture is implemented on a group of small mobile robots
to validate the results of the simulations.

I. INTRODUCTION
HE use of robotic systems in environments hostile to

human beings or in dangerous tasks, such as land mines
extraction and rescue operations, has increased over the last
years, making the work safer for human operators. But the
advantages of operating with robotic systems are cut back
when faults are taken into account, as they disable the robot
in some of its functions, or in worst cases, they make the
robot unable to work at all. Recent studies show that the
mean time between failures is less than 20 hours for field
robots [1], after which they require some sort of repair,
consuming time and resources. This implies that an
increment in reliability is needed, increasing the mean time
between failures or reducing the repairing time.

Two main methods have been used to increase the
reliability of robots. One method is to construct more robust
mobile robots, which can be done either by adding
mechanical or sensory redundancy to the robot. The other
method to increase the reliability is to add FDI systems,
which identify present problems and thus reduce the time
and effort needed for repairs [2]. As these systems are also
used in most fault tolerant control systems, as in [3], this
work is centred in the design and development of a FDI
architecture for cooperative mobile robots, which can obtain
information regarding the state of each robot for future
control decisions or repairs.

Several FDI methods have been developed for mobile
robots [4]. The core of the FDI algorithm used in this paper
is presented in [5], where only two possible faults are
analyzed: a reduction in the radius of one tire and a periodic
bump. In [6], the concept is further developed using a bank
of Kalman filters to determine faults on sensors and
actuators of a four wheeled robot. Another FDI method is

This work was supported by FONDECYT project no 1020741, “Fault
Detection and Identification in Nonlinear Time Variant Systems”.

R. A. Carrasco and A. Cipriano are with the Electrical Engineering
Department, Pontificia Universidad Católica de Chile, Santiago, Chile (e-
mail: {rax; aciprian}@ing.puc.cl).

presented in [7], where a bank of Kalman filters is combined
with a Markov model representation to identify the faults
through probability calculations. Other approaches to FDI in
mobile robots include the use of more advanced filtering
techniques to identify the faults, which incorporate the
nonlinear robot dynamics, as seen in [8].

Also aiming towards an improvement in the reliability,
several researchers have proposed a multiple robot
approach. In [9], the authors explain how the redundancy
present in cooperative mobile robots can be used to increase
the robustness of the group and thus improving the
efficiency. In the same line of study, the ALLIANCE
architecture presented in [10] shows a simple FDI system for
cooperative robots based on behavioural programming.
Regretfully, with exception of [11], which describes a
simple FDI method for cooperative manipulators, none of
works mentioned above contain an analysis on the FDI
limitations, nor of the efficiency of the isolation (number of
false positives or wrongly isolated faults), so no reliability
comparisons can be made between them.

This paper presents the basis for a FDI framework for
mobile robots, defining an ordered structure over which
future FDI methodologies can be developed and
implemented. Taking advantage of the different benefits that
single and multiple robots’ FDI mechanisms show, this work
shows a layered architecture for FDI on cooperative robots,
where the different layers can be implemented on the robot
system depending on the capabilities and resources present.
The idea behind this architecture is to combine methods
behind single and cooperative robot FDI systems to achieve
an architecture capable of detecting a wide range of faults.

The multiple layer approach allows to take advantage of
the different information, control, and redundancy levels that
exist within the control structure, designing each layer of the
FDI architecture according to the level of information
available at its corresponding level in the control structure.
This permits an efficient use of the available information.

Multiple layers have been used by other authors to
achieve FDI in different classes of robotic systems, adapting
the FDI system depending on the redundancy that exists,
[12]-[13], but the idea of having a cooperative layer within
the architecture has not been implemented yet.

Fig. 1 illustrates the framework used, describing the
control structure for each robot Ri, according to the level of
control, and the interaction with the different layers of the
FDI system.

The control structure has five main layers. First, the

Layered Architecture for Fault Detection and Isolation in
Cooperative Mobile Robots

Rodrigo A. Carrasco and Aldo Cipriano

T

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

WeA11.4

ISBN: 978-960-89028-5-5 2950

physical layer consists of the body, sensors, and actuators
needed. The Actuator Control Layer controls the robot’s
hardware in order to follow a determined trajectory. Next,
the Navigation Control is dedicated to design the trajectories
needed to achieve the different objectives. The highest
control layer in a single robot is the Control of Objectives
Layer, which designates the tasks that must be done and
where the robot must go in order to do them. Finally, in
cooperative robots another layer is added: the Multirobot
Coordination Layer. This layer can be either centralized or
distributed among the robots, and is the one that designates
the objectives of each robot, to achieve their common goal.

This work is divided into five sections. First, section 2
presents a description of the robot system over which the
FDI architecture is implemented. Next, section 3 describes
the first layer of the architecture, presenting the method used
and an analysis of the fault detection capabilities and
limitations. Section 4 continues with the description of the
second layer of the architecture, indicating how the
cooperative robots approach is used. Section 5 then
describes the interaction between both layers. Finally,
section 6 shows the experimental results of each layer.

II. SYSTEM DESCRIPTION
The FDI architecture’s design is based on simulations, for

an analysis of its capabilities, being then implemented on a
group of small mobile robots, for validation.

The simulations were done in Matlab, using a the same
mathematical model described in [14], which has the
kinematic and dynamic equations for each robot. The
sensors readings are also simulated in the model by adding
noise to the measurements, using a 10% of the maximum
value of the measurement as standard deviation.

A group of homogeneous small mobile robots,
constructed at our university, is used to test each layer of the
architecture and validate the data obtained through
simulations. The group is composed by three robots, as the
one showed in Fig. 2. Each robot moves using two
independent actuated wheels, enabling differential steering.
They have two low cost microcontrollers for programming
and control purposes, and are equipped with optical

encoders on both wheels to achieve relative localization. The
robots are also equipped with a digital compass, to measure
the heading angle. Each robot has a frontal sonar and a low
resolution CMOS camera, for navigation purposes. For this
work, the camera is only used to recognize other robots,
which is done by identifying the red marker that each one
has on top.

Faults can be divided into two groups: those that can be
continuously monitored on a single robot, and those that can
be detected through cooperation between them. Although
some faults can actually be detected through both methods,
they are grouped were it is easier to detect them.

For the first layer of the FDI architecture, seven different
faults on sensors and actuators are considered: 1-2: slippage
of one of the wheels, 3-4: one of the wheels gets stuck, 5:
both wheels get stuck, and 6-7: one of the encoders gets
stuck (i.e.: the velocity of that wheel is read as zero). The
cooperative layer isolates faults on sensors that are
redundant in the robot team. This layer is designed to detect
four different faults: 1: additive fault on the sonar, 2: the
sonar gives a constant value, 3: additive fault on the
compass, 4: the compass gives a constant value.

III. CONTINUOUS FDI LAYER

A. Method Description
The use of multiple models has shown to be a good tool

for continuous monitoring of faults in mobile robots. As all
the faults this layer must detect can be modelled within a
Kalman filter, a bank of eight Kalman filters is used: one for
modelling normal operation (M0), and seven for modelling
the faults (M1-M7). The basic structure of each model Mi is
as follows:

1, , ,

1, 1, ,
M ; 0..7k i i k i i k k i

i
k i i k i k i

X A X B U w
i

Z C X v
+

+ +

= + +⎧⎪ =⎨ = +⎪⎩
 (1)

In (1), Xk,i is the state vector for the robot at time k using

model i, whereas Zk,i is the measurement. The matrices Ai,
Bi, and Ci are the state equation matrices for model i, and Uk
is the control input at time k. The process and measurements

Fig. 1. Control and FDI Structures for robot Ri.

Fig. 2. Mobile Robot used with marker.

WeA11.4

2951

additive white noise are represented by wk and vk
respectively.

To obtain an optimal estimation of the state and
measurement vectors of each model Mi, a Kalman filter is
applied. Using these estimations, faults are detected by
calculating the probability of hypothesis Hi, which states that
model Mi represents the actual operation mode of the robot.
The conditional probability that hypothesis Hi is true at time
k+1, is given by the following expression, according to [15]:

()
() ()

() ()
1 0

1 7

1 0
0

/ M , .. H
H

/ M , .. H

T T
k i k k i

k i
T T

k j k k j
j

f Y Y Y

f Y Y Y

+

+

+
=

⎡ ⎤
⎣ ⎦=

⎡ ⎤
⎣ ⎦∑

P
P

P

(2)

In (2), f(.) is the conditional probability density function

of measurement Yk+1, conditioned on the model Mi and the
previous measurements, which is given by:

() 1
1,2

1 0 1,/ M , .. k iDT T
k i k k if Y Y Y eβ +−

+ +⎡ ⎤ =⎣ ⎦ (3)

With Dk+1,i (the Mahalanobis distance at time k+1) and

βk+1,i being defined by:

1
1, 1, 1, 1,

T
k i k i k i k iD r S r−

+ + + += (4)

()()
1
2

1, 1,2 m
k i k iSβ π

−

+ += (5)

The parameter m, used in (5), is equal to the number of

elements in the measurement vector, and Sk+1,i is the residual
covariance matrix at time k+1 for model Mi. The residual
rk+1,i is obtained as the difference between the measurements
and the estimation of the measurement vector given by
model Mi:

1, 1 1,k i k k ir Y Z+ + += − (6)

It is important to notice in (2) that if the probability of a

certain hypothesis reaches 0, it can not return to another
value. To eliminate this problem, the minimum probability is
artificially set to 0.0001.

To reduce the computational requirements of the Kalman
filters, only three variables are taken into account for the
state and measurement vectors: the rotation speed of the
robot, and the speed of each wheel.

1, 2,
T

k k k kY ϕ ω ω⎡ ⎤= ⎣ ⎦& (7)

Each Kalman filter uses a simple kinematic relation,

which is modified according to the operation mode:

1 1, 2 2,

2
k k

k
r r

b
λ ω μ ω

ϕ
−

=& (8)

This equation relates the speed of each wheel, with the

rotation speed of the robot. In (8), r1 and r2 are the radii of
the right and left wheels respectively and 2b is the axle
length. λ and μ are parameters used to represent the different
faults: for M0 λ=μ=1; for M1 λ=0.4 μ=1; for M2 λ=1 μ=0.4;
for M3 λ=0 μ=1; for M4 λ=1 μ=0; for M5 λ=μ=0; and for M6-7
λ=μ=1 as the fault affects only the measurements and not the
process. The value 0.4 used in the model for faults 1 and 2 is
determined empirically, to eliminate false alarms due to the
small slippage that mobile robots always have.

B. Fault Detection and Isolation
Once the probability for each hypothesis is calculated,

FDI is done by using thresholds. First, a fault is detected
when the probability of H0 is smaller than the threshold PDT.
This value is a free parameter that allows tuning, affecting
the response time of the detection. If the value is too high,
the detection is fast (less than 0.2 [s]), but the number of
false alarms is important, whereas if the value is low, the
detection takes longer, but false alarms are reduced. Due to
the effect of noise, the probability of H0 can sometimes be
lower than PDT for some time intervals, creating a false
alarm. To reduce this, the detection is activated if the
probability of H0 is smaller than PDT=0.01 for three
consecutive time intervals, reducing false alarms, without
increasing the detection time too much.

After fault detection is done, isolation is achieved by
detecting which probability surpasses a threshold PIS. If the
probability of a fault related hypothesis is above PIS=0.99, it
is assumed that that fault is present. These values for PDT
and PIS were empirically determined through the simulations
done, reducing wrongly isolated faults.

C. Simulation Results
Using the mathematical model of a single robot, the

continuous FDI layer is tested through several simulations.
The system is simulated 1000 times with random chosen
operation modes (normal and faulty ones), using a sampling
time of 0.1 [s]. These simulations allow a statistical analysis
of the performance of the layer. Four different criteria are
used: the amount of false alarms, the confusion matrix, the
fault detection time, and the fault isolation time.

False alarms indicate the number of times that faults are
detected when nothing is wrong. The simulations show that
no false alarms appear thanks to the detection criteria used.

The confusion matrix, Cm1 (9), shows the relation between
the faults that appear on the robot and the faults isolated by
the FDI layer. Each element cij of Cm1 represents the
percentage of times the operating mode Mi is isolated as Mj,
showing the isolation effectiveness.

WeA11.4

2952

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000000000
0100000000
0010000000
4.2006.970000

09.1001.98000
0000010000
0000001000
0000000100

1mC

(9)

The results show that only 0.4% of the total simulated

operating modes are wrongly identified. The wrong isolation
only affects faults 3-4 (stuck wheels), which are isolated as
faults 6-7 (encoder faults) respectively, as the effect of both
faults is similar during the first time intervals. This
confusion can be eliminated by rising the threshold used for
isolation, but that would affect the response time.

Table I shows the average detection and isolation times.
Due to the method used, the isolation takes slightly longer
than the detection in some of the cases. It can be observed
that both detection and isolation require only a small amount
of time intervals.

D. Interaction with the Control Structure
The interaction between the FDI architecture and the

control structure can not only be used to inform the control
system that a fault is present. It can also be used to increase
the isolation capabilities, obtaining more information about
the present state of the robot.

When the robot collides with an obstacle, the wheels can
either slip or get stuck depending on the friction coefficient
at that moment. In both cases, the FDI system will give a
false alarm, as no real fault is present. If no further actions
are taken, the robot can be considered disabled even though
it can still work.

To eliminate this problem a control routine is added,
which allows to differentiate a real fault from a collision.
Whenever a slippage or stuck condition is detected, instead
of activating a fault detection flag, the FDI system asks for a
change in the rotation direction of the affected wheel. If the
probability of H0 returns to be high again, it means that the
robot had collided with an undetected object and not that a
fault has occurred. Alternatively, if the probability of the
faulty condition continues to be high, a real fault is present.
This simple algorithm creates a “virtual bumper sensor” that
improves the fault isolation capabilities of the layer.

The biggest limitation this first layer has, is that it must be
possible to model the effects of the faults within a Kalman
filter. If this is not possible, other isolation method must be
used, as there will be no residual covariance matrix available
for the probability calculation.

IV. FDI ON COOPERATIVE ROBOTS
The idea behind this layer, is to take advantage of the

sensor redundancy that exists within a cooperative robot
group, which can be done by implementing simple routines.

A. Redundant Sensor Fault Detection and Isolation
Fault detection on redundant sensors can be achieved if at

least two independent measurements can be made. If the
difference between the readings of two sensors is above a
threshold DTH, a fault is detected although there is no
enough information to isolate the fault. When there are more
than two sensors available, the faulty sensor can be isolated
from within the group by detecting which has the biggest
difference, as indicated in [11].

Because the robots might not always be close together,
the Cooperative FDI layer works only when two or more
robots meet, testing the different redundant sensors
available. If a fault is detected and only two robots are
present, it is assumed that both robots have faulty sensors,
till a new robot is found. To identify between additive and
stuck type faults, the magnitude of both measurements is
stored by each robot. If the difference is similar in two
independent tests, it is assumed to be an additive fault, being
the amount of the fault this difference, and thus achieving
fault diagnosis.

As there is noise in the measurement made by the sensors,
the threshold must be optimized to reduce the occurrence of
false alarms. The problem is that sometimes the threshold
needed is higher that the accepted fault tolerance, and
reducing the threshold will result in a useless system with a
huge amount false alarms. In this case, the use of a multiple
measurements test can help to resolve the problem. It was
observed experimentally that the sensors used in the robots
present an almost additive white noise, with known standard
deviation σi. Considering this, the difference between the
measurements of two sensors, mi and mj, has the following
error probability distribution:

()2~ N 0,i j dm m σ− ; with 2 2 2
i jdσ σ σ= + (10)

If n measurements are done, the standard deviation of the

average difference is reduced to σn, where:

2 21
n dnσ σ= (11)

Depending on the desired threshold DTH, the optimal

number of measurements needed in order to have a false
alarm probability of 1-Pn, is determined by (12), allowing
the user to set the sensitivity of the system:

P

TH
d

n

d

D
Dwithn == 2

2

2

; σ
σ
σ (12)

TABLE I
AVERAGE DETECTION AND ISOLATION TIMES FOR LAYER 1

Fault 1 2 3 4 5 6 7

Detection [s] 1.1 1.3 0.7 0.6 0.7 0.3 0.3

Isolation [s] 1.1 1.3 0.8 0.8 0.7 0.3 0.3

WeA11.4

2953

Where DP is obtained from the standard normal
distribution table such that:

2

1 2
2

0 2

PD x
n

x

P
e dx

π

−

=

=∫ (13)

If the robot can do only a limited number of

measurements, nmax, using (12) and (13), the optimal
threshold DTH must be increased to keep the same false
alarm probability.

maxn
DD Pd

TH
σ

= (14)

Every time two robots in the group meet, the sonar and

magnetic compass are used to determine the distance and
direction of each other. The number of measurements
needed is calculated previously using (12), and the average
measurement is transmitted between the robots in order to
detect the fault. For the sonar, if the difference between both
readings is above DTHs, a fault is detected, whereas for the
magnetic compass, the difference between both readings
must be 180 [°], so if the difference is outside the range
180°±DTHc, the fault is detected.

B. Simulation Results
Using the same methodology applied to the first layer, the

capabilities of the Cooperative Layer are tested. The FDI
layer is simulated 1000 times with randomly chosen faults,
and on each simulation it is assumed that the robots can
detect each other whenever a sensor check is made. For
every sensor, the probability Pn is set to 99.99%. The
standard deviation for the error on the compass is set to
σc=0.15[°] and for the sonar is σs=0.02 [m]. Given that
DTHc=0.5[°] and DTHs=0.05[m], then the needed values for n
are 2 for the compass and 3 for the sonar, to achieve the
desired Pn. For this layer only two criteria are used to test
the performance: the number of false alarms and the
confusion matrix. Due to the fact that Pn is 99.99%, no false
alarms appear during the simulations of this FDI layer. On
the other hand, the confusion matrix obtained is perfectly
diagonal as no confusion can be made in the isolation of the
faults. Once a fault is detected, simulations show that it is
correctly isolated and the amount of the fault (for additive
faults) is determined with 96% of accuracy.

V. EXPERIMENTAL RESULTS
Due to the computational limitations of our robots, both

layers are tested offline using data collected from each
robot, which is then processed in a computer. The first layer
faults are injected in the following way: wheel slippage is
done by using the robot over a slippery surface with plastic
wheels; the stuck wheel fault is emulated using the robot
over thick carpet, with rubber wheels; and finally, the

encoder faults are injected by putting a dark piece of paper
between the sensor and the encoder wheel.

Figs. 3 and 4 show the results corresponding to two
different faults, injected after about 30 [s]. After the fault is
injected, the probability of H0 reduces, whereas the
probability of the corresponding fault increases. It is
important to notice that other hypotheses (H3 in Fig. 3 and
H4 in Fig. 4) also suffer an increase their probability. This
effect does not appear in the simulations, and can be
attributed to the differences that exist between the
parameters used in the model and the ones of the real robot.
The system is tested 10 times for every fault, correctly
detecting and isolating 100% of the cases.

As this layer is tested offline, the interaction with the
control layer must be done artificially. To test the “virtual
bumper sensor”, the robot is set on a rough surface and is
directed towards a wall, making only the right wheel collide
with the wall. After 30 [s] the direction of the wheel is

Fig. 3. Experimental result for Fault 3: Right Wheel Gets Stuck.

Fig. 4. Experimental result for Fault 7: Left Encoder Fault.

Fig. 5. Experimental result for the "Virtual Bumper Sensor".

WeA11.4

2954

inverted. Fig. 5 shows the result of the experiment.
Following the robot’s collision, the probability of fault 3
increases, decreasing when the direction of the wheel is
inverted. This indicates that no real fault is present,
activating the “virtual bumper sensor”.

Before implementing the Cooperative FDI Layer, the
sensors are analyzed to determine the standard deviation of
the noise, observing that σc=0.157[°] and σs=1.31 [cm]. To
test this layer, robots are set in pairs, detecting each other
using the CMOS camera and taking all the measurements
needed. Then, another pair of robots is used so the fault can
be isolated. Every time, the robot randomly chooses one of
the possible faults and injects it to the measurement via
software. The values are stored in an external memory for
later analysis, and the number of measurements nc and ns are
calculated using (12). Considering that the tolerated
thresholds are defined as DTHc=0.5[°] and DTHs=3 [cm], with
Pn=99.99%. then nc=2 and ns=3.

This test is done 30 times in total. The results of the
experiments show that no false alarms are activated, and
100% of the faults are correctly isolated. In the case of the
additive faults, as the robots stored the amount of the fault
injected, it is possible to check the accuracy of the fault
diagnosis. In these cases, the amount of the fault is
diagnosed with less than 5% of error.

VI. CONCLUSIONS AND FUTURE WORK
Through this work, a layered architecture for fault

detection and isolation in cooperative mobile robots is
successfully designed and implemented. The reliability of
the architecture is measured through simulations, showing
excellent results as it is capable of detecting all the simulated
faults and isolating correctly 99.6% of them. The
architecture is then validated by an off-line implementation,
which shows similar results, with no false alarms and 100%
accuracy in the isolation of the faults. It is clear that the
algorithm used in the Cooperative FDI Layer can also be
used to isolate faults on GPS or other types of sensors,
without adding too much complexity to the system, which is
difficult using other current techniques.

As future work, an on-line implementation of the
architecture must be made, which means that a more
powerful processor must be added, together with a wireless
link that allows information exchange between the robots.
Although these first experiments show good results, more
experiments in different environments are needed to analyze
the robustness of the architecture, specially towards the
nonlinearities of the system, uncertainties and perturbations.

About the architecture itself, more layers can be designed
and added to take advantage of the information available at
other levels in the control structure, and the redundancy
existing at the navigation and objective control levels. This
could mean for example, monitoring systems that check if
the objectives are being achieved, which could help to
detect, isolate and even identify new faults (specially those

related to robot coordination and trajectory designs).

REFERENCES
[1] J. Carlson, R. R. Murphy, and A. Nelson, “Follow-up Analysis of

Mobile Robot Failures,” in Proc. of the 2004 IEEE International
Conference on Robotics & Automation, New Orleans, 2004, pp. 4987-
4994.

[2] R. Isermann and P. Balle, “Trends in the Application of Model Based
Fault Detection and Diagnosis of Technical Processes,” in Proc. of the
IFAC 13th Triennial World Congress, San Francisco, California, 1996,
vol. 7, pp. 1-12.

[3] Meng Ji, Zhen Zhang, Biswas, G.; Sarkar, N., “Hybrid Fault Adaptive
Control of a Wheeled Mobile Robot,” IEEE/ASME Trans. on
Mechatronics, vol. 8, n° 2, pp. 226-233, June 2003.

[4] D. Zhuo-hua; C. Zi-xing; Y. Jin-xia, “Fault Diagnosis and Fault
Tolerant Control for Wheeled Mobile Robots under Unknown
Environments: A Survey,” in Proc of the IEEE International
Conference on Robotics and Automation, 2005, pp. 3428 – 3433.

[5] S. I. Roumeliotis, G. S. Sukhatme, and G. A. Bekey, “Fault Detection
and Identification in a Mobile Robot using Multiple-Model
Estimation,” in Proc. of the IEEE International Conference on
Robotics and Automation, Leuven, Belgium, 1998, pp. 2223-2228.

[6] P. Goel, G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme, “Fault
Detection and Identification in a Mobile Robot Using Multiple Model
Estimation and Neural Network,” in Proc. of the IEEE International
Conference on Robotics and Automation, San Francisco, California,
2000, pp. 2302-2309.

[7] R. Washington, “On-board Real-Time State and Fault Identification
for Rovers,” in Proc. of the IEEE International Conference on
Robotics and Automation, San Francisco, California, 2000, pp. 1175-
1181.

[8] W. E. Dixon, I. D. Walker, and D. M. Dawson, “Fault Detection for
Wheeled Mobile Robots with Parametric Uncertainty,” in Proc. of the
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, Como, Italia, 2001, pp. 1245-1250.

[9] D. G. Michaelson and J. Jiang, “Modeling of Redundancy in Multiple
Mobile Robots,” in Proc. of the American Control Conference,
Chicago, 2000, pp. 28-30.

[10] L. Parker, “ALLIANCE: An Architecture for Fault Tolerant
Multirobot Cooperation,” IEEE Trans. on Robotics and Automation,
vol. 14, no 2, pp. 220-240, April 1998.

[11] R. Tinós, M. H. Terra, and M. Bergerman, “Fault Tolerance in
Cooperative Manipulators,” in Proc. of the IEEE International
Conference on Robotics and Automation, Washington DC., 2002, pp.
470-475.

[12] M. L. Visinsky, I. D. Walker, and J. R. Cavallaro, “Layered Dynamic
Fault Detection and Tolerance for Robots,” in Proc. of the IEEE
International Conference on Robotics and Automation, Atlanta, 1993,
vol. 2, pp. 180-187.

[13] M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “A Dynamic Fault
Tolerance Framework for Remote Robots,” IEEE Trans. on Robotics
and Automation, vol. 11, no 4, pp. 477-490, August 1995.

[14] R. Carrasco and A. Cipriano, “Queen-bee Genetic Optimization of an
Heuristic Based Fuzzy Control Scheme for a Mobile Robot,” in Proc.
of the First IEEE Latin-American Conference on Robotics and
Automation, Santiago, Chile, November 2003, pp. 61-66.

[15] P. S. Maybeck and P. D. Hanlon, “Multiple-Model Adaptive
Estimation Using a Residual Correlation Kalman Filter Bank,” IEEE
Trans. on Aerospace and Electronic Systems, vol. 36, no 2, pp. 393-
406, April 2000.

WeA11.4

2955

