
Resource Cost Aware Scheduling Problems

Rodrigo A. Carrasco

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2013

©2013

Rodrigo A. Carrasco

All Rights Reserved

ABSTRACT

Resource Cost Aware Scheduling Problems

Rodrigo A. Carrasco

Managing the consumption of non-renewable and/or limited resources has become an impor-

tant issue in many different settings. In this dissertation we explore the topic of resource

cost aware scheduling. Unlike the purely scheduling problems, in the resource cost aware

setting we are not only interested in a scheduling performance metric, but also the cost of

the resources consumed to achieve a certain performance level.

There are several ways in which the cost of non-renewal resources can be added into a

scheduling problem. Throughout this dissertation we will focus in the case where the resource

consumption cost is added, as part of the objective, to a scheduling performance metric such

as weighted completion time and weighted tardiness among others.

In our work we make several contributions to the problem of scheduling with non-renewable

resources. For the specific setting in which only energy consumption is the important resource,

our contributions are the following.

� We introduce a model that extends the previous energy cost models by allowing more

general cost functions that can be job-dependent.

� We further generalize the problem by allowing arbitrary precedence constraints and

release dates.

� We give approximation algorithms for minimizing an objective that is a combination

of a scheduling metric, namely total weighted completion time and total weighted

tardiness, and the total energy consumption cost.

� Our approximation algorithm is based on an interval-and-speed-indexed IP formulation.

We solve the linear relaxation of this IP and we use this solution to compute a schedule.

� We introduce the concept of α-speeds, which extend the α-points technique to problems

with multiple speeds.

� We show that these algorithms have small constant approximation ratios.

� Through experimental analysis we show that the empirical approximation ratios are

much better than the theoretical ones and that in fact the solutions are close to optimal.

� We also show empirically that the algorithm can be used in additional settings not

covered by the theoretical results, such as using flow time or an online setting, with

good approximation and competitiveness ratios.

Because our model considers job-dependent energy costs, we can further generalize our

results to the setting where multiple resources are available, and the consumption level of all

those resources will determine the speed at which jobs are processed. We call this setting

resource cost aware scheduling. We make several contributions to the resource cost aware

scheduling problem.

� We introduce a model that extends the previous cost models (linear, convex, and other

energy models) by allowing a more general relation between job processing time (or

equivalent processing speed) and resource consumption.

� We further generalize the problem by allowing arbitrary precedence constraints and

release dates.

� We give approximation algorithms for minimizing an objective that is a combination of

a scheduling metric (weighted completion time) and resource consumption cost.

We consider a more general model of resource cost than has previously been used. The

resource dependent job processing time literature either focuses on job’s processing times that

depend linearly on resource consumption or a convex relation of the form (ρi/ui)
k, generally

considering only a single resource. Our setting captures both of these models by considering

an arbitrary non-negative speed function S(Ψ(i)), where Ψ(i) ∈ Ψ = {Ψ(1), . . . ,Ψ(q)} denotes

one of the q allowable operating points of the resources. We also generalize the resource

cost, which is generally linear in the literature, by considering an arbitrary non-negative

job-dependent resource cost function Ri(Ψ
(i)).

We state here the most general of our results.

Theorem 0.1. Given n jobs with precedence constraints and release dates and a general

non-negative resource cost function, there is an O(1)-approximation algorithm for the problem

of non-preemptively minimizing a weighted sum of the completion time and resource cost.

The constants in the O(1) are modest. Given some ε > 0, the algorithm has a (4 + ε)-

approximation ratio when only precedence constraints exist, and (3 + 2
√

2 + ε)-approximation

ratio when release dates are added.

Because some of our algorithms use resource augmentation to deal with nonlinear schedul-

ing performance metrics (like weighted tardiness), we can further extend the use of our

algorithms to the setting where no resource cost is considered but a general convex non-

decreasing scheduling performance metric is used. We make several contributions to the

problem of scheduling jobs with non-decreasing convex cost functions:

� We introduce a model that extends the previous models by allowing a more general

non-linear job-dependent function of the completion time as the scheduling metric.

� We propose a new approximation algorithm for minimizing the total cost, with arbitrary

precedence constraints.

� Our algorithm builds on both the α-point and resource augmentation techniques.

We show that our algorithm has a small constant approximation ratio and a small

speed-scaling ratio for several important scheduling metrics, namely the total weighted

tardiness, the total weighted tardiness squared, and the total completion time squared.

The results of our numerical experiments show that the practical performance of our

algorithm is significantly superior to the theoretical bounds.

� We compare the performance of our algorithm with other available methods for the

total weighted tardiness problem by using the test instances from the OR Library

[Beasley, 1990]. We show that our algorithm is capable of computing approximate

optimal solutions for all the available test problems, even those with n = 100 jobs.

Thus, we are able to establish lower bounds on the optimal solutions for instances where

the optimal schedule is currently not known. Our algorithm takes less than a second

to solve even the larger instances (with n = 100 jobs), which is at least one order of

magnitude faster than current methods. Furthermore, we show that on average only a

2% speed-up is required to achieve the best known result; and, in fact, in several cases

no speed-up factor is required.

Our main result can be summarized in the following theorem

Theorem 0.2. Given n jobs with arbitrary precedence constraints and convex non-decreasing

cost functions fi (Ci) for each job i, there is a O(1)-speed 1-approximation algorithm for the

problem of minimizing the total non-linear cost
∑
fi (Ci).

The speed scaling constant is relatively small. Given ε > 0 our algorithm is a (4 + ε)-speed

1-approximation algorithm.

Finally, we also consider the energy aware scheduling problem in which the size of a job is

only known after the machine finishes processing it, but only the size probability distribution

is known in advance. This is a common setting in CPUs. We also make several contributions

to this particular setting.

� We propose a dynamic programming formulation which is optimal in expectation.

� We compute the optimal speeds required, given any state in the dynamic programming

recursion.

� We present a policy for the case where the completion time is the scheduling performance

metric, and show that this policy is optimal when only two possible sizes exist.

� We leave as an open conjecture that our policy is also optimal for the case with arbitrary

job sizes, since we are only able to show through simulations that this is true in all the

tested instances.

This page is intentionally printed only with this statement.

Table of Contents

1 Introduction 1

2 Preliminaries 7

2.1 Resource Dependent Job Processing Time 10

2.2 Energy Aware Scheduling . 11

2.2.1 Power Down Setting . 12

2.2.2 Speed Scaling Setting . 14

3 Energy Aware Scheduling 23

3.1 Total Weighted Completion Time . 24

3.1.1 Problem Formulation . 25

3.1.2 Speed Bounds . 26

3.1.3 Speed Quantization . 28

3.1.4 Cases Solvable in Polynomial Time 30

3.1.5 Time-and-Speed-Indexed Formulation 32

3.1.6 Interval-and-Speed-Indexed Formulation 41

3.2 Total Weighted Tardiness . 49

3.2.1 Problem Formulation . 49

3.2.2 Interval-and-Speed-Indexed Formulation 50

3.3 General Energy Cost Functions . 53

3.3.1 Weighted Completion Time Problem with General Energy Cost . . . 54

i

3.3.2 Weighted Tardiness Problem with General Energy Cost 55

3.3.3 Continuous Speeds . 56

4 Heuristics and Experimental Results for EAS 57

4.1 Heuristic Improvement for Weighted Completion Time 57

4.2 Heuristic Improvement for Weighted Tardiness 59

4.2.1 Optimality Conditions for Speed-Scaling 60

4.2.2 Special Case: Common Deadline . 63

4.3 Experimental Results . 68

4.3.1 Experimental Performance for Weighted Completion Time 68

4.3.2 Experimental Performance for Weighted Tardiness 81

4.3.3 Experimental Performance for Weighted Flow Time 83

4.3.4 Experimental Performance for Multiple Machines 85

5 Resource Cost Aware Scheduling 87

5.1 Problem formulation. 90

5.1.1 Interval-indexed formulation. 91

5.2 Approximation algorithm for weighted completion time. 93

5.2.1 Single machine problem with precedence constraints. 95

5.2.2 Single machine problem with precedence and release date constraints. 97

6 Scheduling with Uncertain Job Sizes 99

6.1 Problem Formulation . 100

6.2 Dynamic Programming Model . 100

6.3 Weighted Completion Time and Polynomial Power Cost 103

6.3.1 Completion Time and Job Independent Power Cost 103

7 Scheduling with Convex Costs 115

7.1 Introduction . 116

7.1.1 Our Results . 119

ii

7.1.2 Our Methodology . 120

7.2 Problem Formulation . 121

7.2.1 Problem Setting . 121

7.2.2 Interval-Indexed Formulation . 121

7.3 Approximation Algorithm . 122

7.4 Experimental Results . 126

8 Conclusions 133

8.1 Future Research Directions . 134

Bibliography 135

iii

This page is intentionally printed only with this statement.

iv

List of Figures

4.1 Ratios for Total Weighted Completion Time, with n = 7. 71

4.2 SAIAS/LPi Ratios with n = 500 and n = 1, 000. 73

4.3 SAIAS-H Improvement Ratio, with n = 100. 73

4.4 SAIAS-Online Competitive Ratio, with n = 100. 74

4.5 Competitive Ratios for the SAIAS-H Online Version 75

4.6 SAIAS and SAIAS-H Comparison in Bimodal Setting 77

4.7 Sensitivity to α . 78

4.8 Sensitivity to δ and ε . 78

4.9 SAIAS/LPi Ratio for instances from n = 4 to n = 1, 000 79

4.10 SAIAS/LPi Ratio for instances from n = 4 to n = 50 80

4.11 SAIAS with a different energy cost function. 80

4.12 Approximation Ratios for the SAIAS-T algorithm 82

4.13 Approximation Ratios for the SAIAS-T NS algorithm 82

4.14 Approximation Ratios for Different Values of γ 83

4.15 SAIAS-F Offline and Online Ratios, with n = 100. 84

4.16 Approximation Ratios for Parallel Machines 86

6.1 Example Instances for q = 2 . 110

6.2 Rule Decisions for q = 3 and f = [0.3 0.5 0.2]. 113

7.1 SAIRA Experimental Approximation Ratio for 1|prec|
∑
wiTi. 128

7.2 Minimum Speed-Up Required for 1|prec|
∑
wiTi, for n = 10. 129

v

7.3 SAIRA Experimental Approximation Ratio for 1|prec|
∑
wiC

2
i 130

vi

List of Tables

2.1 Summary of known results - Offline Setting 20

2.2 Summary of known results - Online Setting 20

4.1 Experimental Results Summary . 69

4.2 Experimental Results Summary for Total Weighted Completion Time 70

4.3 Experimental Results in Bimodal Setting . 76

4.4 Experimental Results Summary for Total Weighted Flow Time 85

7.1 Experimental Approximation Ratios Summary 127

7.2 Experimental Approximation Ratios Summary 131

vii

This page is intentionally printed only with this statement.

viii

List of Algorithms

2.1 Lower Envelope . 13

2.2 Probability-Based Lower Envelope 14

2.3 Yao-Demers-Shenker (YDS) . 16

3.1 Schedule by α-points and α-speeds (SAPAS) for EAS 35

3.2 Schedule by α-intervals and α-speeds (SAIAS) for EAS 44

3.3 Schedule by α-intervals and α-speeds for Tardiness (SAIAS-T) . 51

4.1 Primal Speed . 64

4.2 Dual Speed . 67

4.3 SAIAS-H . 69

4.4 SAIAS-P . 85

5.1 Schedule by α-intervals and α-speeds for Resource Costs (SAIAS-

RC) . 94

6.1 Sparsity Rule . 111

7.1 Schedule by α-intervals and Resource Augmentation (SAIRA) . 123

ix

This page is intentionally printed only with this statement.

x

Acknowledgments

It would be impossible to be brief and at the same time correctly acknowledge everyone

who, in one way or another, supported me during my PhD, hence, I won’t be. The past few

years have been an amazing experience of academic, professional, and personal growth, which

would not have been as great if it wasn’t for so many people that were there for me along the

way.

I’ll start by thanking my two advisors, Garud Iyengar and Cliff Stein. The results in this

dissertation were possible thanks to their support, knowledge, and guidance. The discussions

in our weekly meetings were oftentimes challenging but extremely rich and I was able to

learn a lot from our interactions. Both have been great role models and have taught me very

much, not just research-wise, but professionally as well. I consider myself lucky for having

them both as advisors and friends. I also want to thank them the opportunity they gave me

to teach the Asset Allocation course. It was a great experience that made me realize how

much I enjoy teaching.

Into the specifics of this dissertation, I am very grateful to my dissertation committee:

Daniel Bienstock and Vineet Goyal, both from Columbia University, and Viswanath Nagarajan

from IBM at the T.J. Watson Research Center. Their comments and the discussions I had

with them prior to the defense helped me improve this document. I appreciate their time

and commitment.

I would also like to thank all the professors at the Industrial Engineering and Operations

Research Department. I was very lucky to have interactions on a regular basis with most

of them and they were of great support along the way. In particular I would like to thank

Daniel Bienstock, Maria Chudnovsky, Martin Haugh, Donald Goldfarb, Ciamac Moallemi,

xi

Katya Scheinberg, Jay Sethuraman, Ward Whitt, David Yao, and again Garud Iyengar and

Cliff Stein. Their courses were really good and I thank them for their time and dedication.

Although I did not have them as professors, I would also like to thank José Blanchet, Emanuel

Derman, Guillermo Gallego, Soulaymane Kachani, Peter Norden, Lucius Riccio, and Karl

Sigman. Our random conversations about anything and everything made this place even

more enjoyable.

My dissertation has benefited greatly with the discussions with several other researchers I

would like to thank: Ioannis Akrotirianakis and Amit Chakraborty from Siemens Corporate

Research; Stephen Boyd, from Stanford University; Tolga Cezik, from Amazon Inc.; Nicole

Megow, from TU Berlin; Kirk Pruhs, from University of Pittsburgh; and David Shmoys, from

Cornell University. I would also like to thank all the anonymous reviewers of our papers.

They gave us valuable feedback to improve our work.

IEOR’s staff is unparalleled. They keep the department running and work very hard to

make sure we have a family-like atmosphere. Their help and wonderful conversations of things

that, thankfully, had nothing to do with work will be always cherished. In particular I would

like to thank Jenny Mak, who was always supportive of all the crazy ideas and activities I

came up with; Jaya Mohanty and Shi Yee Lee, that made sure we were paid or reimbursed on

time (and that there were cookies in the lounge); and Adina Berŕıos, Maŕıa Casuscelli, Ufei

Chan, Risa Cho, Donella Crosgnach, Jessica Gray, Samuel Lee, Mindy Levinson, Cynthia

Malave-Baez, Michael Mostow, Carmen Ng, and Darbi Roberts, who were always organizing

things for us and made sure we were OK.

When you spend a significant amount of your time working and studying, your classmates

and acquaintances soon become part of your extended family. In this sense I was very lucky to

meet so many wonderful strangers that today I call friends. First, my officemates of the great

313A, with whom I spent so many hours and made this experience more enjoyable. Special

thanks go to them: Andrew Ahn, Tulia Herrera, Jinbeom Kim, Arseniy Kukanov, Tony Qin,

Yixi Shi, Xingbo Xu, Cecilia Zenteno, Haowen Zhong, and those that left or arrived to 313A

during my time: Serhat Aybat, Nur Ayvaz, Erez Cohen, Antoine Desir, Gonzalo Muñoz,

xii

Fahad Saleh, Rishi Talreja, and Chun Ye. Also to all the members of Garud’s research group:

Carlos Abad, Serhat Aybat, Yupeng Chen, Chen Chen, Daniel Guetta, Suraj Keshri, and

Rhea Qiu. Their comments during our biweekly meetings were of great help to improve

my work. I would also like to thank all the other friends I met along the way as well as

my NYC family, whose support was invaluable: Eyjólfur Ásgeirsson, Edson Bastos, Berk

Birand, Xinyun Chen, Lizzie Cruz, Romain Deguest, Jing Dong, Juan Elias, Itai Feigenbaum,

Magdalena Gil, Olivia Gillham, Vladimir Glasinovic, Denise Hauva, Rouba Ibrahim, Andrew

Kang, Song-Hee Kim, Olga Kolesnikova, Thiam Hui Lee, James Lenzi, Juan Li, Yunan Liu,

Yina Lu, Shiqian Ma, Peter Maceli, Shyno Mathew, Alex Michalka, Amal Moussa, Gordon

Pang, Antonella Pavese, Radka Pickova, Matthieu Plumettaz, Xianhua Peng, David Phillips,

Verónica Rodŕıguez, Johannes Ruf, Ali Sadighian, Marco Santoli, Gustavo Schmidt, Steen

Schmidt, Marilin Sierra, Irene Song, Jingjing Song, Shyam Sundar, Xiaocheng Tang, Fanny

Thomas, Johanna Urzedowski, Josh Van Gundy, Abhinav Verma, Aya Wallwater, Burcu

Yildirim, John Zheng, and Yori Zwols. All of them, in one way or another, made the time fly,

the good experiences much more enjoyable, and the hard times more bearable. I sincerely

hope I’m not missing any names.

My family and friends back home deserve special prizing. Not only they have been stuck

with me for many years, which in itself deserves a mention, but not even the distance has kept

them from being interested in what I was doing. Their support was invaluable. My deepest

gratitude goes to my parents, Rodrigo and Loreto, who have always showed so much interest

in my work and in our wellbeing. They were the ones that fostered my interest in science

and mathematics, and their support and encouragement through all my life has lead me to

where I am right now. There are not enough words of gratitude towards them for all they

have done for me. I would also like to thank my parents-in-law, Max and Cecilia. They have

gone above and beyond to support and help me through all these years and their interest

and encouragement has been a blessing. Also their children and their spouses, Alejandro

and Maŕıa José; Verónica and Rodrigo; Marcela and Javier; and Ricardo, have been really

important. They are the brothers and sisters I never had and I feel incredibly lucky for having

xiii

them in my life. I would also like to thank my long-time friends Rolando Dünner, Tomás

Ibáñez, Peter Leatherbee, Rolando Ruiz, and Sergio Zachaŕıas for their encouragement and

all the great times we had whenever we had the chance to get together.

Such an important section has to have a fitting ending, and I cannot think of anything

more perfect than thanking the most important person in my life: my wonderful wife Daniela.

Daniela had the really hard job leaving everything behind and accompany me in this journey,

with much more uncertainty than I had. Yet, she found the strength to get a Masters degree

and a Doctorate in Occupational Therapy, work a full-time job, help me more than I could

fathom, and give birth and rise a wonderful little (well, really not so little) girl. I am left

without words to thank her for all her support during all the hard times in this process, all

the enjoyment she added to the good times, specially during our camping trips to California

and Utah and all the adventures we had, and the help she gave me every single day. I don’t

know anyone else that can lit a room like she does and I feel myself blessed of meeting her

and having her as my partner and best friend.

To finish, in the words of my youngest coauthor, my daughter Alicia: 80.v hb bv 0b 0 kbv

0oiljnuji k.00 m nngvhb X nb b 3cxzS .

This research was partially supported by NSF grants CCF-0728733 and CCF-0915681;

NSF grant DMS-1016571, ONR grant N000140310514, and DOE grants DEFG02-08ER25856

and DE-AR0000235; and Fulbright/Conicyt Chile.

xiv

This work is dedicated to Daniela and Alicia.

xv

This page is intentionally printed only with this statement.

xvi

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

M
anaging non-renewable resources has become an important issue in many

different settings. In this dissertation we explore the topic of resource cost aware

scheduling, where the consumption cost of non-renewable resources is combined

with a scheduling problem. We present several different models and settings, and we develop

and discuss both approximation and optimization algorithms for them. In Chapter 2, we

give an overview of the state-of-the-art in this topic, including a literature review on resource

dependent job processing times. This topic is directly related to the resource and energy

aware scheduling problems, but was developed independently.

In Chapter 3, we formulate the basic energy aware scheduling problem that we will further

develop and extend throughout this work. In this setting only energy consumption determines

the speed at which jobs are processed and the objective is to minimize the sum of the total

energy consumption cost and some scheduling performance metric. In Chapter 3 we make

several contributions to the problem of scheduling with non-renewable resources:

� We introduce a model that extends the previous energy cost models by allowing more

general cost functions that can be job-dependent.

� We further generalize the problem by allowing arbitrary precedence constraints and

release dates.

2 CHAPTER 1. INTRODUCTION

� We give approximation algorithms for minimizing an objective that is a combination

of a scheduling metric, namely total weighted completion time and total weighted

tardiness, and the total energy consumption cost.

� Our approximation algorithm is based on an interval-and-speed-indexed IP formulation.

We solve the linear relaxation of this IP and we use this solution to compute a schedule.

� We introduce the concept of α-speeds, which extend the α-points technique to problems

with multiple speeds.

� We show that these algorithms have small constant approximation ratios.

In Chapter 4, we analyze the performance of the proposed algorithms through experi-

mental analysis. We show that, although the theoretical worst-case scenario bounds of our

approximation algorithms are small, they perform much better and in fact the algorithm’s

output is a schedule whose value is very close to optimal. Additionally, in Chapter 4 we

present several heuristic improvements and extensions of our algorithms. These extensions

effectively reduce the empirical approximation ratios. In Chapter 4 we also show that we

can apply our algorithms in different settings like online, multiple machines, and using total

weighted flow time as scheduling metric, with good results.

In Chapter 5 we further extend our algorithms to the resource cost aware scheduling

problem, where the speed at which jobs run is determined by an arbitrary number of resources.

The problem of managing multiple resources to control the performance of the resulting

schedule arises in many industrial applications. We make several contributions to this general

setting:

� We introduce a model that extends the previous cost models (linear, convex, and other

energy models) by allowing a more general relation between job processing time (or

equivalently processing speed) and resource consumption.

� We give approximation algorithms for minimizing an objective that is a combination of

a scheduling metric (weighted completion time) and resource consumption cost.

CHAPTER 1. INTRODUCTION 3

� We show that these algorithms have the same small constant approximation ratios

shown in the algorithms of Chapter 3.

We consider a more general model of resource cost than has previously been used. As

noted before, the resource dependent job processing time literature either focuses on job’s

processing times that depend linearly on resource consumption or a convex relation of

the form (ρi/ui)
k, generally considering only a single resource. Our setting captures both

of these models by considering an arbitrary non-negative speed function S(Ψ(i)), where

Ψ(i) ∈ Ψ = {Ψ(1), . . . ,Ψ(q)} denotes one of the q allowable operating points of the resources.

This is a very common setting in many industrial applications where resources only have

a discrete number of possibilities. We also generalize the resource cost, which is generally

linear in the literature, by considering an arbitrary non-negative job-dependent resource cost

function Ri(Ψ
(i)).

We state here the most general result of this Chapter

Theorem 1.1. Given n jobs with precedence constraints and release dates and a general

non-negative resource cost function, there is an O(1)-approximation algorithm for the problem

of non-preemptively minimizing a weighted sum of the completion time and resource cost.

The constants in the O(1) are modest. Given some ε > 0, the algorithm has a (4 + ε)-

approximation ratio when only precedence constraints exist, and (3 + 2
√

2 + ε)-approximation

ratio when release dates are added.

We extend the interval-indexed IP proposed in Chapter 3 to handle resource costs and

speed scaling, and then design a new α-point based rounding algorithm to obtain the resulting

schedules. We assume first that we have a discrete set of q allowable resource operating

points Ψ = {Ψ(1), . . . ,Ψ(q)}, and that the speed at which the job is precessed is a general

non-negative function of the resource operating point. In our interval-indexed IP, a variable

xijt is 1 if job i runs at resource operating point Ψ(j) and completes in interval t. We can

then extend the standard interval-indexed integer programming formulation to take the extra

dimensions of resource consumption and speed into account. Once we have solved its linear

4 CHAPTER 1. INTRODUCTION

program relaxation (which we denote LPi), we need to determine both an α-point and α-speed.

The key insight is that by “summarizing” each dimension appropriately, we are able to make

the correct choice for the other dimension. At a high level, we first choose the α-point by

“collapsing” all pieces of a job that completes in the LPi in interval t (these pieces have

different speeds), being especially careful with the last interval, where we may have to choose

only some of the speeds. We then use only the pieces of the job that complete before the

α-point to choose the speed, where the speed is chosen by collapsing the time dimension and

then interpreting the result as a probability mass function (pmf), where the probability that

the job is run at operating point Ψ(j) depends on the total amount of processing done at

that operating point. We then apply the concept of α-speeds defined in Chapter 3, which is

related to the expected value under this pmf, and run the job at this speed. We combine this

rounding method with extensions of the more traditional methods for dealing with precedence

constraints and release dates to obtain our algorithm.

In Chapter 6 we further explore the energy aware scheduling problem by considering the

setting where job sizes are only known after the job is finished. This setting is very common

when processing jobs in CPUs, where the machine does not know in advance the amount

of time or machine cycles required to finish a task. In this setting we will only assume that

job sizes have a known discrete probability distribution and we propose an algorithm that

determines a scheduling rule that is optimal in expectation.

In Chapter 7 we present an approximation algorithm for the setting where only scheduling

performance is of interest, but we allow for a very general cost function on the completion

time of each job. This algorithm is a direct result of the techniques discussed in Chapter 3, but

because of its generality and importance as a scheduling application we further analyze this

setting, presenting both theoretical and experimental results. We make several contributions

to the problem of scheduling jobs with non-decreasing convex cost functions:

� We introduce an IP based model that extends previous models by allowing a more

general non-linear job-dependent function of the completion time as the scheduling

metric.

CHAPTER 1. INTRODUCTION 5

� We propose a new approximation algorithm for minimizing the total cost, with arbitrary

precedence constraints.

� Our algorithm builds on both the α-point and resource augmentation techniques.

We show that our algorithm has a small constant approximation ratio and a small

speed-scaling ratio for several important scheduling metrics, namely the total weighted

tardiness, the total weighted tardiness squared, and the total completion time squared.

The results of our numerical experiments show that the practical performance of our

algorithm is significantly superior to the theoretical bounds.

� We compare the performance of our algorithm with other available methods for the

total weighted tardiness problem by using the test instances from the OR Library

[Beasley, 1990]. We show that our algorithm is capable of computing approximate

optimal solutions for all the available test problems, even those with n = 100 jobs.

Thus, we are able to establish lower bounds on the optimal solutions for instances

where the optimal schedule is currently not known. Our algorithm takes less than a

second to solve even the larger instances. This is at least one order of magnitude faster

than current methods. Furthermore, we show that on average only a 2% speed-up is

required to achieve the best known result; and, in fact, in several a speed-up factor of 0

was enough to achieve the best known value.

Our main result can be summarized in the following theorem

Theorem 1.2. Given n jobs with arbitrary precedence constraints and convex non-decreasing

cost functions fi (Ci) for each job i, there is a O(1)-speed 1-approximation algorithm for the

problem of minimizing the total non-linear cost
∑
fi (Ci).

Finally, in Chapter 8 we discuss some of the open questions and future research lines that

our work leaves.

6 CHAPTER 1. INTRODUCTION

This page is intentionally printed only with this statement.

CHAPTER 2. PRELIMINARIES 7

Chapter 2

Preliminaries

N
on-renewable resource consumption management is fast emerging as a problem of

critical importance. There is always a trade-off between resource consumption and

performance: more resource consumption typically results in better performance.

This trade-off also arises in many scheduling problems, where resource management decisions

must be combined with the scheduling decisions to optimize a global objective.

Recently, scheduling problems in which one has to trade scheduling performance, using

metrics such as weighted completion time, weighted tardiness, or flow time, with CPU

processing speed, and therefore the energy consumed, have been extensively studied. However,

the problem of balancing resource consumption with scheduling performance was proposed

much earlier. Vickson [Vickson, 1980] observed that in many practical settings, the processing

time of a job depends on the amount of resources (e.g. catalizer, workforce size, energy, etc.)

utilized, and the relationship between resource utilization and processing time depends on

each job’s characteristics. Other examples of scheduling problems with resource dependent

job processing time include repair and maintenance processes [Duffuaa et al., 1999]; ingot

preheating processes in steel mills, where the batches need to be scheduled and the amount of

gas used and the concentration level determine the time required to preheat the ingots [Janiak,

1991; Williams, 1985]; many workforce intensive operations; VLSI circuit design [Monma

et al., 1990]; and more recently processing tasks in a CPU, where the job processing times

8 CHAPTER 2. PRELIMINARIES

depends on CPU speed, the available RAM, bus speed, as well as other system resources.

For convenience, throughout this work we will use an extended version of the three part

notation of Graham et al. [Graham et al., 1979] to refer to the different scheduling problems

that we will address. The notation is of the form α|β|γ, where α indicates the machine

setting: 1 for one machine, P for multiple parallel machines, etc.; β indicates the problem

constraints: rj for release dates, prec for precedence constraints, or pmnt for preemption;

and γ indicates the performance metric. For example, 1|ri, prec|
∑
Ei(si) + wiCi, will refer

to the problem setting with 1 machine, with ri release dates, precedence constraints, and

the weighted completion time as the scheduling performance metric, together with the total

energy cost. Similarly, the 1|ri, prec|
∑
Ei(si) + wiTi will refer to the same setting, but with

tardiness as the scheduling performance metric. In both of them the term Ei(si) indicates

that the energy cost is also added as a performance metric.

Before delving into the literature review there are several concepts related to algorithm

design that should be clarified. Because many of the problems we will address are NP-hard,

there are no efficient algorithms to solve them unless P = NP. We are still interested in saying

something about these NP-Hard problems, since there are many related real-life applications,

so the fact that no efficient algorithms exist for these NP-Hard problems will leave us with

three main possibilities, all of which will be addressed in this dissertation. First, we can

develop non-polynomial algorithms and only solve very small instances. In Chapter 3 we

will present an IP formulation with which we can compute the exact solution for the Energy

Aware Scheduling problem. We will also show, in Chapter 4, that we are limited to solve

cases with up to 10 jobs with this exact formulation. Bigger instances will require too much

time and resources to be solved.

A second option to deal with NP-Hard problems is to find special cases that can be solved

efficiently. In Chapter 3 we will show that for certain special cases we can solve the Energy

Aware Scheduling problem in polynomial time, by using an extension of Smith’s Rule.

The third option to deal with NP-Hard problems, is to compute approximate optimal

solutions. Most of our work will be in this third option: we will present several approxi-

CHAPTER 2. PRELIMINARIES 9

mation algorithms for different resource cost scheduling problems. The main idea behind

approximation algorithms is that, by using a polynomial time algorithm, we can compute

a solution that is at most ρ times the optimal solution for any instance of the problem, i.e.

ALG ≤ ρ · OPT . Algorithms with this property are called a ρ-approximation algorithm,

and ρ is called the approximation ratio, which could depend on the instance parameters. In

the online setting, because we don’t have all the future information available, we will use

a slightly different definition: competitiveness. A ρ-competitive algorithm, is an algorithm

that can compute, in polynomial time, a solution that is at most ρ times the optimal offline

solution, i.e. the solution that has all the future information for each instance. A very good

reference on algorithms in general is [Cormen et al., 2001], which includes a discussion on

approximation algorithms in chapter 35. For approximation algorithms, [Williamson and

Shmoys, 2011] isan excellent resource for techniques and analysis.

One last concept we will use regarding algorithms is resource augmentation. The main

drawback in the analysis of approximation algorithms is that the approximation ratio has to

consider the worst case scenario, which might never or rarely occur in real-life applications. As

a way circumvent this limitation Kalyanasundaram and Pruhs [Kalyanasundaram and Pruhs,

2000] proposed analyzing an approximation algorithm by considering additional resources.

Although the first examples of resource augmentation analysis are much older [Sleator and

Tarjan, 1985], this technique has become popular only recently. The main idea in the analysis

is that we compare the optimal solution to the output of our algorithm considering that we

have additional resources (like faster machines, additional machines, etc.). We will call an

algorithms an s-speed ρ-approximation algorithm, if the output of the algorithm is at most ρ

times the optimal solution, but considering that our algorithm runs on a machine that is s

times faster.

10 CHAPTER 2. PRELIMINARIES

2.1 Resource Dependent Job Processing Time

The literature on Resource Dependent Job Processing Time (RDJ) problems has mainly focused

on two models. In the first model the processing time pi of job i as function of resource

consumption level ui is piece-wise linear function of the form pi(ui) = min{p
i
, bi−aiui}, where

ai, bi are job parameters and p
i

is the smallest possible processing time [Cheng et al., 1998;

Cheng et al., 2001; Daniels, 1990; Daniels and Sarin, 1989; Janiak, 1987; Janiak, 1991;

Janiak and Kovalyov, 1996; Van Wassenhove and Baker, 1982; Vickson, 1980; Xu et al., 2011].

In more recent work, the processing time as a function of the resource consumption level is

assumed to be a decreasing, convex function of the form pi(ui) = (ρi/ui)
k for some ρi > 0

and k > 0 [Kaspi and Shabtay, 2006; Shabtay and Kaspi, 2004; Shabtay and Steiner, 2011;

Wang and Wang, 2011]. The primary justification for this model is that it captures the

decreasing marginal improvements that is observed in practical applications [Shabtay and

Kaspi, 2004].

The trade-off between resource consumption and performance is modelled in several

different ways. In [Cheng et al., 1998; Cheng et al., 2001; Daniels, 1990; Daniels and

Sarin, 1989; Kaspi and Shabtay, 2006; Shabtay and Steiner, 2011; Van Wassenhove and

Baker, 1982] the authors consider a bicriteria approach where the objective is to reduce

resource consumption, and simultaneously optimize the scheduling metric. On the other hand,

[Janiak, 1987; Janiak and Kovalyov, 1996; Shabtay and Kaspi, 2004; Wang and Wang, 2011;

Xu et al., 2011] optimize the scheduling performance for given bound or budget on the

available resources or vice versa, i.e. they optimize the resource consumption given a bound

in the scheduling performance. A survey of the many of the different approaches to these

problems can be found in [Shabtay and Steiner, 2007]. The work we present in Chapter 5

can be considered as a generalization of the models used so far in the RDJ literature, using

the weighted completion time as the schedule performance metric.

CHAPTER 2. PRELIMINARIES 11

2.2 Energy Aware Scheduling

Energy Aware Scheduling (EAS) is a relatively new area within the scheduling literature and

a very important example of resource aware scheduling problems that has recently received

much attention [Albers, 2010; Andrew et al., 2010; Atkins et al., 2011; Bansal et al., 2008;

Bansal et al., 2010; Bansal and Pruhs, 2005; Chen et al., 2005; Irani et al., 2007; Jawor, 2005;

Kwon and Kim, 2005; Yun and Kim, 2003]. Interestingly, this setting has been studied

completely separate from the RDJ setting, although EAS can be interpreted as a subproblem

of RDJ, with a single resource (energy) and a specific energy cost function. In this setting

the objective is to take into consideration the energy cost associated to the speed at which

the jobs are processed.

This setting has become very relevant given the energy consumption of the now massive

data centres that companies are using. To give a sense of how much energy we are talking

about, consider Google, which states that the servers in its datacenter, which they claim are

much more efficient than the average industry server, consume 1 kJ per query on average

[Google, 2009]. In May 2013, just in the US, users made in average more than 440 million

queries per day using Google’s search engine [Comscore, 2013]. This amounts to consuming

44.2 million kWh per year, equivalent to more than 6, 000 average NY households [DOE, 2011].

Additionally, CPUs account for 50-60% of a typical server’s energy consumption [Albers,

2009]; consequently, CPU energy management is especially important. Energy management

is also important for smaller devices such as laptops and other mobile devices, since their

resources are limited. It is clear that when scheduling computing tasks, it is important to

take both the relevant scheduling quality of service (QoS) metrics such as makespan, weighted

completion time or weighted flow time, and the energy consumption into account.

There are many ways in which energy consumption can be introduced into a scheduling

problem, depending on the characteristics of the machine and the jobs that are being processed.

There are two main areas of research in EAS problems which I’ll further describe next: power

down and speed-scaling settings.

12 CHAPTER 2. PRELIMINARIES

2.2.1 Power Down Setting

The power down setting, as its name suggests, is the setting in which we are interested in

determining when to power down a machine within an idle period. Every time the machine

is powered down there is a fixed cost to power it back on, which accounts for the additional

energy required to power up the machine later. We do not address this problem in any of our

models but we list some of the most important references in this subsection for completeness.

The general setting is as follows. We are given a machine that, at any point in time, can

be in any of m different states; one active state and m − 1 idle ones. Associated to each

state si is an energy consumption rate ri. Without loss of generality we can assume that

r1 > r2 > . . . > rm, and thus the active state will be state S1. Additionally, there is a cost ai

for activating the machine when in idle state i, that is going from state si to the active state

s1. The problem is to decide, within every idle period, in which state should the machine be,

given that it must be in the active state once a new job arrives (i.e. the idle period ends).

Note that it does not make sense to delay jobs to allow a larger idle period, and thus go

to lower idle states, since we will end up consuming more energy, plus we will worsen the

scheduling performance. Hence, we are only interested in determining the state in which the

machine will be within an idle period.

This problem must be considered in an on-line setting, where the length of the idle period

is not known. If the idle period’s length was known, then the state in which to leave the

machine is easily computed.

Although this problem can be traced back to Hwang et al. [Hwang and Wu, 1997], and

Srivastava et al. [Srivastava et al., 1996], who introduced the problem in a predictive setting,

the simplest case, when only two states are available (s1 and s2) and nothing is known about

the idle period’s length, is even older. This setting is nothing more than another take on the

ski rental problem, a basic problem in online algorithms. Benini et al. in [Benini et al., 2000]

give a comprehensive survey on many of the techniques used in several different strategies for

the power down problem, including predictive strategies, stochastic optimal control, adaptive

learning, etc.

CHAPTER 2. PRELIMINARIES 13

Algorithm 2.1 Lower Envelope

1 At any time t in an idle period, set the machine to state k where k = arg mini{rit+ ai}.

For the simple case with only two states and r1 = 1 and r2 = 0, the best deterministic

strategy is to wait in the active state for a2 = a units of time after an idle period begins,

and then change to s2. It is easy to prove that this is a 2-competitive algorithm, and in

fact it is the best a deterministic algorithm can do. One can do better with randomized

algorithms, where a probability density function p(t) defines the probability that the systems

powers down to the idle state within t units of the idle period. In that case Karlin et al.

[Karlin et al., 1994] showed that a e
e−1
≈ 1.58 competitive ratio is achievable in average, when

p(t) = 1
(e−1)a

e
t
a for t ∈ [0, a] and p(t) = 0 otherwise. Karlin’s results are in the context of the

ski rental problem but are directly applicable to the power-down problem.

Back to the general case, Irani, Shukla, and Gupta in [Irani et al., 2003] showed that

when no knowledge about the idle period exists, the best competitive ratio a deterministic

algorithm can achieve is 2. They also give a simple algorithm that achieves this ratio, known

as Lower Envelope, which is based on the observation that if the length of the idle

period was known to be T , the optimal strategy is to set the machine to state si∗ where

i∗ = arg mini{riT + ai}. Algorithm 2.1 details the Lower Envelope algorithm.

The ratio can be further improved if the probability distribution of the idle period’s length

q(t) is known. Irani et al. [Irani et al., 2003] device an algorithm by first observing that if

only two states si−1 and si exist, a deterministic algorithm that powers down at time t within

the idle period will have an expected energy consumption given by

E[E(t)] =

∫ t

0

(ri−1T)q(T)dT +

∫ ∞
t

(ri−1T + ri(T − t) + ai − ai−1)q(T)dT. (2.1)

An offline algorithm will choose tj =
aj−1−aj
rj−rj−1

to minimize this quantity. Similarly, the

online version of this algorithm which they call Probability-Based Lower Envelope

will use these breakpoints tj to define the state in which the machine is within the idle period.

Algorithm 2.2 details this modified online algorithm.

14 CHAPTER 2. PRELIMINARIES

The results in [Irani et al., 2003] have been further extended by Augustine et al. [Augustine

et al., 2004], to incorporate arbitrary transition values among states. They show that a

generalization of Probability-Based Lower Envelope results in a 3 + 2
√

2-competitive

algorithm. They go even further by proposing a general algorithm for any system that is

(ρ∗ + ε)-competitive, where ρ∗ is the best competitiveness for that system, and the solution

can be computed in O(m2 logm log(1
ε
)), where m is the number of states in the machine. The

algorithm is much more complicated and their results are based on the fact that for any system

there is a strategy that is ρ-eager (which means that it achieves exactly a ρ-competitiveness

for every instance) and then they develop the algorithm using this result.

The surveys by Albers [Albers, 2009] and by Irani and Pruhs [Irani and Pruhs, 2005]

contain further algorithms and settings additional to the main ones described here.

2.2.2 Speed Scaling Setting

The other main setting in which energy consumption is incorporated within the scheduling

problem is though speed scaling. Most modern CPUs allow users to dynamically change

the speed at which the processor runs; the lower the speed, the less energy used, and the

relationship is device-dependent but typically superlinear. Thus, the energy consumed can be

controlled by speed scaling. At the same time a machine running at a lower speed will time

more time to process a certain job, hence a reduction in energy consumption will generally

produce a detriment in the scheduling metric’s performance.

Generally, the power P consumed is a polynomial function of speed s of the form P (s) = sβ

for some constant β ∈ [2, 3] and v ≥ 0. Thus, the total energy consumed in processing a

job that requires ρ cycles and runs at speed s will be given by E(s) = vρsα−1. Recent work

uses a more general power function with minimum regularity conditions, like non-negativity,

Algorithm 2.2 Probability-Based Lower Envelope

1 At any time t in an idle period, set the machine to state k where k = arg maxi{ti : ti < t}.

CHAPTER 2. PRELIMINARIES 15

but in all the cases the power function is not job-dependent since the jobs are homogeneous

[Andrew et al., 2009; Bansal et al., 2009].

Researchers have focused on three challenging speed scaling settings: energy minimization

and deadlines, scheduling with an energy or QoS budget, and balancing energy consumption

and scheduling performance. For all the mentioned cases both offline and online settings have

been considered in the literature. See the surveys by Albers [Albers, 2009], Irani and Pruhs

[Irani and Pruhs, 2005] for details in some of them.

2.2.2.1 Energy Minimization and Deadlines

Historically, the first researchers to study the speed scaling were Yao et al. [Yao et al., 1995].

In this setting we are given n jobs, where each job i has a release date ri, a processing

requirement in CPU cycles ρi, and a deadline di. The objective is to find a preemptive

schedule and the speed si at which each job Ji runs such that no job misses its deadline and

the energy consumption is minimized. Clearly, for arbitrary instances this is only achievable

if the CPU speed is not bounded.

Let DI define the set of jobs that must be processed in interval I = [t1, t2], i.e. DI = {Ji :

[ri, di] ⊆ I}, then the density of this interval is given by

∆I =
1

|I|
∑
i∈DI

ρi. (2.2)

In [Yao et al., 1995] Yao et al. they use these densities to construct an algorithm known

as YDS, described in Algorithm 2.3, and proceed to prove that is indeed optimal for the

offline problem. The proof is done by noting that at every point in time the algorithm runs at

the minimum average speed required to complete all jobs that must be scheduled within the

interval. If the machine runs at a slower speed at any time, it will not be able to finish the

jobs, hence, that speed is the slowest possible speed. Furthermore, using Earliest Deadline

First (EDF) to schedule the jobs in each interval assures that deadlines are met, and the

updates of release dates and deadlines keep jobs feasible.

Using similar ideas, Yao et al. [Yao et al., 1995] construct two additional algorithms

16 CHAPTER 2. PRELIMINARIES

Algorithm 2.3 Yao-Demers-Shenker (YDS)

1 set J = {J1, . . . , Jn} and T = [0,maxi{di}].

2 while J 6= ∅

3 compute I∗ = [t1, t2] = arg maxI∈T{∆I}.

4 run all jobs Ji ∈ DI∗ at speed si = ∆I∗ within interval I∗.

5 sort jobs in DI∗ according to EDF.

6 for every Ji /∈ DI∗

7 if di ∈ I∗

8 di = t1

9 elseif ri ∈ I∗

10 ri = t2

11 update J = J\DI∗ , T = T\I∗.

for the online setting. Because in this setting we don’t know which are the highest density

intervals, we can only make local decisions. For every job Ji that arrives, its density δi = ρi
di−ri

is computed and at every time t the machine runs at speed s(t) =
∑

Ji:t∈[ri,di]
δi, whereas

available jobs are scheduled using EDF.

Together with the results in [Yao et al., 1995], Bansal et al. [Bansal et al., 2008] later

showed that the competitive ratio for YDS is actually (2−ε(α))α

2
αα ≤ ρ ≤ 2α−1αα, where ε(α)

is a function that converges to 0 when α goes to ∞.

Yao et al. [Yao et al., 1995] also present a second online algorithm in which every time a

job arrives the optimal schedule, given the current jobs, is recomputed. They don’t present

many results for this algorithm, but later Bansal et al. [Bansal et al., 2007b] showed that

this algorithm is αα-competitive. Bansal et al. also present an additional algorithm, called

Bansal-Kimbrel-Pruhs (BKP), which uses the total available processing volume available

at every time to define the speed. They prove that BKP is 2(α
α−1

)αeα-competitive, which is

better than the previous one for larger values of α.

Another important results by Bansal et al. [Bansal et al., 2007b] is that any randomized

CHAPTER 2. PRELIMINARIES 17

algorithm has a competitiveness of at least Ω((4
3
)α), implying that this problem has an

inherent exponential dependence on α.

Yao et al. [Yao et al., 1995] also extend their algorithm for the case in which only a

discrete set of speeds S = {σ1, . . . , σm} is available. Obviously, this algorithm only works

when the instance is feasible, and it works by using the YDS algorithm first and then at every

point in time it alternates between two speeds using time-sharing, such that the effective

final speed for that interval is equal to the one given by the YDS algorithm.

There have been other attempts to build algorithms for the case where the instance is not

feasible. In that case we are interested in both reducing the energy consumption as well as

minimizing the number of late jobs. The current best algorithm was presented by Bansal et

al. in [Bansal et al., 2010], called Slow-D. They prove that the algorithm is 4-competitive

with respect to throughput and (αα + α24α)-competitive with respect to energy.

2.2.2.2 Energy or QoS Budget

The other setting related to speed scaling is minimizing a scheduling performance metric with

only a limited energy budget. There have not been many results in this area, and only the

papers by Pruhs et al. [Pruhs et al., 2007; Pruhs et al., 2008] present some results. In these

papers the authors study this setting considering the sum of flow times as the scheduling

performance metric.

In order to tackle the problem the authors simplify the problem by considering only

unit-size jobs, which decouples the scheduling problem from the speed-setting one. They also

restrict themselves to the offline scenario, so all the information is available from the start.

They show that in this case by using a First Come First Serve (FCFS) scheduling policy and

solving an auxiliary LP to determine the speeds, an optimal solution can be computed in

polynomial time.

Another interesting and counter-intuitive insight the authors give in [Pruhs et al., 2008]

is that the speed is actually not monotone functions of the energy budget. For some cases,

when the energy budget is reduced, some jobs run at a faster speed in the optimal solution.

18 CHAPTER 2. PRELIMINARIES

No other work has focused on this setting, thus the problem with jobs of arbitrary

length remains open. The authors in [Irani and Pruhs, 2005] conjecture that using resource

augmentation might help but indicate that it is fairly difficult to track the changes in speed

when the energy budget is modified. The other open problem is related to the online scenario.

The main difficulty in this case is to come up with an insightful definition, since the setting

presented here, in an online setting has an unbounded competitiveness ratio. One can always

create instances where it is impossible to know how much to spend in terms of energy at any

given time so as to not violate the energy budget constraint in the future.

The reverse problem of minimizing the energy consumption having a quality of service

budget has also been studied by several authors [Bansal et al., 2004; Bansal et al., 2007b;

Bansal et al., 2008; Yao et al., 1995].

2.2.2.3 Balancing Energy and Scheduling Performance

The third main setting within speed scaling is the scenario in which we are interested in

balancing energy costs or consumption with scheduling performance. Implicit in this case is

the assumption that both energy (or any resource for that matter) and time can be (implicitly)

converted into a common unit, such as dollars. There are several challenging problems to

be solved in this setting and it has several direct applications, since we are able to compare

directly the costs related to energy consumption and the scheduling performance, with the

objective of finding a solution that achieves the best compromise between the two.

The first researchers to propose a setting in which energy and scheduling performance

are balanced together were Albers and Fujiwara [Albers and Fujiwara, 2007]. Instead of

having an energy budget they consider minimizing the total energy consumption plus the

total flow time, i.e.
∑

iE(si) + Fi, with nonpreemptive schedules. The authors first simplify

the problem by assuming that all jobs are unit sized and proceed to describe a Dynamic

Programming (DP) based algorithm that finds the optimal solution for the offline scenario.

Another interesting result by Albers and Fujiwara in [Albers and Fujiwara, 2007] is that

they show that any deterministic online algorithm has a competitive ratio of at least Ω(n1− 1
α).

CHAPTER 2. PRELIMINARIES 19

Considering that for the standard total flow time scheduling problem no online algorithm

can perform better than Ω(n)-competitive [Albers and Fujiwara, 2007], this result indicates

that the additional flexibility given by the speeds does not help significantly to correct bad

scheduling decisions in the online setting.

Albers and Fujiwara also present in [Albers and Fujiwara, 2007] a constant competitive

ratio algorithm for the case with unit sized jobs. The algorithm uses different phases in which

it processes jobs in batches. At any given phase the algorithm schedules optimally the jobs of

the current batch, while it collects the new arriving jobs. The speed at which jobs in batch i

run at any given time is set to α
√

ni
c

, where ni is the number of unfinished jobs in the batch

and c = α− 1 when α < 19+
√

161
10

or c = 1 otherwise. Once the jobs of the current batch are

finished the algorithm sorts the collected jobs and repeats the procedure. The authors show

that this algorithm, which they call Phasebal is 8.3e(1 + Φ)α-competitive, where Φ = 1+
√

5
2

.

Later, Bansal et al. [Bansal et al., 2009] were able to improve this result, but considering

the preemptive version. At any point in time they schedule jobs according to the Shortest

Remaining Processing Time (SRPT) rule and run the job at speed α
√
nt + 1 where nt is the

number of active jobs at time t, that is the number of jobs that have arrived but not yet

finished. Through the use of potential functions they are able to show that this algorithm is

(3 + ε)-competitive even when jobs have arbitrary lengths and the power function is regular.

They define regular power functions P (s) as those that are: continuous and differentiable in

[0,∞), P (0) = 0, strictly increasing, strictly convex, and unbounded.

The current best result is by Andrew et al. [Andrew et al., 2009]. They also use SRPT as

the scheduling policy but the speed at which they run the jobs is defined by α
√
nt. They show

that this algorithm is (2 + ε)-competitive and they only require that the power function is

non-negative and unbounded. Furthermore, they show that this result is tight.

Andrew et al. showed in [Andrew et al., 2010] that not only SRPT works well, but

also Processor Sharing (PS) and even a gated-static speed scaling performs close to what is

achieved by SRPT in practice. The key insight in their paper is that although gated-static

speed scaling performs well, dynamic speed scaling (using α
√
nt) provides robustness when

20 CHAPTER 2. PRELIMINARIES

Problem algorithm approx. ratio bound

1|ri, ρi = 1|
∑
E(si) + Fi DP 1 -

1|ri|
∑
E(si) + Fi ? ? ?

1|prec|
∑
Ei(si) + wiCi SAIAS 4(1 + ε)(1 + δ) ?

1|ri, prec|
∑
Ei(si) + wiCi SAIAS (3 + 2

√
2)(1 + ε)(1 + δ) ?

1|prec|
∑
Ei(si) + wiTi SAIAS-T 4α(1 + ε)α−1(1 + δ)α−1 ?

Table 2.1: Summary of known results - Offline Setting

workloads are uncertain.

It is important to note that all current research directions for this setting are based on

some simple order policy for the schedule (like SRPT) and a separate policy for the speed at

which to run each job.

Tables 2.1 and 2.2 show a summary of the current best results for several different

problems, in the offline and online settings respectively.

The work I present in this thesis is focused mostly in the energy balancing setting discussed

here, although we generalize it further by allowing very general and job-dependent energy cost

functions. Although having job-dependent energy cost functions does not provide advantages

in the CPU energy aware setting, since all jobs are processed in the same CPU and thus

have the same energy consumption rate, this will be the key for us to extend the use of our

algorithms to the more general setting discussed in Chapter 5.

The prior work on speed scaling algorithms also assumes that the energy cost is only

Problem algorithm competit. ratio bound

1|ri, ρi = 1|
∑
E(si) + Fi Phasebal 8.3e(1 + Φ)α ?

1|ri|
∑
E(si) + Fi ? ? Ω(n1− 1

α)

1|ri, pmtn|
∑
E(si) + Fi (SRPT, P−1(n)) 2 + ε 2

Table 2.2: Summary of known results - Online Setting

CHAPTER 2. PRELIMINARIES 21

a function of the speed. We allow for the cost to be dependent on all the resources being

utilized. For example, in the context of scheduling computational task, we can allow for the

cost to be dependent on the CPU speed, the RAM utilized, and bus bandwidth and speed.

22 CHAPTER 2. PRELIMINARIES

This page is intentionally printed only with this statement.

CHAPTER 3. ENERGY AWARE SCHEDULING 23

Chapter 3

Energy Aware Scheduling

T
he basic problem that we will explore and extend throughout this thesis is the

energy aware scheduling (EAS). In this setting only the energy consumed by

processing each job is taken into account, and the energy consumption rate will

determine the speed at which the jobs are processed. In this chapter we will discuss this

basic setting and develop algorithms to compute approximate optimal solutions.

In Section 3.1 we will first assume that the energy cost is of the polynomial form generally

used in the EAS literature, and in this particular setting we will present two approximation

algorithms for the case when the total weighted completion time is the scheduling performance

metric.

Next, in Section 3.2 we will modify one of the algorithms described in Section 3.1 to

include another important scheduling metric: total weighted tardiness. This will require

important changes that will later allow us to build the general scheduling algorithm presented

in Chapter 7.

Finally, in Section 3.3 we will generalize all the results for a larger class of energy cost

functions, which require only minor regularity conditions.

For convenience we will use an extended version of the notation of Graham et al. [Gra-

ham et al., 1979] to refer to our different resource cost aware scheduling problems, i.e.

1|ri, prec|
∑
Ri(ψ

(i)) + wiCi, will refer to the problem setting with 1 machine, with ri re-

24 CHAPTER 3. ENERGY AWARE SCHEDULING

lease dates, precedence constraints, and the weighted completion time as the scheduling

performance metric. The Ri(ψ
(i)) term indicates that the resource cost is also added to the

performance metric, whereas a term Ei(ψ
(i)) or Ei(ψ(i)) indicates that only energy cost is

used. These terms will be further explained in the following sections.

3.1 Total Weighted Completion Time

In this section we consider the EAS problem with the commonly studied scheduling metric,

weighted completion time. This metric has not received attention in the resource or energy

cost aware scheduling literature, even though it has applications in several different areas such

as software compilers, instruction scheduling in VLIW processors, MapReduce-like systems,

manufacturing processes, and maintenance procedures among others [Chang et al., 2011;

Chekuri and Khanna, 2004; Chekuri et al., 2001; Pinedo, 2008]. In all these applications

there are related resources that can be used to control the speed at which jobs are processed

and need to be taken into account. For example in maintenance and repair procedures, the

processing time of a job can depend on the workforce size, spare parts inventory levels, energy

consumption, training, etc. Furthermore, in many settings jobs have precedence constraints

as well, something that has not been dealt with in the current literature.

Given a schedule in which job i with weight wi and release time ri is completed at time

Ci, the total weighted completion time is given by
∑

iwiCi. We consider the non-preemptive,

offline problem on one machine, and allow arbitrary precedence constraints and arbitrary

release dates as well. Our objective is to minimize the sum of our scheduling metric and

the total energy consumption cost. We are not aware of any previous work on energy aware

scheduling algorithms for this metric, although there is a rich literature on minimizing

weighted completion time in the absence of energy concerns (e.g. [Phillips et al., 1998;

Pinedo, 2008; Skutella, 2006]).

Minimizing weighted completion time is well studied in the combinatorial scheduling

literature. Phillips et al. [Phillips et al., 1998] and Hall et al. [Hall et al., 1997; Hall et al.,

CHAPTER 3. ENERGY AWARE SCHEDULING 25

1996] introduced the concept of α-points that has lead to small constant factor approximation

algorithms for many scheduling problems [Skutella, 2006]. In the α-point approach, the

scheduling problem is formulated as an integer program in terms of decision variables xit

that is 1 if job i completes at time t. The α-point of each job is defined as the earliest

time at which an α fraction of the job has completed in the linear relaxation. The jobs are

ordered in the order of their α-points and run in non-preemptive fashion. There are many

variants and extensions of these technique including choosing α randomly [Chekuri et al., 2001;

Goemans, 1997] or choosing a different α for each job [Goemans et al., 2002]. We extend

α-point technique to the speed-scaling setting by defining α-speeds, which are achieved by

time-sharing between the available speeds.

Our approach allows job-dependent power functions, and thus can be applied to a more

general class of problems outside this specific setting. Furthermore, most energy aware

algorithms assume cost functions that are closely related to energy consumption; however

in practice, the actual energy cost is not simply a function of energy consumption, it is a

complicated function of discounts, pricing, time of consumption, peak energy requirements,

etc. That observation motivated our consideration of a more general class of cost functions

that are only restricted to be non-negative. We are not aware of any other work that allows

such general costs.

3.1.1 Problem Formulation

The problem setting is as follows. We are given n jobs, where job i, i = {1, . . . , n}, has

a processing requirement of ρi ∈ N+ machine cycles, a release time ri, and an associated

positive weight wj. Let si denote the speed at which job i runs on the machine and let Ci

denote its completion time. Let Π = {π(1), . . . , π(n)} denote the order in which the jobs

are processed, i.e. π(i) = k implies that job k is the i-th job to be processed. Then the

completion time of the i-th job to be processed is Cπ(i) = max{rπ(i), Cπ(i−1)} +
ρπ(i)
sπ(i)

, with

π(0) = 0 and Cπ(0) = 0. We assume that preemption is not allowed.

Let Ei(si) denote the energy cost of running job i at speed si. Initially we consider

26 CHAPTER 3. ENERGY AWARE SCHEDULING

Ei(si) = viρis
β−1
i , where β ≥ 2 and vi are known constants. Later we show that our

algorithms work for more general energy cost functions Ei(si) that only require minor

regularity conditions.

The objective is to compute a feasible schedule, consisting of an order Π that respects the

possible precedence constraints and/or release date constraints, and the vector of job speeds

s = {s1, . . . , sn} ∈ Rn
+ that minimizes the total cost,

f(Π, s) =
n∑
i=1

[
vπ(i)ρπ(i)s

β−1
π(i) + wπ(i)Cπ(i)

]
. (3.1)

Note that the energy consumed by job π(i) only depends on the speed sπ(i), whereas its

completion time depends on the speeds of all jobs π(j) with j < i. Since the cost function

is convex we can assume, without loss of generality, that each job runs at a constant speed.

Furthermore, since we assume that preemption is not allowed, once a job is selected for

processing, it is not interrupted to process another job.

In order to use an indexed-based formulation for this problem, we will first compute the

set of speeds in which the optimal speeds are, which we will later quantize.

3.1.2 Speed Bounds

In order to quantize the set of speeds for our algorithms, it is necessary to find a set that

contains the optimal speed solutions, otherwise the final solution computed by the algorithm

can be arbitrarily away from the optimal. The following lemma bounds the set of possible

optimal speeds, and thus determines the set we need to quantize.

Lemma 3.1. The optimal speed s∗i for any job i belongs to the interval [σmin, σmax], where

σmin = minj

{
β

√
wj

(β−1)vj

}
> 0 and σmax = maxj

{
β

√∑n
k=1 wk

(β−1)vj

}
<∞.

Proof. First fix an arbitrary schedule Π = {π(1), π(2), . . . , π(n)} that satisfies all precedence

constraints. The following optimization problem computes the optimal speeds given that

CHAPTER 3. ENERGY AWARE SCHEDULING 27

schedule:

min
s

n∑
i=1

vπ(i)ρπ(i)s
β−1
π(i) + wπ(i)Cπ(i)

s.t.:
Cπ(i) ≥ rπ(j) +

∑i
k=j

ρπ(k)
sπ(k)

, ∀j ∈ {1, . . . , i}, ∀i ∈ {1, . . . , n}

sπ(i) ≥ 0, ∀i ∈ {1, . . . , n}.

(3.2)

Let λπ(i)π(j), j = {1, . . . , i} define the dual variables of the release date constraints in (3.2)

for the i-th job, i = {1, . . . , n}. From the necessary optimality conditions we get that

i∑
j=1

λ∗π(i)π(j) = wπ(i), ∀i ∈ {1, . . . , n}, (3.3)

and thus,

s∗π(i) =
β

√∑n
j=i

∑i
k=1 λ

∗
π(j)π(k)

(β − 1)vπ(i)

, ∀i ∈ {1, . . . , n}, (3.4)

where s∗ and λ∗ are the optimal speeds and optimal dual variables respectively. Note from

(3.4) that the optimal speed of the i-th job only depends of the dual variables of the completion

time constraints of future jobs, and not past ones.

If there is idle time between the i-th and i+ 1-st job, then Cπ(j) > rπ(k) +
∑i

l=j

ρπ(l)
sπ(l)

, for

j = {i+ 1, . . . , n} and k = {1, . . . , i}. Thus, by the complementary slackness conditions we

get that λπ(j)π(k) = 0, for j = {i+ 1, . . . , n} and k = {1, . . . , i}. Then, from (3.4), the smallest

optimal speed that the i-th job can have is attained when there is idle time after it, and thus

s∗π(i) = β

√
wπ(i)

(β − 1)vπ(i)

,

which is positive since wπ(i) > 0 and vπ(i) is finite. By setting σmin = minj

{
β

√
wj

(β−1)vj

}
, we

obtain that s∗i ≥ σmin > 0, ∀i, and for any order Π.

On the other hand, from (3.3) we get that
∑i

k=1 λ
∗
π(j)π(k) ≤ wπ(j) for j ≥ i. Hence from

(3.4) we get that

s∗π(i) ≤
β

√ ∑n
j=1wj

(β − 1)vπ(i)

<∞,

since wj is finite ∀j and vπ(i) > 0. By setting σmax = maxj

{
β

√∑n
i=1 wi

(β−1)vj

}
we have s∗i ≤ σmax <

∞, ∀i and any order Π.

28 CHAPTER 3. ENERGY AWARE SCHEDULING

It is important to notice that both bounds are tight. As shown in the previous proof, the

lower bound is attained when the job with the smallest
wj
vj

has idle time after it. On the

other hand, the upper bound is attained when the job with the smallest vi is scheduled first,

and the release dates are small enough such that rπ(i) <
∑i

j=1

ρπ(j)
sπ(j)

, which also implies that

there is no idle time between jobs. In this case the first job will run at speed σmax.

Corollary 3.1. The maximum speed σmax is bounded by

σmax ≤ σmin
β

√
nwmaxvmax

wminvmin

,

where wmax = maxi{wi}, wmin = mini{wi}, vmax = maxi{vi} and vmin = mini{vi}.

Proof. From Lemma 3.1 it follows,

σmin = min
j

{
β

√
wj

(β − 1)vj

}
≥ β

√
wmin

(β − 1)vmax

.

Similarly, the maximum speed is bounded by

σmax = max
j

{
β

√ ∑n
i=1 wi

(β − 1)vj

}
≤ β

√
nwmax

(β − 1)vmin

.

Therefore, it follows that,

σmax

σmin

≤ β

√
nwmaxvmax

wminvmin

.

3.1.3 Speed Quantization

We now quantize the set of feasible speeds [σmin, σmax] into m possible speeds S = {σ1, . . . , σm}.

Using Lemma 3.1 we determine the maximum and minimum speeds at which any job can

be processed, σmax and σmin, and we can define speed σj = 1
kj
σmax, where kj ∈ N+, for

j = 1, . . . ,m. The restriction that kj ∈ N+ is required for the time-indexed formulation

described in Section 3.1.5, but it will be relaxed to kj ∈ R+ for the interval-indexed formulation

presented in Section 3.1.6. W.l.o.g. we assume that ki > kj, ∀i < j, and thus the speeds σj

CHAPTER 3. ENERGY AWARE SCHEDULING 29

are ordered in increasing values. To ensure that the range of speeds given by Lemma 3.1 is

covered, we set km = 1, so σm = σmax and set k1 ≥ σmax

σmin
so σ1 ≤ σmin.

Given that the quantization of the feasible speed set induces an error for all our formulations

when compared to the continuous speed case, we first bound this error as follows. Let the

quantization be in geometrically increasing speed values, i.e. kj = (1 + δ)m−j for some δ > 0,

and thus σj+1 = (1 + δ)σj. Note that given δ we define m such that,

m =

⌈
log(σmax)− log(σmin)

log(1 + δ)

⌉
+ 1, (3.5)

to make sure that the whole feasible speed set from Lemma 3.1 is covered.

The following Lemma bounds the error induced by the quantization assuming that kj ∈ R+,

but a similar argument can be used when kj ∈ N+.

Lemma 3.2. The optimal value of (3.1) using the previous speed quantization scheme, i.e.

S = {σ1, . . . , σm}, with σj = σmax

(1+δ)m−j
, and m as in (3.5), is at most (1 + δ

2
)β−1 times the

optimal value of (3.1) with continuous speeds.

Proof. Let Π∗ and s∗ denote an optimal solution of (3.1) without speed quantization. W.l.o.g.

we assume that Π∗ = {1, . . . , n}. Let s̃ denote the element-wise rounding of the solution s∗

to the nearest speed σj ∈ S. Since precedence and release date constraints are not violated

by the rounding procedure, s̃ is still feasible.

First assume that all speeds are rounded up. In this case, if s∗i ∈ [σj, σj+1], then it must

be that s∗i ≥ 1
2
(σj +σj+1) = σj(1+ δ

2
) for s∗i to be rounded up. Hence, the rounding procedure

sets s̃i at most

s̃i ≤
(

1 +
δ

2 + δ

)
s∗i .

Since speeds increase, completion times do not increase. On the other hand energy

consumption increases, but it is bounded as follows,

Ei(s̃i) ≤
(

1 +
δ

2 + δ

)β−1

Ei(s
∗
i) ⇒

n∑
i=1

Ei(s̃i) ≤
(

1 +
δ

2 + δ

)β−1 n∑
i=1

Ei(s
∗
i), (3.6)

thus, for this case, f(Π∗, s̃) ≤
(
1 + δ

2+δ

)β−1
f(Π∗, s∗).

30 CHAPTER 3. ENERGY AWARE SCHEDULING

Next, we assume that all speeds are rounded down. Then if s∗i ∈ [σj, σj+1], it must be

that s∗i ≤ σj(1 + δ
2
), and the rounding procedure reduces each speed at most,

s̃i ≥
(

2

2 + δ

)
s∗i .

Let C∗ define the optimal completion times when no quantization is used, and C̃ when

speeds are quantized. Because speed decreases the energy cost does not worsen, whereas the

completion times will increase, but can be bounded as follows,

C̃i = max{ri, C̃i−1}+
ρi
s̃i
≤
(

1 +
δ

2

)(
max{ri, C∗i−1}+

ρi
s∗i

)
=

(
1 +

δ

2

)
C∗i (3.7)

⇒
n∑
i=1

wiC̃i ≤
(

1 +
δ

2

) n∑
i=1

wiC
∗
i , (3.8)

where the last inequality follows by recursion on the job index. Hence, for this case, f(Π∗, s̃) ≤(
1 + δ

2

)
f(Π∗, s∗).

From (3.6) and (3.8) it follows that for the general case,

f(Π∗, s̃) ≤ max

{(
1 +

δ

2 + δ

)β−1

,

(
1 +

δ

2

)}
f(Π∗, s∗) ≤

(
1 +

δ

2

)β−1

f(Π∗, s∗).

(3.9)

Since mins∈S f(Π∗, s) ≤ f(Π∗, s̃), the lemma follows.

It is important to note that in many contexts the feasible set of speeds is already quantized

beforehand, e.g. CPUs generally allow only a discrete set of speeds. In such situations the

quantization will add no error to the solution at this stage. However, as we will present in

the subsequent sections, the output of our algorithms not necessarily returns speeds that

belong to the discrete set S. Thus, we need to round the final solution to the given speed set,

and the previous approximation error will reappear.

3.1.4 Cases Solvable in Polynomial Time

When no precedence constraints and release dates exist, there are two versions of this problem

that can be optimally solved in polynomial time: when all weights wi are equal, and when all

CHAPTER 3. ENERGY AWARE SCHEDULING 31

jobs are of the same size (i.e. ρi = ρ, ∀i) and have the same energy cost function. For these

cases we have the following result:

Theorem 3.1. If wi = w, ∀i or ρiv
1
β

i = ξ, ∀i then the order Π is optimal if

wπ(i)

ρπ(i)v
1
β

π(i)

≥
wπ(i+1)

ρπ(i+1)v
1
β

π(i+1)

, ∀i ∈ {1, . . . , n− 1}.

Proof. Define ξi ≡ ρiv
1
β

i . Using the dual formulation of (3.2) with no precedence or release

date constraints, it follows that the optimization problem is given by

min
π
G(π) = min

π


n∑
i=1

Bξπ(i)

(
n∑
j=i

wπ(j)

)b
 , (3.10)

where B ≡ β
(β−1)b

and b ≡ β−1
β

.

First, when wi ≡ w, Theorem 3.1 implies that in the optimal order ξπ(i+1) ≥ ξπ(i). By

contradiction, let π be an optimal order such that for some index k, ξπ(k+1) < ξπ(k). For this

order the total cost is

G(π) =
n∑
i=1

Bξπ(i)

(
n∑
j=i

w

)b

=
n∑
i=1

Bξπ(i) ((n− i+ 1)w)b

= Bwb

ξπ(k)(n− k + 1)b + ξπ(k+1)(n− k)b +
n∑
i=1

i 6=k,k+1

ξπ(i)(n− i+ 1)b

 .

Let πk define the order where we switch jobs k and k+1 from order π, i.e. πk(k) = π(k+1)

and πk(k + 1) = π(k). Given this order we have that

G(π)−G(πk) = Bwb
{
ξπ(k)(n− k + 1)b + ξπ(k+1)(n− k)b − ξπ(k+1)(n− k + 1)b

−ξπ(k)(n− k)b
}

= Bwb
{

(n− k + 1)b(ξπ(k) − ξπ(k+1))− (n− k)b(ξπ(k) − ξπ(k+1))
}

= Bwb
{(
ξπ(k) − ξπ(k+1)

) (
(n− k + 1)b − (n− k)b

)}
.

32 CHAPTER 3. ENERGY AWARE SCHEDULING

By our initial assumption, the first term is positive (since ξπ(k+1) < ξπ(k)) and the second

one is always positive, hence G(π)−G(πk) > 0 which is a contradiction, since that implies

that πk has a smaller cost.

When ξi ≡ ξ, Theorem 3.1 implies that an order π is optimal then wπ(i) ≥ wπ(i+1). Let

π be an optimal order such that for some index k, wπ(k) < wπ(k+1). The total cost for this

solution is

G(π) =
n∑
i=1

Bξ

(
n∑
j=i

wπ(i)

)b

= Bξ


k∑
i=1

(
n∑
j=i

wπ(i)

)b

+

(
n∑

j=k+1

wπ(i)

)b

+
n∑

i=k+2

(
n∑
j=i

wπ(i)

)b


= Bξ


k∑
i=1

(
n∑
j=i

wπ(i)

)b

+

(
wπ(k+1) +

n∑
j=k+2

wπ(i)

)b

+
n∑

i=k+2

(
n∑
j=i

wπ(i)

)b
 .

Let πk define the order where we switch jobs k and k + 1 from order π. Given this new

order we have

G(π)−G(πk) = Bξ


(
wπ(k+1) +

n∑
j=k+2

wπ(i)

)b

−

(
wπ(k) +

n∑
j=k+2

wπ(i)

)b
 > 0,

since wπ(k+1) > wπ(k) by our initial assumption, which is a contradiction since this result

implies that order πk has a lower cost.

3.1.5 Time-and-Speed-Indexed Formulation

We now present a time-and-speed-indexed formulation, which is an extension of the integer

formulation presented in [Sousa and Wolsey, 1992]. Then, we extend the algorithms and

results obtained in [Hall et al., 1996] to the energy aware setting.

Given that this formulation requires time to be divided into constant size pieces and

index all variables by these time steps, the resulting algorithm might not be polynomial en

the size of the input. Although this is a major issue, the problem will be corrected with the

formulation presented in Section 3.1.6.

CHAPTER 3. ENERGY AWARE SCHEDULING 33

3.1.5.1 Model Description and Approximation Algorithm

In this first formulation we discretize time in steps of size τ = 1
σmax

, which is the minimum

size time-step a job can have, and use a time-step-and-speed-indexed formulation for problem

(3.1).

Let pij = ρi
σj

denote the processing time of job i at speed σj. Then job i requires

p̂ij =
pij
τ

= kjρi time steps, each of size τ . Since kj ∈ N+ and ρi ∈ N+, then p̂ij ∈ N+.

For a given instance of (3.1), let T define an upper bound on the total number of time

steps of the schedule, e.g. we can set T = 1
τ

maxni=1 ri +
∑n

i=1
pi1
τ

.

Let

yijt =

 1, if job i runs at a speed σj and completes in time step t

0, otherwise.
(3.11)

Using the yijt variables the objective function in (3.1) can be rewritten as:

min
y

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt

)
yijt. (3.12)

Next we list the constraints on the decision variables {yijt}:

1. Each job runs at a unique speed and is completed at a unique time step, i.e. for all

i = {1, . . . , n}:
m∑
j=1

T∑
t=1

yijt = 1. (3.13)

2. A job i, i = {1, . . . , n} running at speed σj , j = {1, . . . ,m}, is in process at time step t

if it is completed within the interval [t, t+ p̂ij − 1]. Since the machine can only process

one job on each time step we must have that for all t = {1, . . . , T}:

n∑
i=1

m∑
j=1

min{T,t+p̂ij−1}∑
u=t

yiju ≤ 1. (3.14)

3. yijt must be a binary variable for all i = {1, . . . , n}, j = {1, . . . ,m}, and t = {1, . . . , T},

yijt ∈ {0, 1}. (3.15)

34 CHAPTER 3. ENERGY AWARE SCHEDULING

4. Job i running at speed σj requires p̂ij = kjρi time steps to be processed after its release

time-step ri
τ

, thus for all i = {1, . . . , n} and j = {1, . . . ,m}:

yijt = 0, if t <
ri
τ

+ kjρi. (3.16)

5. For the precedence constraints, first note that
∑m

j=1

∑t
s=1 yijs = 1 if and only if job i

has been completed by time step t. Now i1 ≺ i2 means that if job i2 runs at speed σj,

then job i1 must be finished at least p̂i2j time steps before job i2, thus the precedence

constraint i1 ≺ i2 can be written as, for t = 1, . . . , T − p̂i2m:

m∑
j=1

t∑
u=1

yi1ju ≥
m∑
j=1

min{t+p̂i2j ,T}∑
u=1

yi2ju. (3.17)

We now describe a new approximation algorithm for the EAS problem, called Schedule

by α-points and α-speeds (SAPAS), which is detailed in Algorithm 3.1.

Let ȳijt denote the optimal solution of the linear relaxation of (3.12)-(3.17), where the

binary constraint yijt ∈ {0, 1} is relaxed to yijt ≥ 0. In step 1 of the algorithm we compute

the optimal solution ȳ and then, in step 2, for any given 0 ≤ α ≤ 1 we define the α-point of

job i as

tαi = min

{
t :

m∑
j=1

t∑
u=1

ȳiju ≥ α

}
, (3.18)

which is the earliest time step after which an α-fraction of job i has been completed.

Next, in step 3, we compute the α-speeds as follows. Since
∑m

j=1

∑tαi
u=1 ȳiju ≥ α, we define

the auxiliary variable {ỹijt}n,n,Ti=1,j=1,t=1 as follows, to ensure that
∑m

j=1

∑tαi
u=1 ỹiju = α:

ỹijt =


ȳijt , t < tαi

max
{

min
{
ȳijtαi , α−

∑j−1
l=1 ȳiltαi − βi

}
, 0
}

, t = tαi

0 , t > tαi ,

(3.19)

where βi =
∑m

j=1

∑tαi −1
u=1 ȳiju < α. This new auxiliary variable preserves the values of ȳijt for

all time steps t < tαi , and for time step t = tαi it only considers the values of ȳijt that sum up

to α, starting from the slowest speed first, i.e. j = 1.

CHAPTER 3. ENERGY AWARE SCHEDULING 35

Algorithm 3.1 Schedule by α-points and α-speeds (SAPAS) for EAS

Inputs: set of jobs, α ∈ (0, 1), τ , set of speeds S = {σ1, . . . , σm}.

1 Compute an optimal solution ȳ to the linear relaxation (3.12)-(3.17).

2 Compute the α-points tα and compute an order Πα that has the jobs ordered in

non-decreasing values of tαi .

3 Compute the α-speeds sα.

4 Round down each sαi to the nearest speed in S and run job i at this rounded speed, s̄αi .

5 Set the i-th job to start at time max{rπ(i), C̄
α
π(i−1)}, where C̄α

π(i−1) is the completion

time of the previous job using the rounded α-speeds, and C̄α
π(0) = 0.

6 return speeds s̄α, order Πα, and completion times C̄α.

We now define a probability mass function (pmf) µi = (µi1, . . . , µim) on the set of speeds

S = {σ1, . . . , σm} as follows,

µij =
1

α

tαi∑
u=1

ỹiju. (3.20)

Let ŝi define a random variable distributed according to the pmf µi. Then, the α-speed of

job i, sαi , is defined as follows,

1

sαi
= E

[
1

ŝi

]
=

m∑
j=1

µij
σj
⇒ sαi =

1

E
[

1
ŝi

] , (3.21)

where the definition is done over the reciprocal of the speeds since the completion times are

proportional to these reciprocals instead of the speeds, and this proportionality is required in

the analysis of the algorithm.

In step 4 of the algorithm we round down the α-speeds since sαi might not belong to the

set of possible speeds. The following lemma bounds the error introduced by this rounding.

Lemma 3.3. The cost of the solution with the rounded down speeds s̄α is at most (1 + δ)

times the cost of the solution using the α-speeds sα.

Proof. The energy cost function Ei(si) is increasing so rounding down does not increase the

energy cost, but the completion time is now larger. Let Cα
i be the completion time of job i

36 CHAPTER 3. ENERGY AWARE SCHEDULING

when the speeds sα are used and C̄α
i when the rounded ones s̄α are used. Since the speeds

are reduced at most by (1 + δ), then (1 + δ)s̄i
α ≥ sαi , and we have that

C̄α
i = max{ri, C̄α

i−1}+
ρ

s̄αi
≤ (1 + δ)

(
max{ri, Cα

i−1}+
ρ

sαi

)
= (1 + δ)Cα

i , (3.22)

which implies that
∑n

i=1wiC̄
α
i ≤ (1 + δ)

∑n
i=1 wiC

α
i and proves the lemma.

Finally, in steps 5 and 6 we compute the completion times with the rounded speeds and

return the approximate schedule.

In the following subsections we show that the SAPAS algorithm returns a feasible schedule

and we compute the approximation factors for different energy aware scheduling problems.

3.1.5.2 Single Machine Problem with No Constraints

In this subsection we consider the unconstrained single machine problem or 1||
∑
Ei(si)+wiCi,

with Ei(si) = viρis
β−1
i . Since there are no release date constraints, it follows that there will

be no idle time between jobs and therefore

Cπ(i) =
i∑

j=1

ρπ(j)

sπ(j)

. (3.23)

Also note that because there are no precedence constraints the schedule given by the

SAPAS algorithm is always feasible. The following is the main result for this setting.

Theorem 3.2. The SAPAS algorithm with α = 1
2

returns a result that is at most 4(1+δ) times

the optimal value for the time-and-speed-indexed integer formulation for the 1||
∑
Ei(si) +

wiCi problem, with Ei(si) = viρis
β−1
i .

Proof. W.l.o.g. we assume that tα1 ≤ tα2 ≤ . . . ≤ tαn. Let y∗ijt denote an optimal solution of

the integer program (3.12)-(3.16), ȳijt the fractional solution of its linear relaxation, and ỹijt

the auxiliary variables calculated for the SAPAS algorithm.

First, because ȳ is a fractional solution we have that

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt

)
ȳijt ≤

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt

)
y∗ijt. (3.24)

CHAPTER 3. ENERGY AWARE SCHEDULING 37

The energy terms of the algorithm’s solution are bounded as follows,

viρi(s
α
i)β−1 = viρi

(
1

sαi

)−(β−1)

= viρi

(
E
[

1

ŝi

])−(β−1)

≤ viρiE

[(
1

ŝi

)−(β−1)
]

= viρiE
[
ŝβ−1
i

]
= viρi

m∑
j=1

µijσ
β−1
j , (3.25)

where the inequality follows from Jensen’s Inequality applied to the convex function 1
sβ−1 .

Using the definition of µij it follows that,

viρi(s
α
i)β−1 ≤ viρi

α

m∑
j=1

tαi∑
u=1

σβ−1
j ỹiju ≤

viρi
α(1− α)

m∑
j=1

T∑
u=1

σβ−1
j ȳiju, (3.26)

where the last inequality comes from the fact that α < 1 and ỹijt ≤ ȳijt.

The completion time terms are bounded as follows. Since there are no release dates there

is no idle time between jobs, therefore, the completion time of job i is Cα
i =

∑i
j=1

ρj
sαj

. From

the definition of sαi we have,

Cα
i =

i∑
j=1

ρj
sαj

=
i∑

j=1

ρjE
[

1

ŝi

]
=

i∑
j=1

m∑
l=1

ρj
µjl
σl

=
1

α

i∑
j=1

m∑
l=1

tαj∑
u=1

ρj
σl
ỹjlu =

τ

α

i∑
j=1

m∑
l=1

tαj∑
u=1

p̂jlỹjlu. (3.27)

Additionally, summing up constraint (3.14) from t = 1 to t = tαi , we have that

n∑
j=1

m∑
l=1

t+p̂jl−1∑
u=t

ỹjlu ≤ 1⇒
n∑
j=1

m∑
l=1

tαi∑
t=1

t+p̂jl−1∑
u=t

ỹjlu ≤ tαi . (3.28)

By switching the last two sums and eliminating some terms it is easy to demonstrate that

tαi∑
u=1

p̂jlỹjlu ≤
tαi∑
t=1

t+p̂jl−1∑
u=t

ỹjlu,

and hence, we have that

n∑
j=1

m∑
l=1

tαi∑
u=1

p̂jlỹjlu ≤
n∑
j=1

m∑
l=1

tαi∑
t=1

t+p̂jl−1∑
u=t

ỹjlu ≤ tαi . (3.29)

38 CHAPTER 3. ENERGY AWARE SCHEDULING

Since tαj ≤ tαi , ∀j ≤ i, then by summing up to tαj instead of tαi in (3.29), we get

i∑
j=1

m∑
l=1

tαj∑
u=1

p̂jlỹjlu ≤
n∑
j=1

m∑
l=1

tαi∑
u=1

p̂jlỹjlu ≤ tαi . (3.30)

From (3.27) and (3.30), it follows that

Cα
i =

i∑
j=1

ρj
sαj

=
τ

α

i∑
j=1

m∑
l=1

tαj∑
u=1

p̂jlỹjlu ≤
τ

α
tαi . (3.31)

Let the fractional completion time C̄i of job i be defined by

C̄i = τ
m∑
j=1

T∑
t=1

tȳijt. (3.32)

Because it is possible that
∑m

j=1

∑tαi
t=1 ȳijt > α, we define Y

(1)
i = α −

∑m
j=1

∑tαi −1
t=1 ȳijt and

Y
(2)
i =

∑m
j=1

∑tαi
t=1 ȳijt − α. Thus, Y

(1)
i + Y

(2)
i =

∑m
j=1 ȳijtαi , and we have that

C̄i = τ
m∑
j=1

tαi −1∑
t=1

tȳijt + τtαi

m∑
j=1

ȳijtαi + τ
m∑
j=1

T∑
t=tαi +1

tȳijt

= τ
m∑
j=1

tαi −1∑
t=1

tȳijt + τtαi Y
(1)
i + τtαi Y

(2)
i + τ

m∑
j=1

T∑
t=tαi +1

tȳijt. (3.33)

Eliminating the lower terms of the sum in (3.33) it follows that

C̄i ≥ τtαi Y
(2)
i + τ

m∑
j=1

T∑
t=tαi +1

tȳijt ≥ τtαi Y
(2)
i + τ

m∑
j=1

tαi ȳijt = τtαi (1− α), (3.34)

and from (3.31) and (3.34) we get that

Cα
i ≤

C̄i
α(1− α)

, (3.35)

and thus,

n∑
i=1

wiC
α
i ≤

1

α(1− α)

n∑
i=1

wiC̄i =
1

α(1− α)

n∑
i=1

wiτ
m∑
j=1

T∑
t=1

tȳijt. (3.36)

CHAPTER 3. ENERGY AWARE SCHEDULING 39

From (3.26) and (3.36), it follows that

n∑
i=1

viρi(s
α
i)β−1 +

n∑
i=1

wiC
α
i ≤ 1

α(1− α)

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt

)
ȳijt

(3.37)

≤ 1

α(1− α)

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt

)
y∗ijt,

(3.38)

where the last inequality comes from (3.24). Finally, by taking α = 1
2
, which minimizes the

R.H.S. of (3.38), and by Lemma 3.3 we complete the proof.

3.1.5.3 Single Machine Problem with Precedence Constraints

First we analyze the case with only precedence constraints. Through the following lemma,

we can prove that the SAPAS algorithm returns a feasible schedule for this problem.

Lemma 3.4. If i1 ≺ i2, constraint (3.17) implies that tαi1 < tαi2.

Proof. Given a precedence constraint i1 ≺ i2, and using its corresponding constraint in the

LP, given by equation (3.17), we have that for t = {1, . . . , T − p̂i2m},

m∑
j=1

t∑
u=1

ȳi1ju ≥
m∑
j=1

min{t+p̂i2j ,T}∑
u=1

ȳi2ju ≥
m∑
j=1

t+p̂i2m∑
u=1

ȳi2ju. (3.39)

Taking t = tαi2 − p̂i2m ≤ T − p̂i2m, we get that

m∑
j=1

tαi2
−p̂i2m∑
u=1

ȳi1ju ≥
m∑
j=1

tαi2∑
u=1

ȳi2ju ≥ α, (3.40)

where the last inequality follows from the definition of tαi2 given in (3.18). Equation (3.40)

also implies that by time step tαi2 − p̂i2m job i1 has already achieved its α-point so,

tαi1 ≤ tαi2 − p̂i2m ⇒ tαi1 < tαi2 , (3.41)

where the last inequality follows from p̂i2,m > 0.

40 CHAPTER 3. ENERGY AWARE SCHEDULING

Now we are in position of computing an approximation bound for the SAPAS algorithm

in the 1|prec|
∑
Ei(si) + wiCi case.

Theorem 3.3. The SAPAS algorithm with α = 1
2

returns a result that is at most 4(1+δ) times

the optimal value for the time-and-speed-indexed integer formulation for the 1|prec|
∑
Ei(si) +

wiCi problem, with Ei(si) = viρis
β−1
i .

Proof. Because the SAPAS algorithm sorts jobs in non-decreasing values of tαi , then if tαi1 < tαi2 ,

job i1 is scheduled before job i2. By Lemma 3.4, we get that the precedence constraint i1 ≺ i2

implies tαi1 < tαi2 . Hence, the SAPAS algorithm preserves all the precedence constraints, and

thus the resulting schedule is feasible.

Given this result, Theorem 3.2 proves that the SAPAS algorithm is a 4(1+δ)-approximation

algorithm for the 1|prec|
∑
Ei(si) + wiCi problem.

3.1.5.4 Single Machine Problem with Precedence and Release Date Constraints

When release date constraints are added we get the following result.

Theorem 3.4. The SAPAS algorithm with α =
√

2 − 1 returns a result that is at most

(3 + 2
√

2)(1 + δ) times the optimal value for the time-and-speed-indexed integer formulation

for the 1|ri, prec|
∑
Ei(si) + wiCi problem, with Ei(si) = viρis

β−1
i

Proof. We assume, w.l.o.g. that tα1 ≤ tα2 ≤ . . . ≤ tαn. Because equation (3.26) from Theorem

3.2 is still valid, we have that

viρi(s
α
i)β−1 ≤ viρi

α(1− α)

m∑
j=1

T∑
u=1

σβ−1
j ȳiju ≤

(1 + α)

α(1− α)
viρi

m∑
j=1

T∑
u=1

σβ−1
j ȳiju, (3.42)

where the last inequality comes from the fact that α ≥ 0.

Since in this case idle times between jobs can exist, equation (3.27) is no longer valid.

Because job i is scheduled to start after jobs 1 to i − 1, it must start after maxij=1 rj.

Additionally, it will require at most
∑i

j=1
ρj
sαj

time to be processed, thus, we can bound Cα
i by

Cα
i ≤ max

j={1,...,i}
rj +

i∑
j=1

ρj
sαj
. (3.43)

CHAPTER 3. ENERGY AWARE SCHEDULING 41

Job i has to start after its release date and the release date of all previous jobs, thus,

maxij=1 rj ≤ τtαi . From equation (3.31) we can bound
∑i

j=1
ρj
sαj

, hence,

Cα
i ≤ τtαi +

τ

α
tαi = τtαi

(
1 +

1

α

)
. (3.44)

Since the equation (3.34) is still valid, together with (3.44) we get that

Cα
i ≤

(1 + α)

α(1− α)
C̄i ⇒

n∑
i=1

wiC
α
i ≤

(1 + α)

α(1− α)

n∑
i=1

wiC̄i. (3.45)

From (3.42) and (3.45) it follows that,

n∑
i=1

viρi(s
α
i)β−1 +

n∑
i=1

wiC
α
i ≤ (1 + α)

α(1− α)

[
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j ȳijt +

n∑
i=1

wiC̄i

]
(3.46)

≤ (1 + α)

α(1− α)

[
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j y∗ijt +

n∑
i=1

wiC
∗
i

]
(3.47)

Finally, by setting α = arg min{0≤α≤1}

{
(1+α)
α(1−α)

}
=
√

2− 1, and by Lemma 3.3 it follows

that the SAPAS algorithm is a (3 + 2
√

2)(1 + δ)-approximation algorithm.

Note that for these last two cases we still have the same upper and lower bounds on

the possible speed values σmax and σmin, as well as the bound used for the total number of

time-steps, T .

3.1.6 Interval-and-Speed-Indexed Formulation

In the interval-indexed formulation we divide the time horizon into geometrically increasing

intervals, and the completion time of each job is assigned to one of these intervals. Since the

completion times are not associated to a specific time, the completion times are not precisely

known but are lower bounded. By controlling the growth of each interval one can obtain a

sufficiently tight bound.

42 CHAPTER 3. ENERGY AWARE SCHEDULING

3.1.6.1 Model Description and Approximation Algorithm

The problem formulation is as follows. We divide the time horizon into the following

geometrically increasing intervals: [κ, κ], (κ, (1 + ε)κ], ((1 + ε)κ, (1 + ε)2κ], . . ., where ε > 0 is

an arbitrary small constant, and κ = ρmin

σmax
denotes the smallest interval size that will hold at

least one whole job. We define interval It = (τt−1, τt], with τ0 = κ and τt = κ(1 + ε)t−1. The

interval index ranges over {1, . . . , T}, with T = min{dte : κ(1 + ε)t−1 ≥ maxni=1 ri +
∑n

i=1
ρi
σ1
};

and thus, we have a polynomial number of indices.

Let

xijt =

 1, if job i runs at a speed σj and completes in1 time interval It = (τt−1, τt]

0, otherwise.

(3.48)

By using the lower bounds τt−1 of each time interval It, a lower bound to (3.1) is written

as,

min
x

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt−1

)
xijt. (3.49)

The following are the constraints required for the 1|ri, prec|
∑
Ei(si) + wiCi problem:

1. Each job must finish in a unique time interval and speed; therefore for i = {1, . . . , n}:
m∑
j=1

T∑
t=1

xijt = 1. (3.50)

2. Since only one job can be processed at any given time, the total processing time of jobs

up to time interval It must be at most τt units. Thus, for t = {1, . . . , T}:
n∑
i=1

m∑
j=1

t∑
u=1

ρi
σj
xiju ≤ τt. (3.51)

3. Job i running at speed σj requires ρi
σj

time units to be processed, and considering that

its release time is ri, then for i = {1, . . . , n}, j = {1, . . . ,m}, and t = {1, . . . , T}:

xijt = 0, if τt < ri +
ρi
σj
. (3.52)

CHAPTER 3. ENERGY AWARE SCHEDULING 43

4. For i = {1, . . . , n} and t = {1, . . . , T}:

xit ∈ {0, 1}. (3.53)

5. The precedence constraint i1 ≺ i2 implies that job i2 cannot finish in an interval earlier

than i1. Therefore for every i1 ≺ i2 constraint we have that for t = {1, . . . , T}:

m∑
j=1

t∑
u=1

xi1ju ≥
m∑
j=1

t∑
u=1

xi2ju. (3.54)

It is important to note that this integer program only provides a lower bound for (3.1); in

fact its optimal solution may not be schedulable, since constraints (3.51) do not imply that

only one job can be processed at a single time, they only bound the total amount of work in

∪tIt. Hence, for example, an instance in which all the release dates of the jobs assigned to a

specific interval It = (τt−1, τt] are at ri = τt − δ, with δ arbitrary small, will be feasible in the

IP as long as the processing time of all jobs assigned to It is less than (1 + ε)τt−1. Because of

the release dates, if the total processing time of the jobs is more than δ, the jobs will not fit

in the interval, making it not schedulable, even though it is feasible in the IP.

We now describe the approximation algorithm for the EAS problem with weighted

completion time as scheduling metric, called Schedule by α-intervals and α-speeds

(SAIAS), which is detailed in Algorithm 3.2.

Let x̄ijt denote the optimal solution of the linear relaxation of the integer program (3.49)-

(3.54), in which we change constraints (3.53) for xijt ≥ 0. In step 1 we formulate the IP

and in step 2 of the algorithm we compute the optimal solution x̄. Next, in step 3, given

0 ≤ α ≤ 1, we compute the α-interval of job i, which is defined as,

Iαi = min

{
t :

m∑
j=1

t∑
u=1

x̄iju ≥ α

}
. (3.55)

Since several jobs may finish in the same interval, let Jt denote the set of jobs that finish

in interval It, Jt = {i : Iαi = t}, and we use these sets to determine the order Πα as described

in step 4.

44 CHAPTER 3. ENERGY AWARE SCHEDULING

Algorithm 3.2 Schedule by α-intervals and α-speeds (SAIAS) for EAS

Inputs: set of jobs, α ∈ (0, 1), ε > 0, set of speeds S = {σ1, . . . , σm}.

1 Divide time into increasing time intervals It = (τt−1, τt], with τt = κ(1 + ε)t−1.

2 Compute an optimal solution x̄ to the linear relaxation (3.49)-(3.54).

3 Compute the α-intervals Iα and the sets Jt.

4 Compute an order Πα that has the sets Jt ordered in non-decreasing values of t and

the jobs within each set in a manner consistent with the precedence constraints.

5 Compute the α-speeds sα.

6 Round down each sαi to the nearest speed in S and run job i at this rounded speed, s̄αi .

7 Set the i-th job to start at time max{rπ(i), C̄
α
π(i−1)}, where C̄α

π(i−1) is the completion

time of the previous job using the rounded α-speeds, and C̄α
π(0) = 0.

8 return speeds s̄α, order Πα and completion times C̄α.

In step 5, we compute the α-speeds as follows. Since
∑m

j=1

∑Iαi
u=1 x̄iju ≥ α, we define

auxiliary variable {x̃ijt} as:

x̃ijt =


x̄ijt, t < Iαi

max
{

min
{
x̄ijIαi , α−

∑j−1
l=1 x̄ilIαi − βi

}
, 0
}
, t = Iαi

0, t > Iαi ,

(3.56)

where βi =
∑m

j=1

∑Iαi −1
u=1 x̄iju < α. Note that with this auxiliary variable we have that

m∑
j=1

Iαi∑
u=1

x̃iju = α.

This is a key step that allows us to truncate the fractional solution so that for every job i,

the sum of x̃ijt up to time interval Iαi for each speed j can be interpreted as a probability

mass function. We define this probability mass function (pmf) µi = (µi1, . . . , µim) on the set

of speeds S = {σ1, . . . , σm} as

µij =
1

α

Iαi∑
u=1

x̃iju. (3.57)

CHAPTER 3. ENERGY AWARE SCHEDULING 45

Let ŝi define a random variable distributed according to the pmf µi, i.e. µij = P(ŝi = σj).

Then, the α-speed of job i, sαi , is defined as follows:

1

sαi
= E

[
1

ŝi

]
=

m∑
j=1

µij
σj
⇒ sαi =

1

E
[

1
ŝi

] . (3.58)

We define the α-speeds using the reciprocal of the speeds since the completion times are

proportional to the reciprocals instead of the speeds, and we need to bound completion times

in the analysis of the algorithm.

Next, in step 6, because the α-speeds sαi do not necessarily belong to the set of possible

speeds S we round them down to s̄αi , which is the nearest speed in the set such that s̄αi ≤ sαi .

Finally, in steps 7 and 8 we compute the completion times given the calculated speeds and

return the set of speeds s̄α and the schedule given by the order Πα and the completion

times C̄α.

We now analyse this algorithm’s performance for different energy aware scheduling

problems. In the following subsections we will assume w.l.o.g. that Iα1 ≤ Iα2 ≤ . . . Iαn .

3.1.6.2 Single Machine Problem with Precedence Constraints

We first need to prove that the output of the SAIAS algorithm is indeed feasible.

Lemma 3.5. If i1 ≺ i2, then constraint (3.54) implies that Iαi1 ≤ Iαi2.

Proof. Evaluating the LP constraint (3.54) corresponding to i1 ≺ i2, for t = Iαi2 , we have that,

m∑
j=1

Iαi2∑
u=1

xi1ju ≥
m∑
j=1

Iαi2∑
u=1

xi2ju ≥ α,

where the last inequality follows from the definition of Iαi2 . The chain of inequalities implies

that

m∑
j=1

Iαi2∑
u=1

xi1ju ≥ α,

so Iαi1 ≤ Iαi2 .

46 CHAPTER 3. ENERGY AWARE SCHEDULING

Since the SAIAS algorithm schedules jobs by first ordering the sets Jt in increasing order

of t, and then orders the jobs within each set in a way that is consistent with the precedence

constraints, by Lemma 3.5 it follows that the SAIAS algorithm preserves the precedence

constraints, and, therefore, the output of the algorithm is feasible. Next, we can prove the

following result.

Theorem 3.5. The SAIAS algorithm with α = 1
2

is a 4(1+ ε)(1+δ)-approximation algorithm

for the 1|prec|
∑
Ei(si) + wiCi problem, with Ei(si) = viρis

β−1
i .

Proof. Let x∗ijt denote an optimal solution to the integer problem (3.49)-(3.54), x̄ijt the

fractional solution of its linear relaxation, and x̃iju the auxiliary variables calculated for the

SAIAS algorithm.

Since in (3.49) the completion time for jobs completed in interval It is τt−1, it follows that,

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wiτt−1

)
x̄ijt ≤

n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x∗ijt +

n∑
i=1

wiC
∗
i . (3.59)

The energy terms of the algorithm’s solution are bounded as follows,

viρi(s
α
i)β−1 = viρi

(
1

sαi

)−(β−1)

= viρi

(
E
[

1

ŝi

])−(β−1)

≤ viρiE

[(
1

ŝi

)−(β−1)
]

= viρiE
[
ŝβ−1
i

]
= viρi

m∑
j=1

µijσ
β−1
j , (3.60)

where the inequality follows from Jensen’s Inequality applied to the convex function 1
sβ−1 .

Using the definition of µij in (3.57) and given that 0 ≤ α ≤ 1, ε > 0, and x̃ijt ≤ x̄ijt, it follows

that,

viρi(s
α
i)β−1 ≤ viρi

α

m∑
j=1

Iαi∑
u=1

σβ−1
j x̃iju ≤

(1 + ε)

α(1− α)
viρi

m∑
j=1

T∑
u=1

σβ−1
j x̄iju. (3.61)

Since there are no release date constraints there is no idle time between jobs,

Cα
i =

i∑
j=1

ρj
sαj

=
i∑

j=1

ρjE
[

1

ŝj

]
=

1

α

i∑
j=1

m∑
l=1

Iαj∑
u=1

ρj
σl
x̃jlu ≤

1

α

n∑
j=1

m∑
l=1

Iαi∑
u=1

ρj
σl
x̄jlu, (3.62)

CHAPTER 3. ENERGY AWARE SCHEDULING 47

and from constraint (3.51) for t = Iαi we get, Cα
i ≤ 1

α
τIαi .

Let C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt denote the optimal fractional completion time given by

the optimal solution of the relaxed linear program (3.49)-(3.52). Since it is possible that∑m
j=1

∑Iαi
t=1 x̄ijt > α; we define X

(1)
i = α −

∑m
j=1

∑Iαi −1
t=1 x̄ijt and X

(2)
i =

∑m
j=1

∑Iαi
t=1 x̄ijt − α,

thus X
(1)
i +X

(2)
i =

∑m
j=1 x̄ijIαi , and we can rewrite

C̄i =
m∑
j=1

Iαi −1∑
t=1

τt−1x̄ijt + τIαi −1X
(1)
i + τIαi −1X

(2)
i +

m∑
j=1

T∑
t=Iαi +1

τt−1x̄ijt, (3.63)

and eliminating the lower terms of the previous sum we get that,

C̄i ≥ τIαi −1X
(2)
i +

m∑
j=1

T∑
t=Iαi +1

τt−1x̄ijt

≥ τIαi −1X
(2)
i +

m∑
j=1

T∑
t=Iαi +1

τIαi −1x̄ijt = τIαi −1(1− α). (3.64)

Because τIαi = (1 + ε)τIαi −1, from (3.62) and (3.64) we get that

Cα
i ≤

(1 + ε)

α(1− α)
C̄i ⇒

n∑
i=1

wiC
α
i ≤

(1 + ε)

α(1− α)

n∑
i=1

wiC̄i. (3.65)

From (3.59), (3.61), and (3.65) it follows that,

n∑
i=1

viρi(s
α
i)β−1 +

n∑
i=1

wiC
α
i ≤

(1 + ε)

α(1− α)

[
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x∗ijt +

n∑
i=1

wiC
∗
i

]
,

(3.66)

and we set α = arg min0≤α≤1

{
1

α(1−α)

}
= 1

2
, to minimize the bound. By Lemma 3.3, which

bounds the final rounding error, we get the desired approximation ratio.

3.1.6.3 Single Machine Problem with Precedence and Release Date Constraints

We now analyse the case with precedence constraints and release dates. Release dates makes

the problem somewhat harder since they can introduce idle times between jobs.

Theorem 3.6. The SAIAS algorithm with α =
√

2 − 1 is a (3 + 2
√

2)(1 + ε)(1 + δ)-

approximation algorithm for the 1|ri, prec|
∑
Ei(si) + wiCi problem, with Ei(si) = viρis

β−1
i .

48 CHAPTER 3. ENERGY AWARE SCHEDULING

Proof. The bound for the energy terms computed in equation (3.60) is still valid when there

is idle time between jobs, thus, we have that,

viρi(s
α
i)β−1 ≤ (1 + ε)

α(1− α)
viρi

m∑
j=1

T∑
u=1

σβ−1
j x̄iju ≤

(1 + ε)(1 + α)

α(1− α)
viρi

m∑
j=1

T∑
u=1

σβ−1
j x̄iju.

(3.67)

When bounding the completion time Cα
i , given the sorting done in step 3 of the SAIAS al-

gorithm, now one has to consider all the jobs up to the ones in set JIαi , and thus,

Cα
i ≤ max

j∈{J1,...,JIα
i
}
rj +

∑
j∈{J1,...,JIα

i
}

ρj
sαj
. (3.68)

Since all jobs that have been at least partially processed up to time interval It need to be

released before τt, it follows that maxj∈{J1,...,JIα
i
} rj ≤ τIαi . On the other hand, we also have

that,

∑
j∈{J1,...,JIα

i
}

ρj
sαj

=
1

α

∑
j∈{J1,...,JIα

i
}

m∑
l=1

Iαj∑
u=1

ρj
σl
x̃jlu ≤

1

α

n∑
j=1

m∑
l=1

Iαi∑
u=1

ρj
σl
x̄jlu ≤

1

α
τIαi , (3.69)

where the last inequality follows from constraint (3.51) with t = Iαi . Thus,

Cα
i ≤

(1 + α)

α
τIαi .

Since C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt, (3.64) is still valid and because τIαi = (1 + ε)τIαi −1, we get that

Cα
i ≤

(1 + ε)(1 + α)

α(1− α)
C̄i ⇒

n∑
i=1

wiC
α
i ≤

(1 + ε)(1 + α)

α(1− α)

n∑
i=1

wiC̄i. (3.70)

Finally, from (3.67) and (3.70) it follows that,

n∑
i=1

viρi(s
α
i)β−1 +

n∑
i=1

wiC
α
i ≤

(1 + ε)(1 + α)

α(1− α)

[
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x∗ijt +

n∑
i=1

wiC
∗
i

]
,

(3.71)

and by setting α = arg min0≤α≤1

{
(1+α)
α(1−α)

}
=
√

2− 1, and again using Lemma 3.3 to bound

the speed-rounding error, we get the required approximation ratio.

CHAPTER 3. ENERGY AWARE SCHEDULING 49

3.2 Total Weighted Tardiness

In this section we modify the SAIAS algorithm and apply it to the weighted tardiness setting.

We still allow for arbitrary precedence constraints but no release dates. In this case, each job

i also has a deadline di. The tardiness Ti of job i is defined as Ti = max{0, Ci − di}

3.2.1 Problem Formulation

We have a set of n jobs, where each job i has the following characteristics: a starting time

ui, a completion time ci, a workload or processing requirements ρi > 0, and it is run at a

constant speed si. As we are not allowing preemption, we will have that ci = ui + ρi
si

. Also

each job might have an associated deadline di.

Additionally, using the vector of starting times u, we can define a job ordering vector

Π = {π(1), . . . , π(n)} that specifies the order in which the jobs will be processed.

Now, each job i will be processed on a single machine that consumes power according to

the power function Pi(si) = vis
β
i , where vi ≥ 0 depends on the job but the exponent β ≥ 2

does not. This means that the total energy cost by job i will be Ei(si) = vis
β
i
ρi
si

= viρis
β−1
i .

Our objective is then to find the best scheduling order Π with starting times u and speeds

s that will minimize the total cost of completing all the jobs, i.e. it will minimize the function

g(Π,u, s) =
n∑
i=1

vπ(i)ρπ(i)s
β−1
π(i) + wπ(i)(Cπ(i) − dπ(i))

+.

Lemma 3.6. For any given order Π, the optimal solution for s and u is such that uπ(i) =

Cπ(i−1), ∀i ∈ {1, . . . , n}, i.e. there is no idle time between jobs.

Proof. By contradiction, let’s assume there exists an order Π such that, for that order, the

optimal solution u and s has idle time between at least one pair of jobs. Hence, ∃j ∈ {1, . . . , n}

such that uπ(j) > Cπ(j−1).

Using u, we can create a new starting times vector u′ such that u′π(j) = Cπ(j−1) and

u′π(i) = uπ(i), ∀i 6= j, i.e. job π(j) is released earlier. As sπ(i) =
ρπ(i)

Cπ(i)−uπ(i)
we can define a new

speed vector s′ such that s′π(i) =
ρπ(i)

Cπ(i)−u′π(i)
, thus both solutions will have the same completion

50 CHAPTER 3. ENERGY AWARE SCHEDULING

times C for all jobs, and also only job π(j) will have a different speed. Hence,

g(Π,u, s)− g(Π,u′, s′) = vπ(i)ρπ(i)

(
sβ−1
π(i) − s

′β−1
π(i)

)
> 0⇒ g(Π,u, s) > g(Π,u′, s′),

since sπ(i) > s′π(i) because uπ(j) > u′π(j), which is a contradiction, as that implies that u′, s′ is

a better solution.

Using Lemma 3.6 we get that the objective function can be written as

g(Π, s) =
n∑
i=1

viρis
β−1
i +

n∑
i=1

wπ(i)

(
Cπ(i) − dπ(i)

)+
(3.72)

and we can formulate our problem as a combinatorial optimization one in s and Π, replacing

ui by Ci−1:

min
Π,s

n∑
i=1

vπ(i)ρπ(i)s
β−1
π(i) + wπ(i)(Cπ(i) − dπ(i))

+

s.t.:
Cπ(i) =

∑i
j=1

ρπ(j)
sπ(j)

, ∀i ∈ {1, . . . , n}

s ≥ 0

(3.73)

3.2.2 Interval-and-Speed-Indexed Formulation

We now formulate the problem using a modification of the interval-and-speed-indexed for-

mulation presented in Section 3.1.1. Because the completion time can be bounded by∑m
j=1

∑T
t=1 τt−1xijt, we can bound (3.72) from below by the following optimization problem,

min
x

n∑
i=1

m∑
j=1

T∑
t=1

(
viρiσ

β−1
j + wi (τt−1 − di)+

)
xijt, (3.74)

together with constraints (3.50)-(3.54) from the interval-indexed formulation. Note that

although the objective (3.72) is non-linear, because we have a interval-indexed formulation,

(3.74) is linear.

We compute an approximate optimal solution for (3.72) using the Schedule by α-

intervals and α-speeds for Tardiness (SAIAS-T) Algorithm detailed in Algorithm 3.3.

The main difference with the SAIAS algorithm, is that in step 5 we scale up the α-speeds.

CHAPTER 3. ENERGY AWARE SCHEDULING 51

Algorithm 3.3 Schedule by α-intervals and α-speeds for Tardiness (SAIAS-T)

Inputs: set of jobs, α ∈ (0, 1), ε > 0, γ > 1, set of speeds S = {σ1, . . . , σm}.

1 Divide time into increasing time intervals It = (τt−1, τt], with τt = κ(1 + ε)t−1.

2 Compute an optimal solution x̄ to the linear relaxation (3.74), (3.50)-(3.54).

3 Compute the α-intervals Iα and the sets Jt as in the SAIAS algorithm.

4 Compute an order Πα that has the sets Jt ordered in non-decreasing values of t and the

jobs within each set in a manner consistent with the precedence constraints.

5 Compute the α-speeds sα and scale each sαi to s̃αi = γsαi .

6 Round up each s̃αi to the next speed in S, s̄αi and run each job i at this new speed.

7 Set the i-th job to start at time max{rπ(i), C̄
α
π(i−1)}, where C̄α

π(i−1) is the completion

time of the previous job using the rounded α-speeds, and C̄α
π(0) = 0.

8 return speeds s̄α, order Πα, and completion times C̄α.

This scaling makes the completion time of the relaxed LP comparable to the completion time

of the algorithm’s output, and thus jobs that have 0 tardiness in the LP also have 0 tardiness

in our algorithm. If we rounded speeds down, jobs with 0 tardiness in the LP could, at a

lower speed, miss their deadline, and thus the approximation ratio could be arbitrary large.

We now analyze the algorithm assuming w.l.o.g. that Iα1 ≤ Iα2 ≤ . . . ≤ Iαn . Since Lemma

3.5 remains valid, arguments identical to those in Section 3.1.6.2 show that the output of the

SAIAS-T algorithm is feasible; thus, we have the following theorem:

Theorem 3.7. The SAIAS-T algorithm with γ = (1+ε)
α(1−α)

and α = 1
2

is a 4β(1+ε)β−1(1+δ)β−1-

approximation algorithm for the 1|prec|
∑
Ei(si) + wiTi problem, with Ei(si) = viρis

β−1
i .

Proof. Let C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt denote the optimal fractional completion time of the

relaxed linear program. (C̄i − di)+ is a lower bound for the optimal tardiness (C∗i − di)+,

since
∑

jt(τt−1 − di)+x̄ijt ≥ (C̄i − di)+. Thus,

n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x̄ijt +

n∑
i=1

wi
(
C̄i − di

)+ ≤
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x∗ijt +

n∑
i=1

wi (C
∗
i − di)

+ .

(3.75)

52 CHAPTER 3. ENERGY AWARE SCHEDULING

Let C̃α
i denote the completion time of job i using speeds s̃α and Cα

i the one using speeds

sα. Because there are no release date constraints, there is no idle time in between jobs;

therefore,

C̃α
i =

i∑
j=1

ρj
s̃αj

=
1

γ

i∑
j=1

ρj
sαj

=
1

γ
Cα
i . (3.76)

Since (3.62) remains valid, it follows that

Cα
i ≤

(1 + ε)

α(1− α)
C̄i ⇒ C̃α

i ≤
1

γ

(1 + ε)

α(1− α)
C̄i.

The key step is that by setting γ = (1+ε)
α(1−α)

, which makes the two completion times comparable,

we have that,
n∑
i=1

wi

(
C̃α
i − di

)+

≤
n∑
i=1

wi

(
1

γ

(1 + ε)

α(1− α)
C̄i − di

)+

=
n∑
i=1

wi
(
C̄i − di

)+
. (3.77)

The energy term is bounded in a manner analogous to (3.61):

viρi(s̃
α
i)β−1 = γβ−1viρi(s

α
i)β−1 ≤ (1 + ε)β−1

(α(1− α))β
viρi

m∑
j=1

T∑
t=1

σβ−1
j x̄ijt, (3.78)

where the last inequality follows from (3.61) that remains valid.

From (3.75), (3.78), and (3.77) it follows that,

n∑
i=1

viρi(s̃
α
i)β−1 +

n∑
i=1

wi

(
C̃α
i − di

)+

≤ (1 + ε)β−1

(α(1− α))β

[
n∑
i=1

m∑
j=1

T∑
t=1

viρiσ
β−1
j x∗ijt +

n∑
i=1

wi (C
∗
i − di)

+

]
.

(3.79)

Because speeds are rounded up, the completion times, and thus the tardiness can only be

reduced, whereas the energy cost increases. Since at most we speed up each job by a factor

(1 + δ), we have that,

Ei(s̄
α
i) ≤ Ei((1 + δ)sαi) = (1 + δ)β−1Ei(s

α
i)⇒

n∑
i=1

Ei(s̄
α
i) ≤ (1 + δ)β−1

n∑
i=1

Ei(s
α
i).

(3.80)

The approximation ratio follows from setting α = arg min0≤α≤1

{
1

(α(1−α))β

}
= 1

2
. We

could use (1+ε)β−1

αβ(1−α)β−1 in (3.78) to compute a tighter bound, but the resulting expression is not

as clean.

CHAPTER 3. ENERGY AWARE SCHEDULING 53

We are not able to extend this algorithm for the 1|ri|
∑
Ei(si) + wiTi problem, since it

is based on speed scaling to make sure that jobs are finished within a desired time interval.

When release dates are present, we do not see how to arbitrarily reduce the completion times.

3.3 General Energy Cost Functions

In this section we consider the extension to general energy cost functions, as opposed to

simply energy consumption. We begin by considering discrete speeds, as in the previous

sections, but we will relax this requirement later.

Managers of data centers are clearly interested in the energy cost metric, since they need

to balance the penalty for violating the service level agreements with the cost of energy. The

energy price curves for industrial consumers are often quite complicated because of energy

contracts, discounts, real time pricing etc.; therefore it is very important to consider general

cost functions in the scheduling model. Hence, in this section we use Ei(si) as the general

energy cost function of running job i at speed si. We will require that Ei(si) is non-negative,

just as in [Andrew et al., 2009; Bansal et al., 2009], but no other requirements are needed for

the weighted completion time setting. For the weighted tardiness setting we will require an

additional regularity condition that bounds the growth of the energy cost function.

Since in practice the processor speed can be dynamically changed during the course of a

job, one can replace the general cost function by its lower convex envelope. Hence, without

loss of generality, we can assume that Ei(si) is convex. Furthermore, since the machine

can only run at the speeds in S, we can also consider that Ei(s) is linear in between these

speeds. Hence, for every s ∈ [σj, σj+1] such that s = λσj + (1− λ)σj+1, with λ ∈ [0, 1], then

Ei(s) = λEi(σj) + (1− λ)Ei(σj+1).

Note that for bounding the energy cost terms in the weighted completion time setting, we

only used the fact that the energy consumption function Ei(s) = viρis
β−1 is convex. Thus,

the previous bounds extend to our more general class of functions Ei(s). In the weighted

tardiness case we also require a bound on the growth of the energy cost function, which we

54 CHAPTER 3. ENERGY AWARE SCHEDULING

will address in Section 3.3.2.

3.3.1 Weighted Completion Time Problem with General Energy

Cost

The objective function (3.49) is extended as follows,

min
x

n∑
i=1

m∑
j=1

T∑
t=1

(Ei(σj) + wiτt−1)xijt, (3.81)

where Ei(σj) are just coefficients. Given that we only change the energy cost related terms,

all the completion time related bounds computed previously are still valid.

The only modification required is in the rounding procedure at the end of the SAIAS al-

gorithm, where it was done by rounding down the α-speeds. Now instead we will round them

up or down so that Ei(s̄αi) ≤ Ei(sαi), which is always possible since Ei(si) is linear in between

the speeds in S. With this change Lemma 3.3 remains valid and we can extend the algorithm

to our general energy cost functions.

Theorem 3.8. The SAIAS algorithm with α = 1
2

is a 4(1+ ε)(1+δ)-approximation algorithm

for the 1|prec|
∑
Ei(si) + wiCi problem, for all general non-negative energy cost functions

Ei(s).

Proof. Because Ei(σ), i = {1, . . . , n} are convex functions, (3.25) remains valid since

Ei(sαi) = Ei(E[ŝi]) ≤ E[Ei(ŝi)] =
m∑
j=1

µijEi(σj).

and thus, from the definition of µij, and from 0 ≤ α ≤ 1, ε > 0, and x̃ijt ≤ x̄ijt,

n∑
i=1

Ei(sαi) ≤ 1

α

n∑
i=1

m∑
j=1

Iαi∑
t=1

Ei(σj)x̃ijt ≤
(1 + ε)

α(1− α)

n∑
i=1

m∑
j=1

T∑
t=1

Ei(σj)x̄ijt. (3.82)

The proof follows since the bounds for the completion time in Theorem 3.5 remain valid,

as well as Lemma 3.3.

By the same argument we also have that,

CHAPTER 3. ENERGY AWARE SCHEDULING 55

Theorem 3.9. The SAIAS algorithm with α =
√

2 − 1 is a (3 + 2
√

2)(1 + ε)(1 + δ)-

approximation algorithm for the 1|ri, prec|
∑
Ei(si)+wiCi problem, for all general non-negative

energy cost functions Ei(s).

3.3.2 Weighted Tardiness Problem with General Energy Cost

We replace the energy term in (3.74) with the general energy cost term to obtain the new

objective

min
x

n∑
i=1

m∑
j=1

T∑
t=1

(
Ei(σj) + wi (τt−1 − di)+)xijt. (3.83)

Since the SAIAS-T algorithm speeds-up the jobs, we need to add the following regularity

condition for the energy cost functions Ei(σ) in order to obtain performance bounds:

Assumption 3.1. ∃β ∈ N+, such that Ei(γσi) ≤ γβ−1Ei(σi), ∀γ ≥ 1.

Theorem 3.10. The SAIAS-T algorithm with γ = (1+ε)
α(1−α)

and α = 1
2
, is a 4β(1 + ε)β−1(1 +

δ)β−1-approximation algorithm for the 1|prec|
∑
Ei(si) + wiTi problem, for all non-negative

energy cost functions Ei(s) that satisfy Assumption 3.1.

Proof. As before, all the completion time related bounds (3.76) and (3.77) remain valid, so

only a bound analogous to (3.78) is needed. From Assumption 3.1 it follows that,

Ei(s̃αi) ≤ γβ−1Ei(sαi) ≤ (1 + ε)β−1

αβ(1− α)β

m∑
j=1

T∑
t=1

Ei(σj)x̄ijt. (3.84)

Thus, from (3.77) it follows that,

n∑
i=1

Ei(s̃αi) +
n∑
i=1

wi

(
C̃α
i − di

)+

≤ (1 + ε)β−1

αβ(1− α)β

[
n∑
i=1

m∑
j=1

T∑
t=1

Ei(σj)x∗ijt +
n∑
i=1

wi (C
∗
i − di)

+

]
.

(3.85)

Since we are rounding speeds up, equation (3.80) remains valid and thus taking α = 1
2

completes the proof.

56 CHAPTER 3. ENERGY AWARE SCHEDULING

3.3.3 Continuous Speeds

As commented previously, our algorithms are also applicable for the case when a continuous set

of speeds is possible. In this case we modify the SAIAS and SAIAS-T algorithms, eliminating

the rounding step required at the end of each algorithm.

When the operating range of the machine is given, i.e. the speed limits σmin and σmax,

since our IP requires a speed index, we need to quantize the set [σmin, σmax] in m different

speeds. We can do this by setting σ1 = σmin, and as before we define speed σj = (1 + δ)σj−1,

for some δ > 0, making sure that σm ≥ σmax in order to cover the whole operating range.

Just by rounding as described in Section 3.3.1 for the weighted completion time setting and

rounding up for the weighted tardiness setting we can prove the following lemma:

Lemma 3.7. The optimal solution for the IP (3.49)-(3.54) is at most (1+δ) times the optimal

solution of the energy aware problem in the weighted completion time and continuous speed

setting, and the optimal solution for the IP (3.74), (3.50)-(3.54) is at most (1 + δ)β−1 times

the optimal solution of the energy aware problem in the weighted tardiness and continuous

speed setting.

The proof is analogous to Lemma 3.3 for the weighted completion time and similar to

equation (3.80) for the weighted tardiness setting. Since there is no additional rounding

at the end of the algorithm, using Lemma 3.7 we get the same approximation ratios as in

Theorems 3.8, 3.9, and 3.10.

When the operating range of the machine is not given, and we are interested in determining

a set S that covers the optimal speeds from the continuous case, we need the following

additional regularity condition on the energy cost functions: ∃ξ < ∞ such that Ej(si) is

increasing ∀si ≥ ξ. It is easy to prove that this is a necessary and sufficient conditions for the

problem to be well defined, and thus we can compute σmin and σmax such that the optimal

speeds s∗i ∈ [σmin, σmax], for all i. Then we can apply the same procedure as before to quantize

and build the set of speeds.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 57

Chapter 4

Heuristics and Experimental Results

for EAS

T
hroughout this chapter we present several heuristics that improve the perfor-

mance or extend the applicability of our algorithms to other settings not considered

in our theoretical results. We also present several experimental results that show

that the performance of our algorithms is much better than our theoretical worst-case bounds

and analyze the magnitude of the heuristic improvements. Additionally, we present the

performance when other settings are considered such as weighted flow time as scheduling

metric, or when multiple machines are available.

4.1 Heuristic Improvement for Weighted Completion

Time

A natural improvement for the SAIAS algorithm is to recalculate the optimal speeds once the

order is defined by the algorithm. Without loss of generality, we assume that the schedule

order computed by the SAIAS algorithm is Πα = {1, 2, . . . , n}. The following result establishes

that we can compute the optimal processing speed for each job, for any given order, in closed

form. This result is a detailed extension of the results given in Lemma 3.1.

58 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

Lemma 4.1. Given the schedule order Πα, the optimal speed at which to run job i is given by

s∗i =
β

√∑n
j=i

∑i
k=1 λ

∗
jk

(β − 1)vi
, ∀i ∈ {1, . . . , n} , (4.1)

where λ∗jk is the optimal solution of the following optimization problem:

max
λ

n∑
i=1

i∑
j=1

λijrj +
n∑
i=1

Bρiv
1
β

i

(
n∑
j=i

i∑
k=1

λjk

)b

s.t.: ∑i
j=1 λij = wi, ∀i

λij ≥ 0, ∀j ∈ {1, . . . , i},∀i,

(4.2)

with B ≡ β
(β−1)b

and b ≡ β−1
β

.

Proof. Given the order Πα = {1, 2, . . . , n} the optimal speeds are given by the solution of

the following optimization problem:

min
s

n∑
i=1

viρis
β−1
i + wiCi

s.t.:
Ci ≥ rj +

∑i
k=j

ρk
sk
, ∀j ∈ {1, . . . , i}, ∀i

si ≥ 0, ∀i.

(4.3)

The Lagrangian for (4.3) is given by

L(s,λ) =
n∑
i=1

viρis
β−1
i + wiCi −

n∑
i=1

i∑
j=1

λij

(
Ci − rj −

i∑
k=j

ρk
sk

)
, (4.4)

where λij , j = {1, . . . , i} denotes the dual variables of the release date constraints in (4.3) for

the i-th job. From the necessary conditions for optimality it follows that
∑i

j=1 λ
∗
ij = wi, for

all i ∈ {1, . . . , n}, and that the optimal speed for job i is given by (4.1), where s∗ and λ∗ are

the optimal speeds and optimal dual variables respectively.

Using (4.4) it is also easy to show that (4.2) is the dual problem of (4.3). Since λ∗ is its

optimal solution, it follows that (4.1) will give the optimal speeds.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 59

Note that from (4.1) we get that the optimal speed of the i-th job only depends of the

dual variables of the completion time constraints of future jobs, and not past ones.

Corollary 4.1. If ri = 0, ∀i, i.e. all jobs are available at time 0, then the optimal speed of

job i is given by

s∗i =
β

√∑n
j=iwj

(β − 1)vi
, ∀i ∈ {1, . . . , n} . (4.5)

Proof. By setting ri = 0, ∀i in (4.2) we note that the maximum value of this modified

optimization problem is achieved when λi1 = wi, and thus λij = 0, for j = {2, . . . , i}. The

proof follows by using these values of λ in (4.1).

This result is an extension of the speed rule used in most of the energy aware scheduling

literature for the flow time metric [Andrew et al., 2010; Andrew et al., 2009]. The main result

in these papers is that using SRPT as ordering policy and a speed of s = β

√
nt

(β−1)v
, where nt

is the number of jobs available at time t, achieves the best known competitive ratios. Since

[Andrew et al., 2010; Andrew et al., 2009] consider the total flow time (i.e. wi = 1, ∀i) and

the same energy cost function for all jobs (i.e. vi = v, ∀i) the optimal speed s = β

√
nt

(β−1)v
is

identical to the one given in (4.5).

Using Lemma 4.1 and Corollary 4.1 one can design an algorithm that computes the

optimal speeds for a given order Π in O(n) time, when there are no release dates, and in

O(n2) time, when there are release dates. We describe these algorithms ub the following

section, since this setting is a special case of the more general setting detailed in Section 4.2.

4.2 Heuristic Improvement for Weighted Tardiness

The total weighed completion time is a special case of the total weighted tardiness, in which

all deadlines are set to di = 0. In this section we explore the weighted tardiness setting,

describing a similar heuristic improvement as the one detailed in Section 4.1 and a simple

60 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

polynomial time algorithm that can compute the optimal speeds without solving the nonlinear

optimization problem.

4.2.1 Optimality Conditions for Speed-Scaling

W.l.o.g., we can assume that Πα = {1, 2, . . . , n}. Then, problem (3.73) can be reformulated

as:

min
s,z

n∑
i=1

viρis
β−1
i + wizi

s.t.:
zi ≥

∑i
j=1

ρj
sj
− di, ∀i ∈ {1, . . . , n}

zi ≥ 0, ∀i ∈ {1, . . . , n}

s ≥ 0.

(4.6)

Using standard Lagrangian theory, we can look for the necessary optimality conditions,

with

L(s, z,λ,µ,η) =
n∑
i=1

viρis
β−1
i + wizi − λi

(
zi −

i∑
j=1

ρj
sj

+ di

)
− µizi − ηisi. (4.7)

The optimality conditions state that if (s, z) is a local minimum and is regular, and the

constraints are differentiable, then there exists Lagrange multipliers λ ≥ 0, µ ≥ 0, and η ≥ 0

such that:

∂L
sl

= (β − 1)vlρls
β−2
l − ρl

s2
l

n∑
j=l

λj − ηl = 0, ∀l (4.8)

∂L
zl

= wl − λl − µl = 0, ∀l. (4.9)

Now, by complementary slackness we have that ηisi = 0, ∀i. Since si > 0, ∀i (otherwise

the cost function will go to +∞), then it must be that ηi = 0, ∀i.

We can classify jobs into 3 different cases: job i is early if ci < di, is on time if ci = di, or

is late if ci > di.

According to this classification, if a job is late then ci − di > 0. Since zi ≥ ci − di

then zi > 0. By complementary slackness µizi = 0, ∀i which implies that if a job l is late

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 61

then µl = 0, and thus λl = wl. On the other hand, if a job l is early then ci − di < 0,

making zl = 0 and thus zl − cl + dl 6= 0. Again, by complementary slackness, we have that

λi(zi − ci + di) = 0, ∀i, so if job l is early λl = 0 and µl = wl. Finally, if job l is on time

cl − dl = 0 and zl = 0. As µl ≥ 0 we will then have that wl ≥ λl ≥ 0.

By equation 4.8 we also get that, since ηl = 0, then

sl =

(∑n
j=l λj

(β − 1)vl

) 1
β

. (4.10)

Equation 4.10 indicates that if future jobs are finishing early, we can select a slower speed

for the current job in order to reduce its cost and at the same time push these future jobs

further near their deadlines. On the contrary, if all future jobs are late, the speed of the

current job will be high and thus future jobs end earlier. An additional insight we get from

equation 4.10 is the following Lemma.

Lemma 4.2. In the EAS problem with total weighted tardiness as scheduling metric, given

any order Π, the nth job cannot finish early in the optimal solution for the speeds, i.e. Cn ≥ dn.

Proof. We prove this by contradiction. If job n is early, then by equation (4.10) we have that

sn = 0, since λn = 0, and we this will make the cost go to +∞. Hence, this cannot be an

optimal solution.

This is similar to the result we obtained in Lemma 3.6 as it basically implies that there is

no idle time at the end either.

Using the Lagrangian from equation (4.7) we can also derive a dual of Problem (4.6).

Rearranging the terms in equation (4.7) we get that the dual problem is determined by

max
λ,µ,η≥0

{
min
s,z

{
n∑
i=1

viρis
β−1
i + zi (wi − λi − µi)− ηisi − λidi +

i∑
j=1

λi
ρj
sj

}}
. (4.11)

We need to have that wi − λi − µi = 0 for this problem to be well defined, as well as

ηi = 0, ∀i. Furthermore, since µ ≥ 0 we rewrite the constraints as 0 ≤ λ ≤ w. Then, we

have that

max
0≤λ≤w

{
n∑
i=1

−λidi + min
s

{
n∑
i=1

viρis
β−1
i +

n∑
i=1

i∑
j=1

λi
ρj
sj

}}
. (4.12)

62 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

We now exchange the sums in the second term of the minimization problem in equation

(4.12), and we get that

Fλ(s) =
n∑
i=1

viρis
β−1
i +

n∑
i=1

i∑
j=1

λi
ρj
sj

=
n∑
i=1

viρis
β−1
i +

n∑
i=1

n∑
j=i

λj
ρi
si

=
n∑
i=1

(
viρis

β−1
i + Λi

ρi
si

)
, (4.13)

where Λi ≡
∑n

j=i λj. With this transformation the minimization problem becomes an

unconstrained and decoupled minimization problem with the following optimal solution:

∂Fλ(s)

si
= (β − 1)viρis

β−2
i − ρi

s2
i

Λi = 0⇒ s∗i =

(∑n
j=i λj

(β − 1)vi

) 1
β

, ∀i. (4.14)

Hence, the optimal value is

Fλ(s∗) =
n∑
i=1

Bρiv
1
β

i

(
n∑
j=i

λj

)b

, (4.15)

where B ≡ β
(β−1)b

and b ≡ β−1
β

.

Evaluating solution (4.15) in (4.12) we get that the dual problem is

max
λ

n∑
i=1

−λidi + Bρiv
1
β

i

(
n∑
j=i

λj

)b

s.t.:
0 ≤ λi ≤ wi, ∀i ∈ {1, . . . , n}.

(4.16)

Considering that no order is given, then the dual of the combinatorial problem (3.73)

becomes:

min
Π

max
λ

n∑
i=1

−λidπ(i) + Bρπ(i)v
1
β

π(i)

(
n∑
j=i

λπ(j)

)b

s.t.:
0 ≤ λi ≤ wi, ∀i ∈ {1, . . . , n}.

(4.17)

Although we can solve problem (4.16) easily, since it is a convex optimization problem,

there is a special case where we can compute the optimal speeds without solving the nonlinear

optimization problem. This is when all jobs have the same deadline. A special case of this

setting is the total weighted completion time, since in that setting all jobs have the deadline

di = 0.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 63

4.2.2 Special Case: Common Deadline

When all jobs have a common deadline (i.e. di = d, ∀i), given an order Π, we know that

if job m is on time (or in absence of an on-time job, m is the first late job), all following

jobs will be late, and all the previous ones will be early. This simplifies the problem since

now we only need to find which job is this first on-time or late job to compute the optimal

speeds. If we know that job, then we assign λi = 0, ∀i < m (i.e. all the previous jobs), and

λi = wi, ∀i > m (i.e. for the jobs after m). Finally, if job m is late we assign λm = wm, and

if it is on time we use the following lemma.

Lemma 4.3. In the setting where di = d ≥ 0 for all i, if a job m is completed on-time, its

Lagrange multiplier λm has the value

λm =
β − 1

dβ

(
m∑
i=1

ρiv
1
β

i

)β

−
n∑

i=m+1

wi. (4.18)

Proof. Since all the jobs after m are late, λi = wi, ∀i > m. Then, using equation (4.10) we

have that

sm =

(∑n
j=m λj

(β − 1)vm

) 1
β

=

(
λm +

∑n
j=m+1wj

(β − 1)vm

) 1
β

.

Now for jobs that finish earlier than m, all of which are early jobs, we have that λi =

0, ∀i < m. Hence, the speed at which these jobs run is

si =

(∑n
j=i λj

(β − 1)vi

) 1
β

=

(
λm +

∑n
j=m+1wj

(β − 1)vi

) 1
β

.

On the other hand, since job m finishes on time we know that Cm = d, and thus

Cm =
m∑
i=1

ρi
si

=
m∑
i=1

ρi

(
(β − 1)vi

λm +
∑n

j=m+1wj

) 1
β

=
(β − 1)

1
β(

λm +
∑n

j=m+1wj

) 1
β

m∑
i=1

ρiv
1
β

i = d.

Solving the previous equation for λm proves the Lemma.

Using Lemma 4.3 and equation (4.10) we can design two algorithms to compute the

optimal speeds of an instance given an order Π.

64 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

Algorithm 4.1 Primal Speed

Inputs: set of n jobs and order Π.

1 Set λi = 0, ∀i, and compute speeds si and completion time Ci.

2 Set i = n and dt =∞.

3 while dt > d

4 if Ci < d

5 Stop.

6 elseif Ci ≥ d

7 Assume i is late.

8 Set λi = wi and then calculate sj and Cj, ∀j.

9 if ci ≥ d

10 Keep job i late.

11 Set i = i− 1 and dt = ci.

12 elseif Ci < d

13 Job i should finish at time d.

14 Set λi = β−1
dβ
.

(∑i
j=1 ρjv

1
β

j

)β
−
∑n

j=i+1wj.

15 Compute si and Ci, ∀i.

16 return speeds s.

4.2.2.1 Primal Speed Algorithm

First we use the prime problem formulation (4.6) to design an algorithm that will compute

the optimal speeds. We name this algorithm Primal Speed and we detail in Algorithm 4.1.

The Primal Speed Algorithm works as follows: we start from the last job, job n, and

check if this should be an early or a late job. Then we compute the speeds according to the

assumption and check if the finishing times actually match our assumption. The main idea is

that if we have already defined that jobs p+ 1 to n are late, we can test if job p is late or not

by changing its value of λp and then checking what happens with Cp. If Cp < d from the

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 65

start, we stop since if we increase λp we will only make p and all the previous jobs faster,

hence we will keep having Cp < d. If this is not the case and Cp ≥ d, we assume that p must

then be late: λp = wp. That makes the speed of all previous jobs higher than before and

reduces Cp. If after that we still have that Cp > d then we were right with our assumption

and job p will always be late. On the contrary if now that the speeds are higher we have that

Cp < d, we have a contradiction, since this means that job p finishes early. Hence, we have

shown that keeping λp = 0 makes the job late, but setting it to λp = wp will make it early,

exactly the opposite of what we saw were the optimality conditions. Thus, λp must be in

between these two values, which only occurs if a job is on time, and we can use Lemma 4.3

to compute the exact value of λp.

Theorem 4.1. The Primal Speed algorithm returns the optimal speeds given an order Π

after O(n3) operations.

Proof. The correctness of the algorithm is easy to prove by checking the optimality conditions

of the algorithm’s output. Assuming that the algorithm labels correctly which jobs are late

and which early, the output complies with the KKT conditions, as all jobs labeled late will

have λi = wi, all jobs labeled early will have λi = 0, and the speed is determined according

to equation 4.10. Additionally, the stopping condition makes sure that all jobs labeled late

finish after d and all jobs labeled early finish before. By contradiction, we can assume the

algorithm finishes with a solution s̃ that is not the optimal one s∗. We have two cases: one

in which there is a job i that is on-time (with 0 < λ̃i < wi) and one in which there is no job

satisfying this.

If job i is on-time, as the definition of which jobs are early and which late determines

completely the speeds of all the jobs, this means that in s∗ this job must be either early or

late. If job i is early in s∗, (thus λ∗i = 0 < λ̃i) then all s∗j < s̃j for j ≥ i and the completion

time of job i will be later: C∗i > C̃i. That is a contradiction since C̃i = d and thus in s∗ job i

must then be late. Now if we consider that job i is late in s∗ then λ∗i = wi > λ̃i, making all

previous jobs run faster: s∗j > s̃j. This implies that the completion time of i in the optimal

case must be earlier than for s̃, C∗i < C̃i. Again this is a contradiction since that means that

66 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

in the optimal case job i must be early.

The case where there is no on-time job is analogous but with more cases, as now we can

show that neither the first late job of the algorithm’s solution can be early or on-time in the

optimal one, nor the last early can be late or on-time in the optimal solution, which again

means that the optimal solution and the algorithm’s output must be the same.

It is easy to show that the algorithm will finish since once we decide that a job is late, it

will never become early again in future iterations, because of the way in which the decision of

a job being late or not is taken. As the speed of a job depends on the values of λ for all the

following jobs, the only way a job i, already labeled as late, could become early is that all

previous jobs run at a faster speed, bringing its completion time before d. But that means

that some λj, with j being an early job, must increase which is a contradiction since that

implies job j must become late or on time, and thus i will still be late or on time. Hence,

once a job is labeled as late, it will be always late, and as we have a finite number of jobs the

algorithm will finish.

In terms of complexity, the initialization requires O(1) operations to be performed. Next,

as there exists only n jobs and we will never check one twice, after O(n) iterations the

algorithm will stop. Furthermore, on each iteration we need to calculate O(n) speed values

and O(n) completion times, each requiring O(n) operations. Hence we will obtain the optimal

solution in O(n3) operations.

4.2.2.2 Dual Speed Algorithm

Although the Primal Speed algorithm is O(n3), we can do better by using the dual

formulation (4.17). We call this algorithm Dual Speed and it is detailed in Algorithm 4.2.

Theorem 4.2. The Dual Speed algorithm computes the optimal speed values given an

order Π after O(n) operations.

Proof. The correctness of the algorithm is analogous to the proof in Theorem 4.1, since the

optimality conditions are attained at the end of the algorithm.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 67

Algorithm 4.2 Dual Speed

Inputs: set of n jobs and order Π.

1 Set V =
∑n

j=1 ρjv
1
β

j , W = 0, and λj = 0, ∀j.

2 Set i = n and B ≡ β−1
dβ

.

3 while i > 0

4 Set λi = BV β −W .

5 if 0 ≤ λi < wi

6 Stop.

7 elseif λi < 0

8 Set λi = 0 and Stop.

9 elseif λi ≥ wi

10 Set λi = wi.

11 Update V = V − ρiv
1
β

i and W = W + wi.

12 i = i - 1.

13 Compute all speeds si.

14 return speeds s.

As in Theorem 4.1, because there exist only n different λi and we will never set the value

of one twice, after O(n) iterations the algorithm will stop. Furthermore, on each iteration we

will do at most O(1) operations, just set the value of λi, and update i, V , and W . Since in

this case the initialization requires O(n) operations to get the initial value of V , after O(n)

operations the algorithm will compute the optimal solution.

This algorithm significantly reduces the operations required to compute the optimal speeds

and can be directly applied to the total weighted completion time by setting d = 0.

4.2.2.3 Cases Solvable In Polynomial Time

To conclude this special case we observed though simulations that Theorem 3.1 also produced

the optimal schedule in this setting, without any counterexamples. Regretfully, the same

68 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

proof does not work in this case so we leave it as an open conjecture.

Conjecture 4.1. For the case where all jobs have the same deadline di = d > 0, if wi = w, ∀i

or ρiv
1
β

i = ξ, ∀i then the order Π is optimal if

wπ(i)

ρπ(i)v
1
β

π(i)

≥
wπ(i+1)

ρπ(i+1)v
1
β

π(i+1)

.

4.3 Experimental Results

The theoretical bounds in Chapter 3 do not appear to be tight. In order to better understand

the performance of our algorithms, we analyze them experimentally. The main contribution

of this Section is twofold. First we present the experimental performance analysis of our

algorithms and show that although the theoretical bounds are relatively small, in practice the

bounds are even better and the algorithms perform very close to optimal. Additionally, we

also extend the algorithms to more complex settings: online problems, multiple machines, and

using total weighted flow time as the scheduling metric, showing good empirical approximation

ratios as well. Table 4.1 shows a summary of the main results included in this chapter.

It is important to note that there are very few examples of performance analysis in the

energy aware scheduling literature with a notable exception being [Andrew et al., 2010].

4.3.1 Experimental Performance for Weighted Completion Time

In this section we present a simulation based analysis of the performance of the SAIAS algo-

rithm for the total weighted completion time setting.

For each analysis we simulated a large number of randomly generated instances with the

following distributions: vi ∼ unif{0, . . . , 40}, wi ∼ unif{0, . . . , 20}, and ρi ∼ unif{1, . . . , 10}.

Although the size of the jobs seems small, we also analyzed instances with much larger ones

(such as ρi ∼ unif{1, . . . , 100}), as well as ρi drawn from bimodal distributions, which are

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 69

Problem Algorithm Average Ratio Worst Ratio Equal Instances

1|prec|
∑
Ei(si) + wiCi

SAIAS 1.0077 1.1437 28.39%

SAIAS-H 1.0045 1.0997 48.07%

1|ri, prec|
∑
Ei(si) + wiCi

SAIAS 1.0328 1.5133 1.34%

SAIAS-H 1.0128 1.3025 40.06%

Polynomial Energy Cost Function SAIAS 1.0360 1.9785 40.45%

Online Setting SAIAS-H Online 1.1121 2.4715 0.69%

P ||
∑
Ei(si) + wiCi SAIAS-P 1.0810 1.2475 0%

1|prec|
∑
Ei(si) + wiTi

SAIAS-T 3.5464 22.7207 0%

SAIAS-T NS 1.2645 2.4645 0.49%

1|ri, prec|
∑
Ei(si) + wiTi

SAIAS-T 2.8929 16.2307 0%

SAIAS-T NS 1.2774 2.1789 0.16%

Table 4.1: Experimental Results Summary

generally hard for scheduling algorithms, without observing any significant degradation in

the performance of our algorithms.

We compared the output of our algorithm with the integer solution of the interval-and-

speed-indexed formulation (IPi), its linear relaxation (LPi), and the integer and relaxed

solutions of a time-and-speed-indexed formulation for this problem (IPt and LPt respectively).

All simulations were done in Matlab, using Gurobi [Gurobi Optimization Inc., 2012] and

Gurobi MEX [Yin, 2012] to solve the IP and LP relaxations of each instance.

For each setting, we also applied the heuristic improvement discussed in Section 4.1. We

denoted this algorithm as SAIAS-H which is detailed in Algorithm 4.3.

Our experimental results show that the SAIAS algorithm, although it has a theoretical

Algorithm 4.3 SAIAS-H

1 Apply the SAIAS algorithm to the problem to compute sα, Πα, and Cα.

2 Compute the optimal speed s∗i each job i, given the schedule Πα.

3 Round each speed s∗i to s̄i, the closest speed in S, and calculate new

completion times C̄.

4 return the cheapest solution between sα, Πα, and Cα or s̄, Πα, and C̄.

70 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

Problem Instances Size (n) Average Ratio 99.5% Worst Ratio

1|ri, prec|
∑
Ei(si) + wiCi

20, 000 7 1.055 1.231 1.420

20, 000 100 1.135∗ 1.218 1.273

20, 000 500 1.133∗ 1.157 1.184

3, 000 1, 000 1.136∗ 1.150 1.155

SAIAS-H
20, 000 7 0.991 1.000 1.000

20, 000 100 0.991 0.994 0.995

Online (no prec)
20, 000 7 1.141 1.600 2.456

20, 000 100 1.397∗ 1.496 1.627

Table 4.2: Experimental Results Summary for Total Weighted Completion Time

approximation ratio of 3+2
√

2+ ε ≈ 5.8+ ε for the case with arbitrary precedence constraints

and arbitrary release dates, in practice it performs very close to optimal, with average

approximation ratios below 1.14. Furthermore we also show that these results remain stable

even when the size of the instances grow several orders of magnitude. It is important to

note that when analyzing large instances, since the IPt formulation is too large to be solved

in a reasonable time, we compared the algorithm’s output with the LPi solution, and thus

the real approximation ratio is likely to be even better. The results also show that the

SAIAS-H algorithm, where we compute the optimal speeds given the order computed by the

SAIAS algorithm, reduces the approximation ratios even further. This improvement can also

be used in the online setting.

In the following subsections we present details of the simulation results. We characterize

the distribution of the approximation or competitive ratios via histograms. We believe that

displaying the entire distribution is important since it gives a more complete understanding

of how the algorithm performs as compared to just reporting an average value or a worst

case scenario. In the histograms we highlight the average value for all simulations and the

99.5% quantile. For both these measures we also display the 99.99% confidence intervals,

shown as doted lines around the corresponding value. Table 4.2 shows a summary of the

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 71

main experimental results for the 1|ri, prec|
∑
Ei(si) + wiCi problem.

4.3.1.1 SAIAS Performance

The number of variables and constraints in the IPt formulation grows very fast with the

number of jobs n, making it impractical for large instances. On the other hand, the size of

the IPi formulation can be easily controlled with ε and thus much larger instances can be

simulated. For small instances we compared the performance of the SAIAS algorithm to

the optimal solution of IPt, as well as the bounds given by the LPi formulation. For large

instances we compared the SAIAS algorithm’s solution to the LPi bound.

The simulation settings for the smaller instances were: 20, 000 simulation with n = 7

jobs, α =
√

2 − 1, δ = 0.5, ε = 0.1, and ri ∼ unif[0, 0.1
∑

i
ρi
σ1

]. The upper bound of the

Figure 4.1: Ratios for Total Weighted Completion Time, with n = 7.

72 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

probability distribution of the release dates was determined experimentally to show the worst

performance, particularly in the on-line settings we present later. The reason is that a smaller

upper bound will be equivalent to have an offline setting, whereas a very large upper bound

makes most jobs to be separate from others, and thus we don’t have a set of jobs to order.

Figure 4.1 shows the main results of the simulations.

The first histogram displays that the empirical approximation ratio of the SAIAS algorithm

is close to optimal with an average of 1.055, and the 99.5% quantile given by 1.231. For the

20, 000 instances, the worst approximation ratio was 1.420.

The second histogram displays the difference between the LPi bound and the IPt optimal

solutions. This is important since later we will compare the output of our algorithm to the

LPi solution. The second histogram shows that on average the LPi bound is 0.830 times the

IPt solution, and in 99.5% of the instances it was below 0.895. This means that when we

compare the algorithm’s output to the LPi we need to remember that we are comparing it

with a solution that is between 10% to 20% lower than the integer optimal solution.

The last histogram shows that the integrality of the IPt formulation gap is very small,

with an average value of 0.998 and 99.5% of the instances resulted in relaxation values above

0.969 times the value of the IPt solution.

Since our experiments show a stable and relatively constant ratio between IPt and LPi,

for larger instances we compare the performance of the SAIAS algorithm to the LPi bound.

Given that we don’t solve the IPt formulation the simulations can be done over much larger

instances. Figure 4.2 shows the result of n = 500 (with 20, 000 random instances) and

n = 1, 000 (with 3, 000 random instances) jobs.

Although we are now comparing the algorithm’s output to the LPi solution, the approxi-

mation ratio remains small. For n = 500 we have an average ratio of 1.133, a worst value of

1.184, and 99.5% of the cases below 1.157; and an average ratio of 1.136, a worst value of

1.155, and 99.5% of the cases below 1.150 when n = 1, 000. The fact that the approximation

ratio is not much bigger is important since for n = 7 the ratio between the LPi and the IPt

solution was in average 0.83, hence much of the error shown in figure 4.2 could be attributed

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 73

Figure 4.2: SAIAS/LPi Ratios with n = 500 and n = 1, 000.

Figure 4.3: SAIAS-H Improvement Ratio, with n = 100.

to the relaxation as opposed to the algorithm’s performance.

4.3.1.2 Heuristic Improvement and Online Setting.

Using the same parameters as in Section 4.3.1.1 we simulated 20, 000 randomly generated

instances and compared the empirical approximation ratios for the SAIAS algorithm and the

74 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

heuristic improvement, SAIAS-H. Figure 4.3 shows the improvement results.

As expected, the heuristic improvement reduces the approximation ratio on average by a

factor of 0.991, and in 99.5% of the instances the improvement ratio was below 0.994 with

0.995 being the least improvement achieved. It is also important to note that the fraction

of instances in which the heuristic algorithm computed the optimal solution increased from

0.05% to 0.13%.

Using this heuristic improvement we now study the performance of the SAIAS-H algorithm

in the online setting. In the online setting we do not know any information of the jobs at time

t = 0 as in the offline case, and we learn their size, weights, etc., only when they arrive. Hence,

we can’t compute the whole schedule beforehand. The way we adapt the SAIAS-H algorithm

is as follows: we compute the approximate schedule using the SAIAS-H algorithm every time

we finish a job, considering only the jobs present at that time, and every time a new job

arrives, we recompute the speeds using the results of Section 4.3.1.1, but because preemption

is not allowed, we only change the speeds and not the schedule. Figure 4.4 shows the empirical

competitive ratios obtained over 20, 000 randomly generated instances, with all other settings

as before.

In the online setting, the performance measure is called the competitive ratio, and is

the ratio between the algorithm’s output and the optimal offline solution. Figure 4.4 shows

Figure 4.4: SAIAS-Online Competitive Ratio, with n = 100.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 75

(a) ri ∼ unif[0, 1.5
∑ ρi

σ1
] (b) ri ∼ unif[0, 0.1

∑ ρi
σ1

]

Figure 4.5: Competitive Ratios for the SAIAS-H Online Version

that the empirical competitive ratio for our algorithm. As expected, the competitive ratio is

slightly larger than the approximation ratio of the offline case, but still it is very good, with

an average of 1.397, 99.5% of the instances below 1.496 and a worst case of 1.534.

In the online setting, the selection of release dates constraints becomes crucial; if the

upper bound in the interval defining the release date distribution is too large, the job queue

will have just one job, and the online algorithm will be close to optimal. On the other hand,

if the upper bound it is too close to 0, then the online algorithm reduces to an offline one,

since all jobs are present at time t = 0. We found through simulations that, regardless of

the number of jobs, the worst competitive ratios were obtained when the release dates were

drawn from a unif[0, 0.1
∑ ρi

σ1
]. Figure 4.5 shows histograms of the empirical competitive

ratio for different release dates distributions.

4.3.1.3 Bimodal Job Sizes

One of the known bad instances for many scheduling problems is when we have several

small jobs and then one large job arrives. In order to observe if such cases also present

difficulty to our algorithms we simulated randomly generated instances where the jobs have

unit size with probability p and or are of size ρ >> 1 with probability 1− p. Table 4.3 shows

76 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

Problem Algorithm Average Ratio Worst Ratio Equal Instances

Bimodal Jobs with ρ = 3
SAIAS 1.0067 1.1055 33.59%

SAIAS-H 1.0038 1.0755 54.12%

Bimodal Jobs with ρ = 5
SAIAS 1.0086 1.1019 25.88%

SAIAS-H 1.0046 1.0943 49.22%

Bimodal Jobs with ρ = 10
SAIAS 1.0101 1.1263 16.92%

SAIAS-H 1.0037 1.1158 50.90%

Bimodal Jobs with ρ = 15
SAIAS 1.0101 1.1469 14.70%

SAIAS-H 1.0030 1.1246 53.73%

Table 4.3: Experimental Results in Bimodal Setting

a summary of the different cases analyzed and Figure 4.6 shows the histograms for both

theSAIAS and SAIAS-H algorithms for different values of ρ for the case when p = 0.7 and

n = 6. For each ρ, 20, 000 random instances were generated with the same settings as in the

1|prec|
∑
Ei(si) +wiCi case before. These simulations show that although the approximation

ratio varies with the size of the large job the values remain similar to what was obtained

previously.

4.3.1.4 Sensitivity to Algorithm Parameters

Another important experimental result for both algorithms is their sensitivity towards the

algorithm’s parameters. Figure 4.7 shows the worst (dotted lines) and average (solid lines)

approximation ratios for the SAIAS (in blue) and SAIAS-H (in red) algorithms, for various

values of α. For each value of α, 30, 000 randomly generated instances with the same

parameters as in the previous simulations, were analyzed. It is interesting to note that the

worst approximation ratios achieve a minimum very close to where they do in theory (that

is α ≈ 0.5 for the case with no release dates and α ≈
√

2 − 1 for the case with release

dates), although the curves show that the algorithms are much less sensitive to this parameter

than what shown in theory. For example in the case with no release dates the theoretical

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 77

(a) SAIAS, 1|prec|
∑
Ei(si) + wiCi setting (b) SAIAS-H, 1|prec|

∑
Ei(si) + wiCi setting

Figure 4.6: SAIAS and SAIAS-H Comparison in Bimodal Setting

bound is approximately 4(1 + δ)(1 + ε) ≈ 6.6, whereas the empirical bound is close to 1.1.

This is because the energy terms are able to absorb part of the error by modifying the

speed accordingly, and when computing the theoretical bounds we rounded up several terms,

something that is likely never going to happen in a real application.

Similarly, we analyzed the effect of modifying δ and ε in both algorithms. Figure 4.8

78 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

(a) 1|prec|
∑
Ei(si) + wiCi setting (b) 1|ri, prec|

∑
Ei(si) + wiCi setting

Figure 4.7: Sensitivity to α

shows the results for the sensitivity to changes in these two input variables. As expected,

when the size of δ or ε increases, the empirical approximation ratio also increases. Also, the

slope for the case when δ is increased (dotted blue line in Figure 4.8a) is smaller than when

ε is increased (dotted blue line in Figure 4.8a), which is also expected since the rounding

procedure increases the error closer to (1 + δ
2
δ). That is why both the worst case and average

case approximation ratios increase slower when δ increases than when ε increases. Another

(a) 1|prec|
∑
Ei(si) + wiCi setting (b) 1|prec|

∑
Ei(si) + wiCi setting

Figure 4.8: Sensitivity to δ and ε

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 79

important thing to note is the improvement when using the speed heuristic. The sensitivity in

this case is much smaller, specially in the case where δ is modified. This is because the error

comes from the quantization of the speeds, whereas the heuristic fixes this by recomputing the

optimal speeds. This also implies that the flexibility given by the speeds is really important,

since the errors created by bad scheduling decisions can be absorbed by choosing the correct

speeds.

4.3.1.5 Approximation Factor vs Instance Size

We made an additional set of simulations to check how the empirical approximation ratio

varies with respect of the instance size. From the previous results apparently the ratio reduces

when the size of the instance grows. In order to see if this happens we simulated for different

values of n up to 20, 000 random generated instances.

Figure 4.9 shows the SAIAS/LPi ratios for the different values of n. The SAIAS/LPi ratios

was used instead of the approximation ratio to make the simulations faster (and achievable

in the case of larger values of n). In figure 4.9, the blue line shows the average ratio and

the green one indicates the 99.5% proportion (i.e. 99.5% of the instances where below that

value). Both of them have the 99.9% confidence interval around them. Finally, the red line

shows the largest ratio among all the instances.

Figure 4.9: SAIAS/LPi Ratio for instances from n = 4 to n = 1, 000

80 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

Figure 4.10: SAIAS/LPi Ratio for instances from n = 4 to n = 50

We can see that indeed the ratio reduces when the instance grows larger. The reason for

this is, I believe, the flexibility of the speeds, which serve as a buffer to balance part of the

error when the order is not optimal. Another observation is that there is a maximum in the

empirical values around the value n = 6. Figure 4.10 shows a zoom for the initial part of

figure 4.9, to show the maximum at n = 6.

Figure 4.11: SAIAS with a different energy cost function.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 81

4.3.1.6 Other Energy Cost Functions

In order to show the performance of the SAIAS algorithm with other energy cost functions, we

simulated the results using an energy cost function of the form Ei(si) = ais
2 + bis+ ci, where

ai, bi, and ci are chosen randomly. Figure 4.11 shows the approximation ratio histogram of

30, 000 randomly generated instances for the 1|prec|
∑
Ei(si) + wiCi setting. Although the

worst approximation ratio found is somewhat larger than in the standard case, the algorithm

still performs very close to optimal, finding the optimal solution in over 40% of the instances.

4.3.2 Experimental Performance for Weighted Tardiness

In this section we test the performance of the SAIAS-T algorithm similarly to what was

done in Section 4.3.1. Figure 4.12a shows the approximation ratio histogram for the SAIAS-

T algorithm, using 30, 000 randomly chosen instances with the same parameters as in

Section 4.3.1, with α = 1
2
. As expected the approximation ratios are worse, with an

average ratio of 3.55 and worst ratio of 22.7, although the theoretical ratio is much higher:

4β(1 + ε)β−1(1 + δ)β−1 ≈ 174. As explained in Section 3.2 we cannot obtain theoretical

worst case bounds for the SAIAS-T algorithm in the setting with release dates using the

same methodology. The reason we cannot obtain the theoretical worst case bounds with our

technique is because we rely on homogeneously speeding up jobs to ensure that they meet

their deadlines, something that does not work when release dates are present. Still, we can

simulate those instances and observe how bad the algorithm performs. Figure 4.12b shows

the approximation ratio histogram for this setting.

It is interesting to note that, although the ratios are still very high, the performance

of the algorithm improves vs. the case without release dates. We believe that the reason

behind this effect is that when release dates are present the total weighted tardiness is higher

and thus the total weighted tardiness is comparable in cost to the energy cost with higher

speeds. This would validate our previous observation: we pay a significant price by speeding

up jobs. To test this out we analyzed a modified version of the SAIAS-T algorithm, denoted

SAIAS-T NS, in which we don’t speed-up jobs, but keeping all the other settings as in the

82 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

(a) SAIAS-T for 1|prec|
∑
Ei(si) + wiTi (b) SAIAS-T for 1|ri, prec|

∑
Ei(si) + wiTi

Figure 4.12: Approximation Ratios for the SAIAS-T algorithm

(a) SAIAS-T, 1|prec|
∑
Ei(si) + wiTi setting (b) SAIAS-T, 1|ri, prec|

∑
Ei(si) + wiTi setting

Figure 4.13: Approximation Ratios for the SAIAS-T NS algorithm

previous simulations.

Figure 4.13 shows the results for the setting with and without release dates. As expected

the approximation ratios are much better, with average values below 1.3 and worst ratios

below 2.5. Because we are not speeding-up jobs we are even able to find the optimal solution

in a small fraction of the instances. This indicates that the speeding up procedure is really

expensive in this case and that we might be able to find better ways of bounding the

approximation ratios by taking the total costs as a whole and not separating the energy cost

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 83

and scheduling cost as we needed in our proofs.

In order to see the sensitivity of the algorithm to the speed-up factor γ, we simulated

20, 000 randomly generated instances and evaluated the output of the algorithm for several

different values of γ ∈ [0.1, (1+ε)
α(1−α)

]. Figure 4.14 shows the results. We can see that the

range of approximation ratios for each value of γ tested, with the average indicated by a red

circle, and the 99.5% percentile indicated by a green asterisk The two green crosses indicate

the 99.9% confidence interval for the 99.5% percentile. As observed previously, the best

experimental speed-up ratio does not occur at γ = (1+ε)
α(1−α)

, but closer to γ ≈ 1.

4.3.3 Experimental Performance for Weighted Flow Time

We also tested the performance of the algorithm with total weighted flow time scheduling

metric. Most of the energy aware scheduling literature has focused in the non-weighted case,

but because our algorithm allows jobs weights we analyzed the performance for this more

general setting. In order to use the SAIAS algorithm in the 1|prec, ri|
∑
Ei(si) +wiFi setting,

we only need to modify the cost function (3.49) to
∑

i,j,t (Ei(σj) + wi (τt−1 − ri))xijt, and

use the rest of the SAIAS algorithm, or its online version as before. Figure 4.15 shows the

Figure 4.14: Approximation Ratios for Different Values of γ

84 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

results for 5, 000 randomly generated instances, solving both the online and offline cases with

n = 100 jobs. Since we are simulating large instances, we compare the algorithm’s output

with the LPi bound, as opposed to the IPt solution. All the other simulation settings were

the same as in the previous sections.

The first histogram on Figure 4.15 shows the empirical approximation ratio in the offline

setting. The average approximation ratio was 1.500, with 99.5% quantile given by 2.012,

and a worst case of 2.334. Note that the real approximation ratios should be smaller when

compared to the IPt solution. The second histogram shows the empirical competitive ratio in

the online setting. In this case the values are much higher since the algorithm only knows the

size and associated weight of the jobs present at each point in time, resulting in an average

competitive ratio of 2.590, with 99.5% quantile given by 3.204, and a worst case of 3.413.

The difference with the offline setting can be considered as the benefit from knowing the size,

weight, and release date information of all jobs beforehand.

The summary of the results for this setting, displayed in Table 4.4, shows that the

algorithm performs very well in practice both in the online and offline cases.

Figure 4.15: SAIAS-F Offline and Online Ratios, with n = 100.

CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS 85

Problem Instances Size (n) Average Ratio 99.5% Worst Ratio

Offline 5, 000 100 1.500∗ 2.012 2.334

Online (no prec) 5, 000 100 2.590∗ 3.204 3.413

Table 4.4: Experimental Results Summary for Total Weighted Flow Time

4.3.4 Experimental Performance for Multiple Machines

In this section we present the experimental results of two extensions of the SAIAS algorithm:

the online setting and the multiple parallel machines setting.

In this section we consider the P |ri|
∑
Ei(si) +wiCi problem, with q machines running in

parallel,and the cost of running job i is independent of the machine chosen. In this setting

we not only have to choose the sequence and speed, but also the machine on which to run the

job. We extended the SAIAS-H algorithm to parallel machines, as follows. We first extend

the LP (3.49)-(3.54) for multiple parallel machines, i.e. we have variables of the form xijkt

that represent the fraction of job i that runs at speed σj on machine k and it is finished by

time interval It, and we modify the constraints accordingly. Then x̃ik =
∑

jt xijkt represents

the fraction of job i processed at machine k. SAIAS-P in Figure 4.4 describes the algorithm

for parallel machines.

The simulation setting is similar to the previous sections, but in this case we increased

the number of jobs to n = 15 and set q = 4. Since computing the exact optimal solution

of the corresponding very large IP is computationally expensive, only 3, 700 instances were

simulated. Figure 4.16a shows a histogram of the approximation ratios found through the

Algorithm 4.4 SAIAS-P

1 Solve the extended LP and compute x̃ik.

2 Assign job i to machine ki = arg maxk{x̃ik}

3 For each machine k apply the SAIAS-H algorithm for the selected jobs.

4 return the speeds and schedules for each machine.

86 CHAPTER 4. HEURISTICS AND EXPERIMENTAL RESULTS FOR EAS

(a) SAIAS-P (b) Ratio vs Randomly Choosing Machines

Figure 4.16: Approximation Ratios for Parallel Machines

simulations. The average ratio is still very close to optimal, and even the worst ratio found is

quite small. However, in none of the instances was the algorithm’s output equal to the exact

optimal solution.

Since speed scaling, as we have shown in previous sections, is known to significantly

improve performance, we also computed the approximation ratio for random assignment to

machines, in order to evaluate the added value of the algorithm. Figure 4.16 shows the ratio

between the solution given by the SAIAS-P algorithm and the solution found by randomly

choosing a machine for that same instance. The fact that this ratio is always larger than 1

indicates that the SAIAS-P algorithm actually helps in selecting the machine.

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 87

Chapter 5

Resource Cost Aware Scheduling

M
anaging non-renewable resource consumption is fast emerging as a problem of

critical importance. There is always a trade-off between resource consumption

and performance: more resource consumption typically results in better perfor-

mance. This trade-off also arises in many scheduling problems, where resource management

decisions must be combined with the scheduling decisions to optimize a global objective.

Recently, scheduling problems in which one has to trade scheduling performance using

metrics such as completion time, tardiness, or flow time, with CPU speed, and therefore the

energy consumed, have been extensively studied. However, as discussed in Chapter 2, the

problem of balancing resource consumption with scheduling performance was proposed much

earlier. Vickson [Vickson, 1980] observed that in many practical settings, the processing time of

a job depends on the amount of resources (e.g. catalizer, workforce size, energy, etc.) utilized,

and the relationship between resource utilization and processing time depends on each job’s

characteristics. Other examples of scheduling problems with resource dependent job processing

time include repair and maintenance processes [Duffuaa et al., 1999]; ingot preheating

processes in steel mills, where the batches need to be scheduled and the amount of gas used

and the concentration level determine the time required to preheat the ingots [Janiak, 1991;

Williams, 1985]; many workforce intensive operations; VLSI circuit design [Monma et al.,

1990]; and more recently processing tasks in a CPU, where the job processing times depends

88 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

on CPU speed, the available RAM, bus speed, as well as other system resources.

Given that our previous results allow for very general functions, in this chapter we further

extend the problem formulated in Chapter 3 to the more general setting of resource cost

aware scheduling when using total weighted completion time as the scheduling metric. Thus,

we bridge the gap between the Resource Dependent Job Processing Time literature and the

newer Energy Aware Scheduling literature, generalizing both of them.

We consider the non-preemptive, offline problem on one machine, and allow arbitrary

precedence constraints and arbitrary release dates as well. Our objective is to minimize the

sum of our scheduling metric and the total resource consumption cost.

We make several contributions to the problem of scheduling with non-renewable resources

� We introduce a model that extends the previous cost models (linear, convex, and other

energy models) by allowing a more general relation between job processing time (or

equivalent processing speed) and resource consumption.

� We further generalize the problem by allowing arbitrary precedence constraints and

release dates.

� We give approximation algorithms for minimizing an objective that is a combination of

a scheduling metric (weighted completion time) and resource consumption cost.

We consider a more general model of resource cost than has previously been used. As

noted in Chapter 2 the resource dependent job processing time literature either focuses on

job’s processing times that depend linearly on resource consumption or a convex relation of

the form (ρi/ui)
k, generally considering only a single resource. Our setting captures both

of these models by considering an arbitrary non-negative speed function S(Ψ(i)), where

Ψ(i) ∈ Ψ = {Ψ(1), . . . ,Ψ(q)} denotes one of the q allowable operating points of the resources.

We also generalize the resource cost, which is generally linear in the literature, by considering

an arbitrary non-negative job-dependent resource cost function Ri(Ψ
(i)).

This chapter contains results for two related scheduling problems, we state here the most

general result:

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 89

Theorem 5.1. Given n jobs with precedence constraints and release dates and a general

non-negative resource cost function, there is an O(1)-approximation algorithm for the problem

of non-preemptively minimizing a weighted sum of the completion time and resource cost.

The constants in the O(1) are modest. Given some ε > 0, the algorithm has a (4 + ε)-

approximation ratio when only precedence constraints exist, and (3 + 2
√

2 + ε)-approximation

ratio when release dates are added.

In this chapter, we extend the interval-indexed IP described in Chapter 3 to handle

resource costs and speed scaling, and then modify the α-point based rounding algorithm

presented in Chapter 3 to obtain the resulting schedules. We assume in Sections 5.1 and 5.2

that we have a discrete set of q allowable resource operating points Ψ = {Ψ(1), . . . ,Ψ(q)},

and that the speed at which the job is precessed is a general non-negative function of the

resource operating point. We will describe only the algorithm using the interval-indexed

linear programs in this chapter since the time-indexed one is similar to what was described in

Chapter 3. In our interval-indexed IP, a variable xijt is 1 if job i runs at resource operating

point Ψ(j) and completes in interval t. We can then extend the standard interval-indexed

integer programming formulation to take the extra dimensions of resource consumption and

speed into account (see Section 5.1 for details). Once we have solved its linear program

relaxation (LPi), we need to determine both an α-point and α-speed. The key insight is that

by “summarizing” each dimension appropriately, we are able to make the correct choice for

the other dimension. At a high level, we first choose the α-point by “collapsing” all pieces

of a job that completes in the LPi in interval t (these pieces have different speeds), being

especially careful with the last interval, where we may have to choose only some of the speeds.

We then use only the pieces of the job that complete before the α-point to choose the speed,

where the speed is chosen by collapsing the time dimension and then interpreting the result

as a probability mass function (pmf), where the probability that the job is run at speed

S(Ψ(j)) depends on the total amount of processing done at that operating point. We then

use the concept of α-speeds, which is related to the expected value under this pmf, and run

the job at this speed (see Section 5.2 for more details). We combine this rounding method

90 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

with extensions of the more traditional methods for dealing with precedence constraints and

release dates to obtain our algorithm.

5.1 Problem formulation.

We are given a single machine that requires p different resources, indexed 1, . . . , p to run.

As mentioned in the previous chapter, examples of these resources include energy, fuel,

maintenance level, wear rate, reaction catalizer, and workforce size among others. The

machine has q different resource operating points Ψ(i) ∈ Ψ = {Ψ(1), . . . ,Ψ(q)}, where

Ψ(i) =
[
Ψ

(i)
1 . . . Ψ

(i)
p

]
is described by a vector of p values, one for each resource. We

are also given a function S : Rp → R+ which maps each operating point Ψ(j) to a speed

σj = S(Ψ(j)), and a function Ri(ψ
(i)), with R : Rp → R+, which denotes the cost of running

job i at the resource operating point ψ(i). Additionally, we are given n jobs, where job i has

a processing requirement of ρi machine cycles, a release time ri, and an associated positive

weight wi. We may also be given precedence constraints among the jobs but we do not allow

preemption.

A schedule defines, for each job, a time interval during which it runs, and for each time

in that interval, a resource operating point from the allowable set. As in previous work,

we can make some observations that simplify the structure of a schedule. By time sharing

between different operating points the machine can run at any point within the convex hull

of Ψ. We thus extend the domain of the speed function and the cost function to include

points ψ in the convex hull of Ψ in the natural way: for ψ(i) such that ψ(i) =
∑q

j=1 λjΨ
(j),

with
∑

j λj = 1 and λj ∈ [0, 1], then if ψ =
∑

j δjΨ
(j) then S(ψ) =

∑
j δjS(Ψ(j)) and

Ri(ψ
(i)) =

∑q
j=1 λjRi(Ψ

(j)). Thus, by extending our domain in this way, we can assume that

each job runs at one resource operating point, and one speed. We can further assume that

a point with lower speed also has lower cost, for otherwise we could achieve that point by

running at a higher speed and then idling, thereby achieving an even better cost. Throughout

the paper, we will use capital Ψ to denote the input set of operating points and lowercase ψ

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 91

to denote points in the convex hull.

With the above extension, we can define a schedule precisely as follows. Let ψ(i) denote the

operating point at which job i runs, thus si = S(ψ(i)) denotes the speed at which job i runs in

the machine, and pi = ρi
S(ψ(i))

, its processing time. Let Ci denote the completion time of job i,

and let Π = {π(1), . . . , π(n)} denote the order in which the jobs are processed, i.e. π(k) = i

implies that job i is the k-th job to be processed. Then Cπ(i) = max{rπ(i), Cπ(i−1)}+
ρπ(i)
sπ(i)

is

the completion time of the i-th job to be processed, with Cπ(0) = 0.

The objective is to compute a feasible schedule, consisting of an order Π, possibly subject

to precedence and/or release date constraints, and the vector of resource requirements

ψ =
[
ψ(1) . . . ψ(n)

]
that minimizes the total cost,

f(Π,ψ) =
n∑
i=1

[
Ri(ψ

(i)) + wπ(i)Cπ(i)

]
. (5.1)

We assume, w.l.o.g., that the resource operating points are ordered by speed (slowest

first), and use σi = S(Ψ(i)) to denote the ith slowest speed. Note that since any speed used is

a convex combination of these σi’s, we will never consider any speed slower than σ1 or faster

than σq (which we denote by σmax).

5.1.1 Interval-indexed formulation.

We now modify and extend the interval-indexed formulation proposed in Chapter 3 to the

general resource cost functions.

The interval-indexed formulation divides the time horizon into geometrically increasing

intervals, and the completion time of each job is assigned to one of these intervals. Since the

completion times are not associated to a specific time, the completion times are not precisely

known but are lower bounded. By controlling the growth of each interval one can obtain a

sufficiently tight bound.

The problem formulation is as follows. We divide the time horizon into the following

geometrically increasing intervals: [κ, κ], (κ, (1 + ε)κ], ((1 + ε)κ, (1 + ε)2κ], . . ., where ε > 0 is

an arbitrary small constant, and κ = ρmin

σmax
denotes the smallest interval size that will hold at

92 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

least one whole job. We define interval It = (τt−1, τt], with τ0 = κ and τt = κ(1 + ε)t−1. The

interval index ranges over {1, . . . , T}, with T = min{dte : κ(1 + ε)t−1 ≥ maxni=1 ri +
∑n

i=1
ρi
σ1
};

and thus, we have a polynomial number of indices t.

Let

xijt =

 1, if job i runs at o.p. Ψ(j) and completes in time interval It

0, otherwise.
(5.2)

By using the lower bounds τt−1 of each time interval It, a lower bound to (5.1) is written

as,

min
x

n∑
i=1

q∑
j=1

T∑
t=1

(
Ri(Ψ

(j)) + wiτt−1

)
xijt. (5.3)

The following are the constraints required for the 1|ri, prec|
∑
Ri(ψ

(i)) + wiCi problem:

1. Each job must finish in a unique time interval and speed; therefore for i = {1, . . . , n}:

q∑
j=1

T∑
t=1

xijt = 1. (5.4)

2. Since only one job can be processed at any given time, the total processing time of jobs

up to time interval It must be at most τt units. Thus, for t = {1, . . . , T}:

n∑
i=1

q∑
j=1

t∑
u=1

ρi
σj
xiju ≤ τt. (5.5)

3. Job i running at speed σj requires ρi
σj

time units to be processed, and considering that

its release time is ri, then for i = {1, . . . , n}, j = {1, . . . , q}, and t = {1, . . . , T}:

xijt = 0, if τt < ri +
ρi
σj
. (5.6)

4. For i = {1, . . . , n}, j = {1, . . . , q} and t = {1, . . . , T}:

xijt ∈ {0, 1}. (5.7)

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 93

5. The precedence constraint i1 ≺ i2 implies that job i2 cannot finish in an interval earlier

than i1. Therefore for every i1 ≺ i2 constraint we have that for t = {1, . . . , T}:

q∑
j=1

t∑
u=1

xi1ju ≥
q∑
j=1

t∑
u=1

xi2ju. (5.8)

Just like in Chapter 3, it is important to note that this integer program only provides a

lower bound for (5.1); in fact its optimal solution may not be schedulable, since constraints

(5.5) do not imply that only one job can be processed at a single time, they only bound the

total amount of work in ∪tIt.

5.2 Approximation algorithm for weighted completion

time.

We now describe the approximation algorithm for the weighted completion time, called

Schedule by α-intervals and α-speeds (SAIAS), for the setting with resource costs.

Algorithm 5.1 details the procedure.

Let x̄ijt denote the optimal solution of the linear relaxation of the integer program (5.3)-

(5.8), in which we change constraints (5.7) for xijt ≥ 0. In step 3 of the algorithm we compute

the optimal solution x̄ and in step 4, given 0 ≤ α ≤ 1, we compute the α-interval Iαi of job i,

defined as

Iαi = min

{
τ :

q∑
j=1

τ∑
u=1

x̄iju ≥ α

}
. (5.9)

Since several jobs may finish in the same interval, let Jt denote the set of jobs that finish

in interval It, Jt = {i : Iαi = t}, and we use these sets to determine the order Πα as described

in step 5.

Next, in step 6, we compute the α-speeds as follows. Since
∑q

j=1

∑Iαi
u=1 x̄iju ≥ α, we define

94 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

Algorithm 5.1 Schedule by α-intervals and α-speeds for Resource Costs

(SAIAS-RC)

Inputs: set of jobs, α ∈ (0, 1), ε > 0, set of resource operating points Ψ,

speed function S and resource function R.

1 Divide time into increasing time intervals It = (τt−1, τt], with τt = κ(1 + ε)t−1.

2 Compute the set of possible speeds S = {σ1, . . . , σq}.

3 Compute an optimal solution x̄ to the linear relaxation (5.3)-(5.8).

4 Compute the α-intervals Iα and the sets Jt. via (5.9)

5 Compute an order Πα that has sets Jt ordered in non-decreasing values of t and

the jobs within each set in a manner consistent with the precedence constraints.

6 Compute the α-speeds sα via (5.12).

7 Set the i-th job to start at time max{rπ(i), C
α
π(i−1)}, where Cα

π(i−1) is the

completion time of the previous job using the rounded α-speeds, and Cα
π(0) = 0.

8 return speeds sα, order Πα, and completion times C̄α.

auxiliary variable {x̃ijt} as:

x̃ijt =


x̄ijt, t < Iαi

max
{

min
{
x̄ijIαi , α−

∑j−1
l=1 x̄ilIαi − βi

}
, 0
}
, t = Iαi

0, t > Iαi ,

(5.10)

where βi =
∑q

j=1

∑Iαi −1
u=1 x̄iju < α. Note that for this auxiliary variable, we have that∑q

j=1

∑Iαi
u=1 x̃iju = α. This is a key step that allows us to truncate the fractional solution so

that for every job i, the sum of x̃ijt up to time interval Iαi for each speed j can be interpreted as

a probability mass function. We define this probability mass function (pmf) µi = (µi1, . . . , µ
i
q)

on the set of speeds S = {σ1, . . . , σq} as

µij =
1

α

Iαi∑
u=1

x̃iju. (5.11)

Let ŝi define a random variable distributed according to the pmf µi, i.e. µij = P(ŝi = σj).

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 95

Then, the α-speed of job i, sαi , is defined as follows:

1

sαi
= E

[
1

ŝi

]
=

q∑
j=1

µij
σj
⇒ sαi =

1

E
[

1
ŝi

] . (5.12)

We define the α-speeds using the reciprocal of the speeds since the completion times are

proportional to the reciprocals, and we need to bound completion times in the analysis of the

algorithm. Note that (5.11) defines the fraction of the machine cycles requirement ρi that

must be processed at each operating point Ψ(j) to achieve the α-speed sαi .

Finally, in steps 7 and 8 we compute the completion times given the calculated speeds

and return the set of speeds sα, the order Πα and the completion times Cα.

We now analyze this algorithm’s performance both with and without release dates. In

the following subsections we will assume w.l.o.g. that Iα1 ≤ Iα2 ≤ . . . Iαn .

5.2.1 Single machine problem with precedence constraints.

In this section, we analyze our algorithm for the case of precedence constraints but no release

dates. We first prove that the output of the SAIAS algorithm is indeed feasible.

Lemma 5.1. Suppose i1 ≺ i2. Then (5.8) implies that Iαi1 ≤ Iαi2.

Proof. Evaluating the LP constraint (5.8) corresponding to i1 ≺ i2, for t = Iαi2 , we have that,

q∑
j=1

Iαi2∑
u=1

xi1ju ≥
q∑
j=1

Iαi2∑
u=1

xi2ju ≥ α, (5.13)

where the last inequality follows from the definition of Iαi2 . The chain of inequalities implies

that
q∑
j=1

Iαi2∑
u=1

xi1ju ≥ α,

so Iαi1 ≤ Iαi2 .

Since the SAIAS algorithm schedules jobs by first ordering the sets Jt in increasing

order of t, and then orders the jobs within each set in a way that is consistent with the

96 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

precedence constraints, Lemma 5.1 implies that the SAIAS algorithm preserves the precedence

constraints, and, therefore, the output of the algorithm is feasible.

Theorem 5.2. The SAIAS algorithm with α = 1
2

is a (4 + ε)-approximation algorithm for the

1|prec|
∑
Ri(ψ

(i)) +wiCi problem, with a general non-negative Ri(ψ) resource cost function.

Proof. Let x∗ijt denote an optimal solution to the integer problem (5.3)-(5.8), x̄ijt the frac-

tional solution of its linear relaxation, and x̃iju the auxiliary variables calculated for the

SAIAS algorithm.

Since in (5.3) the completion time for jobs completed in interval It is τt−1, it follows that,

n∑
i=1

q∑
j=1

T∑
t=1

(
Ri(Ψ

(j)) + wiτt−1

)
x̄ijt ≤ f(Π∗,ψ∗). (5.14)

Let ψ(i)α =
∑q

j=1 µ
i
jΨ

(j) denote the effective operating point that achieves the required

α-speed, and ψ̂
(i)

define a random variable distributed according to the pmf µi, just like

with ŝi. The resource cost terms of the algorithm’s solution are bounded as follows,

Ri(ψ
(i)α) = Ri(E

[
ψ̂

(i)
]
) ≤ E

[
Ri(ψ̂

(i)
)
]

=

q∑
j=1

µijRi(Ψ
(j)), (5.15)

where the inequality follows from Jensen’s Inequality applied to the convex function Ri().

Using the definition of µij in (5.11) and given that 0 ≤ α ≤ 1, ε > 0, and x̃ijt ≤ x̄ijt, it follows

that,

Ri(ψ
(i)α) ≤ 1

α

q∑
j=1

Iαi∑
u=1

Ri(Ψ
(j))x̃iju ≤

(1 + ε)

α(1− α)

q∑
j=1

T∑
u=1

Ri(Ψ
(j))x̄iju. (5.16)

Since there are no release date constraints there is no idle time between jobs and thus,

Cα
i =

i∑
j=1

ρj
sαj

=
i∑

j=1

ρjE
[

1

ŝj

]
=

1

α

i∑
j=1

q∑
l=1

Iαj∑
u=1

ρj
σl
x̃jlu ≤

1

α

n∑
j=1

q∑
l=1

Iαi∑
u=1

ρj
σl
x̄jlu, (5.17)

and from constraint (5.5) for t = Iαi we get, Cα
i ≤ 1

α
τIαi .

Let C̄i =
∑q

j=1

∑T
t=1 τt−1x̄ijt denote the optimal fractional completion time given by

the optimal solution of the relaxed linear program (5.3)-(5.6). Since it is possible that

CHAPTER 5. RESOURCE COST AWARE SCHEDULING 97

∑q
j=1

∑Iαi
t=1 x̄ijt > α; we define X

(1)
i = α −

∑q
j=1

∑Iαi −1
t=1 x̄ijt and X

(2)
i =

∑q
j=1

∑Iαi
t=1 x̄ijt − α,

thus X
(1)
i +X

(2)
i =

∑q
j=1 x̄ijIαi , and we can rewrite

C̄i =

q∑
j=1

Iαi −1∑
t=1

τt−1x̄ijt + τIαi −1X
(1)
i + τIαi −1X

(2)
i +

q∑
j=1

T∑
t=Iαi +1

τt−1x̄ijt, (5.18)

and eliminating the lower terms of the previous sum we get that,

C̄i ≥ τIαi −1X
(2)
i +

q∑
j=1

T∑
t=Iαi +1

τt−1x̄ijt (5.19)

≥ τIαi −1X
(2)
i +

q∑
j=1

T∑
t=Iαi +1

τIαi −1x̄ijt = τIαi −1(1− α).

Because τIαi = (1 + ε)τIαi −1, from (5.17) and (5.20) we get that Cα
i ≤

(1+ε)
α(1−α)

C̄i ⇒∑n
i=1wiC

α
i ≤

(1+ε)
α(1−α)

∑n
i=1wiC̄i. From this, (5.14) and (5.16) it follows that,

n∑
i=1

Ri(ψ
(i)α) +

n∑
i=1

wiC
α
i ≤

(1 + ε)

α(1− α)

[
n∑
i=1

q∑
j=1

T∑
t=1

Ri(Ψ
(j))x∗ijt +

n∑
i=1

wiC
∗
i

]
, (5.20)

and we set α = arg min0≤α≤1

{
1

α(1−α)

}
= 1

2
, to minimize the bound, and get the desired

approximation ratio.

5.2.2 Single machine problem with precedence and release date

constraints.

We now analyse the case with precedence constraints and release dates. Release dates makes

the problem somewhat harder since they can introduce idle times between jobs.

Theorem 5.3. The SAIAS algorithm with α =
√

2 − 1 is a (3 + 2
√

2 + ε)-approximation

algorithm for the 1|ri, prec|
∑
Ri(ψ

(i)) + wiCi problem, with a general non-negative Ri(ψ)

resource cost function.

Proof. The bounds for the resource cost terms computed in equation (5.15) are still valid

when there is idle time between jobs, and we have that,

Ri(ψ
(i)α) ≤ (1 + ε)

α(1− α)

q∑
j=1

T∑
u=1

Ri(Ψ
(j))x̄iju ≤

(1 + ε)(1 + α)

α(1− α)

q∑
j=1

T∑
u=1

Ri(Ψ
(j))x̄iju. (5.21)

98 CHAPTER 5. RESOURCE COST AWARE SCHEDULING

When bounding the completion time Cα
i , given the sorting done in step 5 of the SAIAS al-

gorithm, now one has to consider all the jobs up to the ones in set JIαi , and thus,

Cα
i ≤ max

j∈{J1,...,JIα
i
}
rj +

∑
j∈{J1,...,JIα

i
}

ρj
sαj
. (5.22)

Since all jobs that have been at least partially processed up to time interval It need to be

released before τt, it follows that maxj∈{J1,...,JIα
i
} rj ≤ τIαi . On the other hand, we also have

that,

∑
j∈{J1,...,JIα

i
}

ρj
sαj

=
1

α

∑
j∈{J1,...,JIα

i
}

q∑
l=1

Iαj∑
u=1

ρj
σl
x̃jlu ≤

1

α

n∑
j=1

q∑
l=1

Iαi∑
u=1

ρj
σl
x̄jlu ≤

1

α
τIαi , (5.23)

where the last inequality follows from constraint (5.5) with t = Iαi . Thus, Cα
i ≤

(1+α)
α

τIαi .

Since C̄i =
∑q

j=1

∑T
t=1 τt−1x̄ijt, (5.20) is still valid and because τIαi = (1 + ε)τIαi −1, we get,

Cα
i ≤

(1 + ε)(1 + α)

α(1− α)
C̄i ⇒

n∑
i=1

wiC
α
i ≤

(1 + ε)(1 + α)

α(1− α)

n∑
i=1

wiC̄i. (5.24)

Finally, from (5.21) and (5.24) it follows that,

n∑
i=1

Ri(ψ
(i)α) +

n∑
i=1

wiC
α
i ≤

(1 + ε)(1 + α)

α(1− α)

[
n∑
i=1

q∑
j=1

T∑
t=1

Ri(Ψ
(j))x∗ijt +

n∑
i=1

wiC
∗
i

]
, (5.25)

and by setting α = arg min0≤α≤1

{
(1+α)
α(1−α)

}
=
√

2 − 1, we get the required approximation

ratio.

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 99

Chapter 6

Scheduling with Uncertain Job Sizes

A
basic assumption in our previous chapters, even in the online setting, was that we

learn the size of a job at least as soon as the job arrives. In the CPU scheduling

setting there are many cases in which this is not doable and there is no information

or it is not possible to deduce the size of a job until it is actually finished [Kalyanasundaram

and Pruhs, 2000]. This setting in which no information of job sizes is known or deduced when

jobs are released is known as non-clairvoyant scheduling and there are some approximation

algorithms and heuristics for certain scheduling metrics. See [Kalyanasundaram and Pruhs,

2000] and its references for further details. To the best of our knowledge, there are no

results for the non-clairvoyant energy aware scheduling problem, that is when we are not only

interested in optimizing a scheduling metric, but also minimizing some energy consumption

cost.

In this chapter we explore this setting, where jobs are processed in a single machine with

preemption, and we are interested in minimizing the sum of the total weighed completion

time and the energy cost of processing the jobs. Unlike the previous chapters, the machine

does not know nor it can deduce the exact size of the jobs until it finishes them, but we

assume that job sizes have a known discrete probability distribution and that all jobs share

the same size distribution (i.e. they are i.i.d).

100 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

6.1 Problem Formulation

The problem setting is as follows: we are given n jobs, where each job i ∈ N = {1, . . . , n} has

an unknown processing requirement of ρi ∈ Ψ = {ψ1, . . . , ψq} machine cycles, with ψ0 = 0 and

P(ρi = ψk) = fk. For convenience let ∆ψk = ψk+1−ψk > 0, which is the minimum additional

processing requirements if after ψk cycles the job has not finished. All jobs run on the same

machine, which at any time runs at one of m+ 1 possible speeds S = {σ0, σ1, . . . , σm}, with

σ0 = 0. Preemption is allowed and we will assume all jobs are available at time t = 0 (i.e.

ri = 0, ∀i).

Let Ci denote the final completion time of job i, then the schedule performance cost of

job i will be given by hi(Ci), where hi(C) is a monotonically increasing linear function (i.e.

hi(Ci + δ) = hi(Ci) + hi(δ)). Additionally, if at time t job i runs at speed si(t), then let

Pi(si(t)) denote the total energy cost rate of job i (i.e. the power consumption), that is, the

cost per unit of time at time t. We assume Pi(s) is convex.

Let s =
[
s1(t) . . . sn(t)

]′
denote the vector of speed functions for each job. Clearly, for

s to be a feasible vector we need that if for some job i and time t, si(t) > 0, then sj(t) = 0,

∀j 6= i.

We are interested in minimizing the sum of the total scheduling performance and total

energy cost for all jobs, that is:

F (s) = E

[
n∑
i=1

∫ T

0

Pi(si(t))dt+
n∑
i=1

hi(Ci)

]
. (6.1)

6.2 Dynamic Programming Model

We propose solving this problem using dynamic programming. At any time step, let J denote

the jobs that still require processing and let Ξ denote the amount of work each job has

received by that time. We now use (J,Ξ) to denote the state space for our problem.

We prove the following lemma:

Lemma 6.1. Given a state (J,Ξ), if it is optimal to process the unfinished job i next and has

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 101

already received ψk processing cycles, then there exists an optimal solution where we process

job i next for at least ∆ψk cycles at a constant speed.

Proof. We prove this lemma by contradiction. Let job i be the optimal job to process at

time t1, and let (J,Ξ) be the state of the system at that time, with ξi = ψk. Let δ1 < ∆ψk

denote the optimal number of processing cycles assigned to job i until it is preempted and

si(t), t ∈ [t1, t2] the optimal speed at which the δi cycles are processed, i.e.
∫ t2
t1
si(t)dt = δi.

Because the energy cost is convex and there are no jobs arriving while job i is being

processed, the speed to process the δ1 cycles will be constant, i.e. si(t) ≡ σj, for some j and

∀t ∈ [t1, t2]. Thus, we will process job i for δ1
σj

time units after which we switch to a different

job. Note that job i is not finished at this point, since its length is at least ψk+1, so there

must be at least one other time t3 at which another δ2 ≥ ∆ψk − δ1 > 0 cycles of job j are

processed.

Let I denote the set of jobs that finish in the interval [t1, t3] in this optimal solution. Now

consider a different solution in which the δ1 cycles of job i are processed at the end of the

interval (from t3 − δ1
σj

to t3), and because there are no release dates all other job pieces in

[t1, t3], are processed δ1
σj

time units earlier. Because i /∈ I the completion time of i does not

change. Additionally, because we are only moving job pieces the speeds don’t change and

thus the total energy cost remains the same.

If I 6= ∅ then all jobs in I finish earlier and because the energy costs and the completion

time of job i don’t change, the new solution is smaller than the optimal one by
∑

j∈Iwj
δ1
σj
> 0,

which is a contradiction. On the other hand, if I = ∅, then moving the piece of job i to the end

of the interval [t1, t3] has the same total cost. Hence, the new solution is also optimal but now

we process δ1 + δ2 cycles of job i together. If δ1 + δ2 ≥ ∆ψk we have found an optimal solution

where at least ∆ψk cycles are processed, otherwise we can repeat the previous argument to

keep on joining pieces of job i until at least ∆ψk cycles are processed.

Because of Lemma 6.1 we can assume, w.l.o.g., that if the optimal solution starts processing

a job with ψk cycles already processed, it will process at least ∆ψk units before it could

preempt to another job. Also note that using the same argument from Lemma 6.1 we can

102 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

also prove that the optimal solution will not process more than
∑l

j=k ∆ψj cycles, for some

l ≤ q − 1, and thus we will only preempt when the work state Ξ is such that ξi = ψki .

Because of this result and to simplify the notation, Ξ will still denote the amount of work

each job has received but now if job i has been processed for ψk cycles, then ξi = k, and thus

Ξ =
[
k1 . . . kn

]′
.

Let V (J,Ξ) denote the optimal cost when only jobs in J are available and ψξi cycles have

been processed of each job i. If at this point it is optimal to process an unfinished job i at

speed σj, then the expected cost for the remaining processing requirements is given by

V (J,Ξ + ei)
F̄ξi+1

F̄ξi
+ V (J\{i},Ξ + ei)

fξi
F̄ξi

+
∆ψξi
σj
Pi(σj) +

∑
l∈J

hl

(
∆ψξi
σj

)
, (6.2)

where Fk is the cdf of the size distribution of the jobs. The first element in (6.2) represents the

cost if the job is longer than ψξi+1 cycles, the second term is the cost if job i is finished, and

the last two terms are the additional energy cost of job i and the additional delay incurred

by all jobs that have not been finished yet.

Using (6.2) we get the following recursion which we can use to find the optimal policy

V (J,Ξ) = min
i,j

{
V (J,Ξ + ei)

F̄ξi+1

F̄ξi
+ V (J\{i},Ξ + ei)

fξi
F̄ξi

+
∆ψξi
σj
Pi(σj) +

∑
l∈J

hl

(
∆ψξl
σj

)}
(6.3)

and we are interested in computing mins F (s) = V (N,0). The size of the state space increases

exponentially with the number of jobs, so using this recursion is not practical for even medium

sized instances (e.g. 10 jobs and 15 possible sizes). Since it is not practical, we will first

simplify the problem slightly and then propose a policy that returns the same result as solving

the recursion in (6.3).

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 103

6.3 Weighted Completion Time and Polynomial Power

Cost

We will assume that Pi(s) = vis
β, with β > 2, thus the energy cost if ∆ψk cycles of job i

are processed at speed si is given by Ei(si) = vi∆ψks
β−1
i . Additionally, let hi(Ci) = wiCi, i.e

weighted completion time. Finally, we assume that S = Rn
+. Let WJ =

∑
i∈Jwi, then the

recursion in (6.3) is simplified to

V (J,Ξ) = min
i,s

{
V (J,Ξ + ei)

F̄ξi+1

F̄ξi
+ V (J\{i},Ξ + ei)

fξi
F̄ξi

+ ∆ψξiDJ(i, si)

}
, (6.4)

where DJ(i, si) = vis
β−1
i + WJ

si
. For any given i the first two terms in (6.4) are constant, thus,

we only need to minimize DJ(i, si). Using the results from Chapter 4 it is easy to compute

the optimal value of DJ(i, si), which is achieved at

s∗i = β

√
WJ

(β − 1)vi
, (6.5)

and thus, by defining B ≡ β
(β−1)b

and b ≡ β−1
β

, we get that DJ(i, s∗i) = B β

√
viW

β−1
J . Hence,

(6.4) is further simplified to

V (J,Ξ) = min
i

{
V (J,Ξ + ei)

F̄ξi+1

F̄ξi
+ V (J\{i},Ξ + ei)

fξi
F̄ξi

+ ∆ψξiB
β

√
viW

β−1
J

}
.

(6.6)

Now we can compute V (N,0) by starting from V (i, q − 1) = ∆ψq−1B
β

√
viw

β−1
i , for all i,

and then computing the other terms backwards, noting that

V (i, k) = V (i, k + 1)
F̄k+1

F̄k
+ ∆ψkB

β

√
viw

β−1
i .

6.3.1 Completion Time and Job Independent Power Cost

We now consider a further simplification: let wi = w and vi = v ∀i. Since in this case two jobs

that have received the same amount of work are indistinguishable, we can use a simpler state

description. Let Θ =
[
θ1, . . . , θq

]
denote the new state space, where θk denotes the number of

104 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

jobs that we currently know have at least ψk cycles as work requirement. We can think of Θ

representing q different queues the machine must serve, and once it chooses to process a job

from queue j then the job either leaves (i.e. θj is reduced by 1) or it moves to the following

queue (i.e. θj is reduced by 1 and θj+1 is increased by 1). For example, in the beginning

we have θ1 = n and θk = 0 for the rest since all jobs will have at least ψ1 but we know

nothing more. Once we process one job for ∆ψ0 cycles, we have that θ1 = n− 1 and θ2 = 1 if

the selected job is not finished. For notation simplicity we will denote | Θ |=
∑q

k=1 θk, the

number of jobs that are still available.

Lemma 6.1 is still valid under this state description so given a current state Θ then the

optimal cost for the remaining jobs will be given by

V (Θ) = min
k

{
V (Θ− ek + ek+1)

F̄k+1

F̄k
+ V (Θ− ek)

fk
F̄k

+ ∆ψk−1D
β
√
| Θ |β−1

}
, (6.7)

where D = B β
√
vwβ−1.

6.3.1.1 Two Queue System (q = 2)

For the case when Ψ = {ψ1, ψ2}, with f =
[
p 1− p

]
, the DP recursion (6.7) can be written

as

V (θ1, θ2) = min
{
V (θ1 − 1, θ2 + 1) (1− p) + V (θ1 − 1, θ2) p+ ∆ψ0D(θ1 + θ2)b,

V (θ1, θ2 − 1) + ∆ψ1D(θ1 + θ2)b
}
, (6.8)

where b = β−1
β

.

From (6.8) note that whenever we are in a state where θ1 = 0, the only available decision

is to process a job from θ2 and thus we get that ∀ξ > 0,

V (0, ξ) = V (0, ξ − 1) + ∆ψ1Dξ
b = ∆ψ1D

ξ∑
i=1

ib. (6.9)

Similarly, whenever θ2 = 0 we can only process a job from θ1 and thus,

V (ξ, 0) = V (ξ − 1, 0) p+ V (ξ − 1, 1) (1− p) + ∆ψ0Dξ
b (6.10)

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 105

but we cannot further reduce it since we don’t know what decision will be made at V (ξ − 1, 1).

We now prove the following theorem:

Theorem 6.1. Given Θ = (τ, n− τ), with 0 < τ < n for any n ≥ 2, then if ∆ψ0

∆ψ1
≥ p it is

optimal to process a job from θ2, whereas if ∆ψ0

∆ψ1
≤ p it is optimal to process a job from θ1.

Proof. We prove it by double induction on the total number of jobs on each queue (θ1 or θ2).

First, for n = 2, we only have τ = 1, and from (6.8) we get that

V (1, 1) = min
{
V (0, 1) p+ V (0, 2) (1− p) + ∆ψ0D2b, V (1, 0) + ∆ψ1D2b

}
. (6.11)

By using (6.9) and (6.10) in (6.11) we get that

V (1, 1) = Dmin
{

∆ψ0

[
2b
]

+ ∆ψ1

[
−p2b + 1 + 2b

]
,∆ψ0 + ∆ψ1

[
1− p+ 2b

]}
.

(6.12)

Note that D, and thus v and w, do not affect the decision. From (6.12) we conclude that

it will be optimal to process a job from θ2 if

∆ψ0

[
2b
]

+ ∆ψ1

[
−p2b + 1 + 2b

]
≥ ∆ψ0 + ∆ψ1

[
1− p+ 2b

]
⇔ ∆ψ0

∆ψ1

≥ p, (6.13)

and similarly, it will be optimal to process a job from θ1 if ∆ψ0

∆ψ1
≤ p.

We now continue with the induction proof for the two cases, ∆ψ0

∆ψ1
≥ p and ∆ψ0

∆ψ1
≤ p,

separately. First let ∆ψ0

∆ψ1
≥ p, i.e. we assume that for 0 < τ < ξ, and ξ ≤ n, at state

Θ = (τ, ξ − τ) it will be optimal to process a job from θ2. For this case note that (6.10) does

have a close form, since V (ξ − 1, 1) = V (ξ − 1, 0) + ∆ψ1Dξ
b, and thus

V (ξ, 0) = ∆ψ0

[
ξ∑
i=1

ib

]
+ ∆ψ1

[
(1− p)

ξ∑
i=1

ib

]
, (6.14)

so the hypothesis is that for 0 < τ < ξ, and ξ ≤ n,

V (τ, ξ − τ) = ∆ψ0

[
τ∑
i=1

ib

]
+ ∆ψ1

[
ξ∑
i=1

ib − p
τ∑
i=1

ib

]
. (6.15)

106 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

We now prove that it is optimal to process a job from θ2 for n + 1, which is done by

induction on τ . First, for τ = 1 we get that

V (0, n) p+ V (0, n+ 1) (1− p) + ∆ψ0(n+ 1)b = ∆ψ0(n+ 1)b + ∆ψ1

[
n+1∑
i=1

ib − p(n+ 1)b

]
,

and

V (1, n− 1) + ∆ψ1(n+ 1)b = ∆ψ0 + ∆ψ1

[
n+1∑
i=1

ib − p

]
,

thus,

∆ψ0(n+ 1)b + ∆ψ1

[
n+1∑
i=1

ib − p(n+ 1)b

]
≥ ∆ψ0 + ∆ψ1

[
n+1∑
i=1

ib − p

]
⇔ ∆ψ0

∆ψ1

≥ p.

(6.16)

We now assume it is optimal for Θ = (θ1, n + 1 − θ1), with θ1 ≤ τ , and prove it for

θ1 = τ + 1. In this case

V (τ, n− τ) p+ V (τ, n+ 1− τ) (1− p) + ∆ψ0(n+ 1)b

= ∆ψ0

[
τ∑
i=1

ib + (n+ 1)b

]
+ ∆ψ1

[
n+1∑
i=1

ib − p
τ∑
i=1

ib − p(n+ 1)b

]
,

and

V (τ + 1, n− 1− τ) + ∆ψ1(n+ 1)b = ∆ψ0

[
τ+1∑
i=1

ib

]
+ ∆ψ1

[
n+1∑
i=1

ib − p
τ+1∑
i=1

ib

]

thus,

∆ψ0

∆ψ1

[
τ∑
i=1

ib + (n+ 1)b

]
+

n+1∑
i=1

ib − p
τ∑
i=1

ib − p(n+ 1)b ≥ ∆ψ0

∆ψ1

[
τ+1∑
i=1

ib

]
+

n+1∑
i=1

ib − p
τ+1∑
i=1

ib,

⇔ ∆ψ0

∆ψ1

≥ p.

(6.17)

Hence, if ∆ψ0

∆ψ1
≥ p for any 0 < τ < n, with n ≥ 2, at state Θ = (τ, n − τ) it is optimal to

process a job from θ2.

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 107

For the case ∆ψ0

∆ψ1
≤ p, we have proved that for n = 2 it is optimal to process a job from

θ1. We assume it is optimal to process a job from θ1 for every state Θ = (τ, ξ − τ) with

0 ≤ τ < ξ, and ξ ≤ n, i.e.

V (τ, ξ − τ) =V (τ − 1, ξ − τ) p+ V (τ − 1, ξ − τ + 1) (1− p) + ∆ψ0ξ
b,

=
τ∑
i=0

τ
i

 pτ−i(1− p)iV (0, ξ − τ + i) + ∆ψ0

τ−1∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(ξ − j + 1)b.

(6.18)

Now we prove it for n+ 1 by using induction on τ . For τ = 1 we have that,

V (0, n) p+ V (0, n+ 1) (1− p) + ∆ψ0(n+ 1)b = ∆ψ0(n+ 1)b + ∆ψ1

[
n+1∑
i=1

ib − p(n+ 1)b

]
,

and

V (1, n− 1) + ∆ψ1(n+ 1)b = ∆ψ0n
b + ∆ψ1

[
n∑
i=0

ib + (n+ 1)b − pnb
]
,

thus,

∆ψ0(n+ 1)b + ∆ψ1

[
n+1∑
i=1

ib − p(n+ 1)b

]
≤ ∆ψ0n

b + ∆ψ1

[
n∑
i=0

ib + (n+ 1)b − pnb
]
⇔ ∆ψ0

∆ψ1

≤ p.

(6.19)

We next assume it is optimal to process a job from θ1 for Θ = (θ1, n+ 1− θ1), with θ1 ≤ τ ,

and finally we prove it for θ1 = τ + 1, i.e. we need to prove that

V (τ, n− τ) p+ V (τ, n− τ + 1) (1− p) + ∆ψ0(n+ 1)b ≤ V (τ + 1, n− τ − 1) + ∆ψ1(n+ 1)b.

(6.20)

From (6.18) we get that the LHS of (6.20) can be rewritten as

τ+1∑
i=0

τ + 1

i

 pτ+1−i(1− p)iV (0, n− τ + i) + ∆ψ0

τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n+ 1− j + i)b.

(6.21)

108 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

Similarly, the RHS of (6.20) can be rewritten as

τ+1∑
i=0

τ + 1

i

 pτ+1−i(1− p)iV (0, n− τ − 1 + i) + ∆ψ0

τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n− j + i)b + ∆ψ1(n+ 1)b,

(6.22)

and by noting that V (0, n− τ + i) = V (0, n− τ − 1 + i) + ∆ψ1(n − τ + i)b, we get that

proving (6.20) is equivalent to proving that

∆ψ1

τ+1∑
i=0

τ + 1

i

 pτ+1−i(1− p)i(n− τ + i)b + ∆ψ0

τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n+ 1− j + i)b

≤ ∆ψ0

τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n− j + i)b + ∆ψ1(n+ 1)b,

(6.23)

or equivalently,

∆ψ0

∆ψ1

 τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n+ 1− j + i)b −
τ∑
j=0

j∑
i=0

j
i

 pj−i(1− p)i(n− j + i)b


≤ −

τ+1∑
i=0

τ + 1

i

 pτ+1−i(1− p)i(n− τ + i)b + (n+ 1)b.

(6.24)

We can write the RHS of (6.24) as,

−
τ∑
i=0

τ + 1

i

 pτ+1−i(1− p)i(n− τ + i)b − (1− p)τ+1(n+ 1)b + (n+ 1)b,

and by expanding the binomial (1− p)τ+1, changing the sum index, and reordering, we get

that the RHS of (6.24) is equal to

p

(n+ 1)b


τ∑
i=0

τ + 1

i

 (−p)τ−i
+

0∑
i=1−τ

(n+ i)b

−
τ + 1

i+ τ

 p−i(1− p)i+τ
− (n− τ)bpτ

 .
(6.25)

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 109

Similarly, by exchanging the sums, changing the sum indices, and regrouping powers, we

get that the LHS of (6.24) can be rewritten as,

∆ψ0

∆ψ1

(n+ 1)b

{
τ∑
i=0

(1− p)i
}

+

0∑
i=1−τ

(n+ i)bp−i

(1− p)i+j−1
τ∑

j=1−i

j + 1

i+ j

 p−

 j

i+ j

− 1


−(n− τ)bpτ

]
.

(6.26)

Finally, we can prove that

τ∑
i=0

τ + 1

i

 (−p)τ−i =
τ∑
i=0

(1− p)i,

by noting that
τ∑

i=τ−k

 i

τ − k

 =

τ + 1

k

 ,

and similarly we can prove that

−

τ + 1

i+ τ

 p−i(1− p)i+τ = p−i

(1− p)i+j−1

τ∑
j=1−i

j + 1

i+ j

 p−

 j

i+ j

− 1

 ,

for i = 1− τ, . . . , 0, and thus, all the coefficients of the terms (n + i)b, for i = {−τ, . . . , 1}

are the same in (6.25) and (6.26). Hence, we get that (6.20) is true if ∆ψ0

∆ψ1
≤ p, completing

the proof.

Using Theorem 6.1 we obtain an optimal policy without computing V (Θ) for all possible

states Θ. Some implications Theorem 6.1 are very intuitive. If the probability p of jobs being

small is large, or the work required in the first queue is much smaller than the one in the

second queue, it is optimal, in expectation, to always process jobs from the first stage. On

the other if such probability is small (i.e. the probability of jobs being large is big) or the

work in the second queue is much smaller, then it is an optimal policy to process jobs all the

way until they finish.

110 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

(a) Instance with ∆ψ0

∆ψ1
< p (b) Instance with ∆ψ0

∆ψ1
> p

Figure 6.1: Example Instances for q = 2

It is important to note that the optimal policy only depends only on the values of ∆ψ0,

∆ψ1, and p, and not the amount of jobs on each state, nor the number of jobs n or the

weights v and w. Also, if ∆ψ0

∆ψ1
= p any policy would be optimal.

Figure 6.1 shows the optimal policies for sample instances of the two possible cases. In

Figure 6.1a we have that ∆ψ0

∆ψ1
< p, in which, by Theorem 6.1, it is optimal to process jobs

from stage θ1. Thus, when a job is not finished the policy chooses new job from θ1 instead of

finishing the job completely. The other case is shown in Figure 6.1b. In this case, whenever

a job from θ1 is processed and not finished, the optimal policy is then to finish it before

processing a new job from θ1. The colors in each square in both figures 6.1a and 6.1b indicate

the optimal policy if that specific state is achieved.

6.3.1.2 Multiple State System

Recall equation (6.7) which determines the optimal cost given a current state Θ.

V (Θ) = min
k

{
V (Θ− ek + ek+1)

F̄k+1

F̄k
+ V (Θ− ek)

fk
F̄k

+ ∆ψk−1D
β
√
| Θ |β−1

}
.

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 111

Given the number of states q and the number of jobs n in an instance, we need O(qn)

computations to find the optimal rule, i.e. which k to choose at each state Θ, making it

non-practical for any reasonable applications.

Let η(Θ) =
[
η1 . . . ηq

]
, where ηi = 1{θi > 0}, denote the support or sparsity pattern

of Θ. That is, η(Θ) represents the states that have at least one job to process. Note that

there are only 2q − 1 of these different sparsity patterns.

Through simulations we noted that, just like in Theorem 6.1, the number of jobs in each

θi does not determine the optimal policy, which only depends on the sparsity pattern of the

state. In Theorem 6.1 we have already proved this result for q = 2 using double induction,

but this method is not adequate to prove it for an arbitrary number of states q. Thus, we

leave the observation as a conjecture.

Conjecture 6.1. The optimal queue to process at state Θ is the same when the state is

η(Θ).

The importance of this conjecture is that, if true, it shows that given the job sizes Ψ and

probability distribution f , only computing the optimal rules for the 2q − 1 sparsity patters is

needed to compute the optimal policy for any given state and thus for any given instance.

Also note that since the size of each queue does not determine the policy, as long as there

are jobs in the first queue, the offline and online optimal policies will be the same, since the

arrival of a new job (which arrives to the first queue), will not make a difference and there

will be no need for preemption.

Algorithm 6.1 Sparsity Rule

Inputs: Set of jobs, 2q − 1 sparsity or support rules.

1 while | Θ |> 0

2 process a job from queue θi, where i is the optimal queue for state η(Θ).

3 set θi = θi − 1

4 if the job does not finish

5 θi+1 = θi+1 + 1

112 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

Using this conjecture we propose the algorithm Sparsity Rule, detailed in Algorithm

6.1 to process an instance. The optimal policy can be computed for each of the 2q−1 sparsity

patterns in O(qq) computations by solving the DP with q jobs, but it is done only once.

Hence, the optimal scheduling for any instance can be then computed in O(n).

6.3.1.3 Experimental Results

We analyzes the performance of the Sparsity Rule algorithm using simulations with

randomly generated parameters. For each simulation instance, we randomly selected Ψ and f

from uniform distributions with up to n = 15 jobs, which was the limit of what the computer

could handle. We did 20, 000 simulations for each value of q from 2 to 8 and in each simulation

we compared the Sparsity Rule algorithm rule with the actual optimal policy from the

DP solution. The simulations results showed that for all the 140, 000 simulations the rule

given by the Sparsity Rule algorithm was exactly the same as th optima policy given by

the DP formulation.

We further analyzed the setting when q = 3 to identify patters that might help us deduce

simpler rules, like the ones achieved for th q = 2 case, for larger state spaces. To do this

we defined a probability distribution of the job sizes and then randomly generated the size

parameters. For each set of job sizes we computed the optimal rules for all the 4 different

sparsity patterns. Figure 6.2 shows one specific set of simulations where f =
[
0.3 0.5 0.2

]
.

The areas in green denote the instances where choosing a job from θ3 was optimal, the red

ones from θ2, and the blue ones from θ1.

Figure 6.2 shows that there is indeed some structure in the rules for each sparsity pattern,

but it is not clear what is the correct hierarchy required to order them and extract the rules

without having to solve a DP for q jobs.

CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES 113

Figure 6.2: Rule Decisions for q = 3 and f = [0.3 0.5 0.2].

114 CHAPTER 6. SCHEDULING WITH UNCERTAIN JOB SIZES

This page is intentionally printed only with this statement.

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 115

Chapter 7

Scheduling with Convex Costs

T
he key modification in the tardiness extension of the SAIAS algorithm presented

in Section 3.2 is that we speed up jobs by a factor γ to make sure that early jobs

in the optimal solution remain early in our approximation. This technique of

increasing a resource (in this case speed) to achieve an approximate optimal solution is known

as resource augmentation, and it has been recently used in many scheduling applications as

a method to circumvent the limitations of the worst-case scenario analysis that is done in

approximation algorithms. A summary of the results presented in this chapter can be found

in [Carrasco et al., 2013].

In resource augmentation algorithms, the approximation algorithm is allowed to use more

resources (in this case a faster machine) than the optimal algorithm without paying for the

extra resources used. Thus, it is equivalent to the problem described in Chapter 3 but with

Ei(si) ≡ 0, for all i. For this specific case we can extend its applicability to a very general

class of scheduling problems, where the scheduling performance metric used is a convex

non-decreasing function of the completion time of each job. This class includes important

metrics such as weighted tardiness and completion time squared, which are widely used in

various applications.

Although this application can be seen as an extension and corollary of the tardiness

approximation algorithm in Section 3.2 because of its applicability and importance deserves

116 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

special attention and we will discuss it in further detain in this Chapter.

In this chapter, after reviewing the state-of-the-art in Section 7.1, we present the problem

formulation in Section 7.2. After describing our algorithm, in Section 7.3 we analyse its

approximation ratio. In doing so we combine techniques from the α-points literature as well as

the resource augmentation literature. The key insight is that through resource augmentation,

specifically speed scaling, we ensure that the completion times given by the algorithm and

the optimal completion times are comparable.

Finally, in section 7.4 we report the results of our numerical experiments. These results

clearly show that our algorithm performs very well and that the actual speed-scaling required

is less than 2% on average.

7.1 Introduction

We consider the following offline scheduling problem: we are given a collection of n jobs,

where job i has a requirement of ρi machine cycles, and the cost of completing job i at time

Ci is given by a non-decreasing convex function fi : R+ → R+ of the completion time Ci.

Additionally, we are given arbitrary precedence constraints and the objective is to compute

a schedule that minimizes the total cost
∑

i fi (Ci). Since the jobs do not have release

dates, we can assume, without loss of generality, that the schedule is non-preemptive. For

simplicity we will use the three-field notation [Graham et al., 1979], and denote this problem

as 1|prec|
∑
fi (Ci).

Special cases of this problem have been studied since the early 1960s. Schild and

Fredman considered
∑

iC
2
i as the scheduling metric [Schild and Fredman, 1962], whereas

later Townsend studied a more general cost functions of the form f (Ci) = wiC
2
i + viCi, where

wi and vi are arbitrary weights [Townsend, 1978]. More recently Höhn and Jacobs [Höhn

and Jacobs, 2012] presented a 1.75-approximation algorithm for the
∑

iwiC
2
i problem. Some

additional examples can be found in [Alidaee, 1991; Alidaee, 1993; Bagga and Kalra, 1980;

Croce et al., 1995; Gupta and Sen, 1984; Mondal and Sen, 2000; Moore, 1968]. The first

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 117

major breakthrough with general, possible non-convex, cost functions was due to Bansal and

Pruhs [Bansal and Pruhs, 2010], who developed a O(log log nP)-approximation algorithm for

the 1|ri, pmtn|
∑
fi (Ci) problem. For the special case with no release dates (i.e. ri ≡ 0) this

algorithm is a 16-approximation algorithm. Later, Cheung and Shmoys [Cheung and Shmoys,

2011] presented a pseudo-polynomial (2 + ε)-approximation algorithm for the case without

preemption. Note that, to the best of our knowledge, there are no results for problems with

precedence constraints.

Due date related metrics are another set of interesting and widely used scheduling metrics

that satisfy the convexity requirement [Pinedo, 2008]. In these problems each job i has an

associated deadline di and the objective function of the problem is a function of the completion

times Ci and the deadline di. Some typical examples of convex due date related scheduling

metrics are lateness (defined as Li = Ci− di) and tardiness (defined as Ti = max{0, Ci− di}).

Although this problem was first proposed in the early 1960s [McNaughton, 1959; Schild and

Fredman, 1961] it has remained a challenging topic, since the total weighted tardiness problem

is NP-Hard even in the case without release dates or precedence constraints [Lawler, 1977;

Lawler and Moore, 1969].

The weighted tardiness scheduling metric is widely used in many industrial applications,

including e.g. production plants, repair procedures, and routing schedules, etc., where

deadlines are involved; and both scheduling metrics have received much attention in the

scheduling literature [Pinedo, 2008]. Dynamic programming and branch and bound algorithms

are the two main approaches that have been proposed for the total tardiness and total

weighted tardiness problems. In both of these approaches, one adds dominance rules to

reduce the state space and, consequently, speed up the algorithms [Abdul-Razaq et al., 1990;

Sen et al., 2003]. Still, due to the size of the state space, these methods are only able

to solve problems with approximately 50 jobs. Other search heuristics such as simulated

annealing, genetic algorithms, etc. have also been proposed [Crauwels et al., 1998; Potts

and van Wassenhove, 1991]. To the best of our knowledge, only Bansal, et al. [Bansal et al.,

2007a] have addressed the total weighted tardiness from a resource augmentation point of

118 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

view, and no α-point based approximation algorithms have been proposed for this problem.

Bansal et al. [Bansal et al., 2007a] propose a 2-machine, 24-speed, 4-approximation algorithm

for the 1|ri|
∑
wiTi problem.

The tardiness squared T 2
i metric severely penalizes large tardiness values, making it a

natural metric for processes where a just-in-time type of approach is needed. Only branch-

and-bound algorithms have been proposed to solve the weighted tardiness squared problem

[Schaller and Valente, 2012]. Furthermore, these approaches can only solve very small

instances.

In this paper we propose an approximation algorithm for the scheduling problem with

job-dependent non-decreasing convex cost functions and arbitrary precedence constraints

that builds on techniques from the α-point and resource augmentation literatures.

The α-point algorithms were introduced by Phillips, Stein, and Wein [Phillips et al.,

1998], and Hall, Schulz, Shmoys, and Wein [Hall et al., 1997; Hall et al., 1996], and have

resulted in small constant factor approximation algorithms for many scheduling problems

[Skutella, 2006]. In this approach, the scheduling problem is formulated as a binary integer

program (IP) in terms of decision variables xit that is set to 1 if job i completes at time t

and 0 otherwise. The α-point of each job is defined as the earliest time at which an α

fraction of the job has been completed in linear relaxation of the IP. The jobs are then

ordered in some fashion according to these α-points. Currently there are many variants

and extensions of these technique including choosing α randomly [Chekuri et al., 2001;

Goemans, 1997] or choosing a different α for each job [Goemans et al., 2002]. A detailed

survey of many of the current α-point algorithms and the approximation ratios achieved by

them can be found in [Skutella, 2006].

Resource augmentation was developed to circumvent the shortcomings of the worst-case

approximation ratio criterion, and has helped explain why some algorithms perform much

better in practice than their worst-case theoretical guarantees. The main idea of this analysis

is that one compares the optimal solution of the original problem with the solution computed

by an algorithm that has access to an augmented set of resources: more machines, more space,

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 119

faster speed, etc. Although the first examples of resource augmentation analysis are almost

three decades old [Sleator and Tarjan, 1985], this technique has become popular only recently.

Kalyanasundaram and Pruhs [Kalyanasundaram and Pruhs, 2000] introduced the idea, by

showing that running the algorithm at a faster speed was equivalent to having clairvoyance

in the total flow time scheduling problem. Although it is known that there are no constant

factor non-clairvoyant on-line algorithm for this scheduling problem, they showed that one

can achieve a constant competitive ratio by speed scaling. The term resource augmentation

analysis was introduced by Philips, Stein, Trong, and Wein [Phillips et al., 2002]. They

defined an s-speed ρ-approximation algorithm, as an algorithm that achieves a ρ worst-case

approximation ratio when jobs run at s times the nominal speed of the machine. A survey

including on-line resource augmentation results can be found in [Pruhs et al., 2004].

7.1.1 Our Results

We make several contributions to the problem of scheduling jobs with non-decreasing convex

cost functions:

(a) We introduce a model that extends the previous models by allowing a more general

non-linear job-dependent function of the completion time as the scheduling metric.

(b) We propose a new approximation algorithm for minimizing the total cost, with arbitrary

precedence constraints.

(c) Our algorithm builds on both the α-point and resource augmentation techniques. We show

that our algorithm has a small constant approximation ratio and a small speed-scaling

ratio for several important scheduling metrics, namely the total weighted tardiness, the

total weighted tardiness squared, and the total completion time squared. The results

of our numerical experiments show that the practical performance of our algorithm is

significantly superior to the theoretical bounds.

(d) We compare the performance of our algorithm with other available methods for the total

weighted tardiness problem by using the test instances from the OR Library [Beasley,

120 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

1990]. We show that our algorithm is capable of computing approximate optimal solutions

for all the available test problems, even those with n = 100 jobs. Thus, we are able

to establish lower bounds on the optimal solutions for instances where the optimal

schedule is currently not known. Our algorithm takes less than a second to solve even

the larger instances. This is at least one order of magnitude faster than current methods.

Furthermore, we show that on average only a 2% speed-up is required to achieve the best

known result; and, in fact, in several cases no speed-up factor is required.

Our main result can be summarized in the following theorem

Theorem 7.1. Given n jobs with arbitrary precedence constraints and convex non-decreasing

cost functions fi (Ci) for each job i, there is a O(1)-speed 1-approximation algorithm for the

problem of minimizing the total non-linear cost
∑
fi (Ci).

The speed scaling constant is relatively small. Given ε > 0 our algorithm is a (4 + ε)-speed

1-approximation algorithm.

7.1.2 Our Methodology

Time-indexed IP formulations for scheduling problems are not typically of polynomial size,

therefore, we extend the polynomial size interval-indexed IP formulation introduced in [Hall

et al., 1997], to handle the non-linear cost functions. The basic idea is to divide time into

geometrically increasing intervals and assign the completion time of each job to one of these

intervals instead of a specific time. In this formulation, variables xit are 1 if job i is completed

in interval t and 0 otherwise. This allows a polynomially sized problem, but since completion

times only belong to an interval and not exactly known, the approximation ratio suffers a

small degradation. In Section 7.2 we describe this interval-indexed formulation in further

detail.

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 121

7.2 Problem Formulation

7.2.1 Problem Setting

The problem setting is as follows. We are given n jobs, where job i has a processing

requirement of ρi ∈ N+ machine cycles, and thus requires pi = ρi
σ

time units on a machine

that runs at speed of σ cycles per time unit. Without loss of generality, we assume that

ρi > 0, for all i = {1, . . . , n} and σ = 1. Let Ci denote the completion time of job i and

fi (Ci), with fi : R+ → R+, denote a job-dependent non-decreasing convex cost function. Let

Π = {π(1), . . . , π(n)} denote the order in which the jobs are processed, i.e. π(i) = k implies

that the i-th job to be processed is job k. Then Cπ(i) = Cπ(i−1) + pπ(i) is the completion time

of the i-th job, where π(0) = 0 and Cπ(0) = 0, and is completely determined by the order Π

when all jobs are processed at the same speed.

The objective is to compute a feasible schedule, consisting of an order Π that respects

precedence constraints and minimizes the total cost of all jobs, i.e. minimizes the function,

F (Π) =
∑n

i=1 fπ(i)

(
Cπ(i)

)
.

7.2.2 Interval-Indexed Formulation

We now modify and extend the interval-indexed formulation proposed in Chapter 3 for the

total non-linear cost setting. The interval-indexed formulation divides the time horizon into

geometrically increasing intervals, and the completion time of each job is assigned to one of

these intervals. The problem formulation is as follows. We divide the time horizon into the

following geometrically increasing intervals: [κ, κ], (κ, (1+ ε)κ], ((1+ ε)κ, (1+ ε)2κ], . . ., where

ε > 0 is an arbitrary small constant, and κ = minj{pj} denotes the smallest interval size that

will hold at least one whole job. We define interval It = (τt−1, τt], with τ0 = κ and τt = κ(1 +

ε)t−1. The interval index ranges over {1, . . . , T}, with T = min {dte : κ(1 + ε)t−1 ≥
∑n

i=1 pi};

and thus, we have a polynomial number of indices t.

Let xit be 1 if job i completes in the time interval It = (τt−1, τt] and 0 otherwise. We

consider the following IP, which is a lower bound on F (Π) since we consider the initial time

122 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

of each time interval It:

min
x

∑n
i=1

∑T
t=1 fi (τt−1)xit (7.1)

s.t.:
∑T

t=1 xit = 1, i = {1, . . . , n}, (7.2)∑n
i=1

∑t
u=1 pixiu ≤ τt, t = {1, . . . , T}, (7.3)

xit = 0, if τt < pi, i = {1, . . . , n}, t = {1, . . . , T}, (7.4)∑t
u=1 xi1u ≥

∑t
u=1 xi2u, if i1 ≺ i2, t = {1, . . . , T}, (7.5)

xit ∈ {0, 1}, i = {1, . . . , n}, t = {1, . . . , T}. (7.6)

We have constraint (7.2) because each job i must finish in a unique time interval; constraint

(7.3) because since only one job can be processed at any given time, the total processing time

of jobs up to time interval It must be at most τt units; constraint (7.4) because each job i

requires pi time units to be processed; and constraint (7.5) because the precedence constraint

i1 ≺ i2 implies that job i2 cannot finish in an interval earlier than i1. Note that, although

the function fi (Ci) is non-linear, the objective in the interval approximation (7.1) is linear

and also note that the error associated with the interval relaxation is controlled through ε.

It is important to note that this integer program only provides a lower bound for F (Π)

but it might not be feasible. This is because the precedence constraints (7.5) do not ensure

that two sequential jobs that finish in the same interval have the right order.

7.3 Approximation Algorithm

We now describe the speed scaling and α-point based algorithm for the total job-dependent

non-linear cost metric, called Schedule by α-intervals and Resource Augmentation

(SAIRA) which is detailed in Algorithm 7.1.

Let x̄it denote the optimal solution of the linear relaxation of the integer program (7.1)

when replacing the constraints (7.6) by xit ≥ 0. In steps 1 and 2 of the algorithm we model

and compute the optimal solution x̄ and in step 3, given 0 ≤ α ≤ 1, we compute the α-interval

of job i, which is defined as, Iαi = min
{
t :
∑t

u=1 x̄iu ≥ α
}

. Since several jobs may finish in

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 123

Algorithm 7.1 Schedule by α-intervals and Resource Augmentation (SAIRA)

Inputs: set of jobs, functions fi (Ci), α ∈ (0, 1), ε > 0, γ > 1.

1 Divide time into increasing time intervals It = (τt−1, τt], with τt = κ(1 + ε)t−1.

2 Compute an optimal solution x̄ to the linear relaxation of problem (7.1).

3 Compute the α-intervals Iα and the sets Jt.

4 Compute an order Πα that has the sets Jt ordered in non-decreasing values of t and

the jobs within each set in a manner consistent with the precedence constraints.

5 Run each job i at speed γ.

6 Set the i-th job to start at time Cα
π(i−1), which is the completion time of the previous

job using speeds γ, and Cα
π(0) = 0.

7 return schedule Πα and completion times Cα.

the same interval, let Jt = {i : Iαi = t} denote the set of jobs that finish in interval It. In

step 4 we describe the order Πα that we use to schedule jobs.

Next, in step 5, we speed up each job by γ and finally in steps 6 and 7 we compute the

completion times given the calculated speeds and return the schedule Πα and completion

times Cα. Note that since γ is constant for all jobs, the SAIRA algorithm is a γ-speed

approximation algorithm.

We now analyse this algorithm’s performance. We will assume, without loss of generality,

that Iα1 ≤ Iα2 ≤ . . . Iαn .

First, the following lemma shows that the output of the SAIRA algorithm is indeed

feasible.

Lemma 7.1. If i1 ≺ i2, then constraint (7.5) implies that Iαi1 ≤ Iαi2.

Proof. Evaluating constraint (7.5) corresponding to i1 ≺ i2, for t = Iαi2 , we have that,

Iαi2∑
u=1

xi1u ≥
Iαi2∑
u=1

xi2u ≥ α,

where the last inequality follows from the definition of Iαi2 . Since the chain of inequalities implies

that
∑Iαi2

u=1 xi1u ≥ α, which means that the α-interval for i1 must satisfy that Iαi1 ≤ Iαi2 .

124 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

Since the SAIRA algorithm schedules jobs by first ordering the sets Jt in increasing order

of t and then orders the jobs within each set in a way that is consistent with the precedence

constraints, by Lemma 7.1 it follows that the SAIRA algorithm preserves the precedence

constraints, and, therefore, the output of the algorithm is feasible.

Theorem 7.2. The SAIRA algorithm with α = 1
2

and γ = (4 + ε) is a (4 + ε)-speed,

1-approximation algorithm for the total weighted non-linear cost problem with convex non-

decreasing cost and arbitrary precedence constraints, 1|prec|
∑
fi (Ci).

Proof. Let C∗i be the completion time of job i in the optimal solution, fi (C
∗
i) denote its cost,

x̂it denote an optimal solution of the integer problem (7.1), and x̄it the fractional optimal

solution of its linear relaxation. Because we consider τt−1 as the completion time for all jobs

that finish in time interval t, and since x̄it is the optimal solution of the linear relaxation and

fi (C) is non-decreasing we have that

n∑
i=1

T∑
t=1

fi (τt−1) x̄it ≤
n∑
i=1

T∑
t=1

fi (τt−1) x̂it ≤
n∑
i=1

fi (C
∗
i) . (7.7)

Let C̄i =
∑T

t=1 τt−1x̄it denote the optimal fractional completion time of job i, given by

the optimal solution of the relaxed linear program. Because fi (C) is convex and
∑

t x̄it = 1

from constraint (7.2) then

fi
(
C̄i
)

= fi

(
T∑
t=1

τt−1x̄it

)
≤

T∑
t=1

fi (τt−1) x̄it. (7.8)

and thus, from (7.7) and (7.8),

n∑
i=1

fi
(
C̄i
)
≤

n∑
i=1

fi (C
∗
i) . (7.9)

Because there are no release date constraints there is no idle time between jobs and we

can bound the completion time determined by the algorithm, Cα
i , by

Cα
i =

1

γ

i∑
j=1

pj ≤
1

γα

i∑
j=1

Iαj∑
u=1

pjx̄ju ≤
1

γα

n∑
j=1

Iαi∑
u=1

pjx̄ju, (7.10)

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 125

and from constraint (7.3) for t = Iαi we get that,

Cα
i ≤

1

γα
τIαi . (7.11)

Since it is possible that
∑Iαi

t=1 x̄it > α; we define X
(1)
i = α −

∑Iαi −1
t=1 x̄it and X

(2)
i =∑Iαi

t=1 x̄it − α, thus X
(1)
i +X

(2)
i = x̄iIαi , and we can rewrite

C̄i =

Iαi −1∑
t=1

τt−1x̄it + τIαi −1X
(1)
i + τIαi −1X

(2)
i +

T∑
t=Iαi +1

τt−1x̄it, (7.12)

and eliminating the lower terms of the previous sum we get that,

C̄i ≥ τIαi −1X
(2)
i +

T∑
t=Iαi +1

τt−1x̄it ≥ τIαi −1X
(2)
i +

T∑
t=Iαi +1

τIαi −1x̄it = τIαi −1(1− α). (7.13)

Because τIαi = (1 + ε)τIαi −1, from (7.11) and (7.13) we get that Cα
i ≤

(1+ε)
γα(1−α)

C̄i. The key

step is that by setting γ = (1+ε)
α(1−α)

, which implies that we have a (1+ε)
α(1−α)

-speed approximation

algorithm, we make the algorithm’s completion time and the fractional completion time

comparable, and thus,

n∑
i=1

fi (C
α
i) ≤

n∑
i=1

fi

(
(1 + ε)

γα(1− α)
C̄i

)
=

n∑
i=1

fi
(
C̄i
)
. (7.14)

Finally, from (7.9) and (7.14) it follows that

n∑
i=1

fi (C
α
i) ≤

n∑
i=1

fi (C
∗
i) , (7.15)

and by setting α = arg min0≤α≤1

{
1

α(1−α)

}
= 1

2
, which minimizes the resource augmentation

requirement, we get the desired speed and approximation ratios.

Regretfully, we are not able to extend this algorithm to the setting where release dates

are present, since we use speed scaling as a method to make sure that jobs are finished in a

certain interval.

Since the tardiness metric to any power d ≥ 1, that is fi (Ci) = T di , is convex and

non-decreasing, we have the following corollary directly from the previous theorem.

126 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

Corollary 7.1. For any d ≥ 1, the SAIRA algorithm with α = 1
2

and γ = (4 + ε) is a (4 + ε)-

speed, 1-approximation algorithm for the total weighted tardiness with arbitrary precedence

constraints, 1|prec|
∑
wiT

d
i .

For the specific setting where fi (Ci) = wiC
d
i , with d ≥ 1, if no resource augmentation is

allowed, we have the following additional corollary.

Corollary 7.2. For any d ≥ 1, the SAIRA algorithm with α = 1
2

and γ = 1 is a (4 + ε)d-

approximation algorithm for the 1|prec|
∑
wiC

d
i problem.

Proof. Without resource augmentation, from Theorem 7.2, we still have that

n∑
i=1

fi (C
α
i) ≤

n∑
i=1

fi

(
(1 + ε)

γα(1− α)
C̄i

)
, (7.16)

where fi (Ci) = Cd
i . Thus,

n∑
i=1

(Cα
i)d ≤

n∑
i=1

(
(1 + ε)

γα(1− α)
C̄i

)d
=

n∑
i=1

(
(1 + ε)

γα(1− α)

)d (
C̄i
)d
, (7.17)

and from (7.9) it follows that

n∑
i=1

(Cα
i)d ≤

n∑
i=1

(
(1 + ε)

γα(1− α)

)d
(C∗i)d . (7.18)

By taking γ = 1, which implies that no resource augmentation is required, and α = 1
2
, we

obtain the corresponding approximation bound.

7.4 Experimental Results

In this section we present a simulation based performance analysis of the SAIRA algorithm.

In our simulations we considered three common scheduling metrics: total weighted tardiness,

where fi (Ci) = wi(Ci − di)+, with di denoting job i’s due date; total weighted tardiness

squared, where fi (Ci) = wi ((Ci − di)+)
2
; and total weighted completion time squared, where

fi (Ci) = wiC
2
i .

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 127

For each scheduling metric we simulated a large number of randomly generated instances

with ε = 0.1 and following the guidelines in [Hall and Posner, 2001] for deadlines values

and precedence constraints. We used the following distributions: wi ∼ unif{0, . . . , 20},

ρi ∼ unif{1, . . . , 10}, and for the tardiness metrics di ∼ unif{0, . . . , 0.1
∑
ρi}. We also

analysed instances with much larger job sizes (such as ρi ∼ unif{1, . . . , 100}), as well as

ρi drawn from bimodal distributions, which are generally hard for scheduling algorithms,

without observing any significant degradation in the performance of our algorithm.

We compared the output of our algorithm with the integer solution of the interval-

and-speed-indexed formulation (IPi), its linear relaxation (LPi), and when possible to the

integer and relaxed solutions of a time-indexed formulation for this problem (IPt and LPt

respectively). Although we do not explicitly provide these two last formulations in this

paper, we use them to help us understand whether the optimality gap is a consequence of the

rounding in the algorithm or due to the gap in the interval relaxation of the LP. Since the IPt

formulation is non-polynomial in size, it is impractical for large instances, and thus, we have

to use the LPi solution as a proxy to estimate our empirical approximation ratio. Hence, the

real approximation ratio is likely to be better. All simulations were done in Matlab, using

Problem Instances Size (n) Average Ratio 99.5% Worst Ratio

1|prec|
∑
wiTi

20, 720 10 0.139 0.189 0.205

20, 000 10, bimodal 0.150 0.220 0.222

20, 010 50 0.151∗ 0.179 0.192

20, 010 100 0.148∗ 0.168 0.176

20, 002 500 0.145∗ 0.155 0.159

1|prec|
∑
wiC

2
i

20, 010 10 0.052 0.053 0.055

20, 010 100 0.059∗ 0.059 0.059

1|prec|
∑
wiT

2
i

20, 000 10 0.023 0.036 0.041

20, 000 500 0.028∗ 0.031 0.032

Table 7.1: Experimental Approximation Ratios Summary

128 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

Gurobi [Gurobi Optimization Inc., 2012] and Gurobi MEX [Yin, 2012] to solve the IP and

LP relaxations of each instance. Table 7.1 shows a summary of simulation results for all the

different cases and instance sizes. For large instances (n ≥ 50) the ratios were computed

comparing the algorithm’s output with the LPi and not the IPt solution∗.

Figure 7.1a shows further details for the total weighted tardiness case with instances of

n = 500 jobs. In this figure we display the full histogram of the approximation ratios. We

believe that the full histogram gives a better understanding of how the algorithm performs

as compared to just reporting an average value or a worst case value. In the histogram

we highlight the average value and the 99.5% quantile, and, we also display the 99.99%

confidence intervals using dotted lines.

(a) SAIRA/LPi Ratio for n = 500, 20, 002 instances.

(b) LPi/IPt Ratio for n = 10, 20, 720 instances.

Figure 7.1: SAIRA Experimental Approximation Ratio for 1|prec|
∑
wiTi.

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 129

Figure 7.2: Minimum Speed-Up Required for 1|prec|
∑
wiTi, for n = 10.

Although the performance shown in Figure 7.1a is very good, the real approximation

ratio is likely to be even better since, as shown in Figure 7.1b, the average gap between the

IPt and LPI solutions is 0.8. Additionally, we computed the minimum speed-up required in

each instance so that the schedule determined by the SAIRA algorithm would have the same

cost as the optimal schedule. The results displayed in Figure 7.2 shows that only a small

speed-up is required – the maximum speed-up required over all the instances is only 5.3%.

We repeated the same analysis for the 1|prec|
∑
wiC

2
i problem. Figures 7.3a and 7.3b

show details of some of the simulated settings. Since the cost function is quadratic in Ci,

the performance is even better than in the total weighted tardiness case and the required

speed-up is smaller, with a maximum speed-up of 1.035. As expected, when the T 2
i metric

was used the performance was better than when using the Ti metric, as shown in Table 7.1.

Since in both cases the cost functions are quadratic, less speed-up is required to reduce the

cost of the schedule when compared to the linear cost functions.

Next, we report the performance of our algorithm on the weighted tardiness test problems

[Crauwels et al., 1998] in the OR Library [Beasley, 1990], that are widely used in the tardiness

literature to compare algorithm performance and optimal values. The problems consist of

3 sets with n = 40, 50, and 100 jobs per instance, with 125 instances each. The problem

set has the optimal solutions for 124 of the n = 40 problems, and 115 of the n = 50 ones.

For the remaining unsolved instances, the problem set has the best known schedules. Note

130 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

that these test problems do not have any precedence constraints. Just as in our randomly

generated instances the problems where solved in Matlab, using Gurobi 4.6 as LP solver in

a 4-core second generation i3 Intel CPU 550, with 6 Gb in RAM running Windows 7. For

each instance we compared the algorithm’s solution value with the best known solution for

that problem in order to compute the empirical approximation ratio. We also computed the

minimum speed-up required to achieve the best known solution and the CPU time required

to achieve to that solution. Table 7.2 shows average and worst results for each problem set.

As expected from the previous experiments the approximation ratios are very small, but

more importantly the minimum required speed-up is below 2% on average and below 8.6% in

the worst case, i.e. speeding-up the machine by a factor of 2%, on average, ensures that the

(a) SAIRA/LPi Ratio for n = 100, 20, 010 instances.

(b) Minimum Speed-Up Required for n = 10.

Figure 7.3: SAIRA Experimental Approximation Ratio for 1|prec|
∑
wiC

2
i

CHAPTER 7. SCHEDULING WITH CONVEX COSTS 131

Size (n)
Approx. Ratio Min. Speed-up CPU Time (sec.)

avr. worst avr. worst avr. worst

40 0.077 0.22 1.018 1.079 0.150 0.270

50 0.075 0.22 1.020 1.086 0.202 0.447

100 0.080 0.21 1.011 1.048 0.486 0.885

Table 7.2: Experimental Approximation Ratios Summary

schedule computed by our algorithm has the same value as the best known schedule for that

instance. For 25 instances (7 of which belong to the n = 100 set) the algorithm computed a

schedule that required no speed-up to achieve the current best known solution.

Another important thing to highlight is that our algorithm is able to compute approximate

solutions in under 1 second for all instances; even those with n = 100, some of which cannot

be solved using state-of-the-art brand-and-bound and dynamic programming algorithms.

Even for the smaller instances (n = 40), our algorithm requires about two orders of magnitude

less time to compute approximate solutions; a gap that becomes even larger as the size of the

instance increases [Schaller and Valente, 2012].

132 CHAPTER 7. SCHEDULING WITH CONVEX COSTS

This page is intentionally printed only with this statement.

CHAPTER 8. CONCLUSIONS 133

Chapter 8

Conclusions

T
hroughout this work we have introduced a general model for scheduling jobs with

job-dependent non-renewable resources and we have given a small constant-factor

approximation algorithm for minimizing the sum of weighted completion time and

the total resource cost. We built this algorithm from a simpler setting in which only energy

is the available resource which determines at which speed each job runs.

We further analysed the setting of energy aware scheduling, identifying cases that can

be solved in polynomial time, as well as describing heuristic improvements to our algorithm.

We have also tested the performance of the algorithm through simulations, showing that the

SAIAS algorithm’s output is very close to optimum. Furthermore, we tested the algorithm in

additional settings, such as on-line, using the total weighted flow time as scheduling metric,

and considering multiple machines, showing that the performance is very good in all these

settings as well.

Additionally, we studied the case where job sizes are unknown but drawn from a known

probability distribution. In this setting we present a linear time algorithm, in the number

of jobs, that we proved to be optimal for the two queue setting. We also showed through

simulations that it appears to be optimal for an arbitrary number of queues. Further analysis

is required to prove that this is actually the case.

We have also described how to combine two known and successful techniques (α-points and

134 CHAPTER 8. CONCLUSIONS

speed-scaling) to construct approximation algorithms for non-linear convex cost scheduling

problems. To the best of our knowledge, our algorithm is the first O(1)-speed 1-approximation

algorithm for the total weighted tardiness problem with arbitrary precedence constraints

and we suspect that the speed-scaling requirement can be further improved. Furthermore,

we showed through experimental analysis and using data from the OR Library, that our

algorithm performs much better than the theoretical results suggest and that the actual

speed-scaling required is very close to 1.

8.1 Future Research Directions

There are several open research directions that extend from the work presented here. For the

resource cost aware scheduling problem, we believe that our methodology, which extends the

idea of α-points to the resource cost aware setting by developing the α-speeds concept, should

have many more applications. For example, by adding minor regularity conditions to the

resource cost R(Ψ(j)) and speed-scaling the resulting output, we can use the SAIAS algorithm

in the setting where there are no release dates and the scheduling metric is a convex function

of the completion time, like weighted tardiness or completion time squared.

We also suspect that, via techniques such as using randomly chosen values of α or

using different α values for different jobs, we could obtain tighter bounds, and that these

techniques could be extended to other settings, such as multiple parallel machines among

others. Furthermore, since the result we obtain for the heuristic speed improvement is the

same as the best known speed policy for the flow time setting, we believe that this result

could help us determine the right speed policy for the weighted flow time setting which

currently has no known approximation algorithms.

Additionally, we leave open the complexity of the energy aware setting in which all

deadlines are the same. Although we observed though simulations that a simple ordering

rule, similar to Smith’s Rule, results in an optimal schedule every time, we need to prove

that this is actually the case. There are no complexity results in this type of energy aware

CHAPTER 8. CONCLUSIONS 135

scheduling problems, hence, a result like this could lead to determine which problems in the

EAS literature are NP-Hard and which are not.

In the setting where jobs sizes are uncertain but come from a known distribution there are

also several open questions. Although we proved that our algorithm is optimal when only two

queues exist, the method used to prove it is not easily extended to multiple queues. We saw

through simulations that this was always the case, so there might be some other methodology

with which we can prove it and thus, show that our algorithm is optimal for the general case.

Furthermore, we did not explore the use of this algorithm with other scheduling metrics, nor

with more complex energy cost functions. We suspect that, with some modifications, our

results could be applied to other scheduling metrics such as tardiness.

As for the convex cost scheduling problem, there are also several future research directions.

The methodology presented in Chapter 7 could be further extended to other α-point based

algorithms to obtain smaller speed scaling ratios for the scheduling problems presented here, or

even construct new algorithms for other settings such as multiple machines or other scheduling

metrics. Furthermore, we believe that the insights from the structure of the approximate

solutions could be used to design dominance rules for the dynamic programming and/or

branch and bound algorithms that are currently being used for total weighted tardiness and

total weighted tardiness squared.

136 CHAPTER 8. CONCLUSIONS

This page is intentionally printed only with this statement.

BIBLIOGRAPHY 137

Bibliography

[Abdul-Razaq et al., 1990] T.S. Abdul-Razaq, C.N. Potts, and Luk N. Van Wassenhove. A

survey of algorithms for the single machine total weighted tardiness scheduling problem.

Discrete Applied Mathematics, 26:235–253, 1990.

[Albers and Fujiwara, 2007] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algo-

rithms for flow time minimization. ACM Transactions on Algorithms, 3(4):49–es, November

2007.

[Albers, 2009] Susanne Albers. Algorithms for Energy Saving. In Susanne Albers, Helmut

Alt, and Stefan Näher, editors, Efficient Algorithms, volume 5760 of Lecture Notes in

Computer Science, pages 173–186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[Albers, 2010] Susanne Albers. Energy-efficient algorithms. Communications of the ACM,

53(5):86, May 2010.

[Alidaee, 1991] Bahram Alidaee. Single machine scheduling with nonlinear cost functions.

Computers & operations research, 18(3):317–322, 1991.

[Alidaee, 1993] Bahram Alidaee. Numerical Methods for Single Machine Scheduling with

Non-Linear Cost Functions to Minimize Total Cost. The Journal of the Operational

Research Society, 44(2):125, February 1993.

[Andrew et al., 2009] Lachlan L.H. Andrew, Adam Wierman, and Ao Tang. Optimal speed

scaling under arbitrary power functions. ACM SIGMETRICS Performance Evaluation

Review, 37(2):39, October 2009.

138 BIBLIOGRAPHY

[Andrew et al., 2010] Lachlan L.H. Andrew, Minghong Lin, and Adam Wierman. Optimality,

fairness, and robustness in speed scaling designs. ACM Sigmetrics, 2010.

[Atkins et al., 2011] Leon Atkins, Guillaume Aupy, Daniel Cole, and Kirk R. Pruhs. Speed

Scaling to Manage Temperature. Lecture Notes in Computer Science, 6595:9–20, 2011.

[Augustine et al., 2004] J. Augustine, S. Irani, and C. Swamy. Optimal Power-Down Strate-

gies. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 530–539.

IEEE, 2004.

[Bagga and Kalra, 1980] P.C. Bagga and K.R. Kalra. NoteA Node Elimination Procedure

for Townsend’s Algorithm for Solving the Single Machine Quadratic Penalty Function

Scheduling Problem. Management Science, 26(6):633–637, 1980.

[Bansal and Pruhs, 2005] Nikhil Bansal and Kirk R. Pruhs. Speed scaling to manage tem-

perature. Lecture Notes in Computer Science, 3404:460–471, 2005.

[Bansal and Pruhs, 2010] Nikhil Bansal and Kirk Pruhs. The Geometry of Scheduling. In

2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 407–414.

IEEE, October 2010.

[Bansal et al., 2004] Nikhil Bansal, Tracy Kimbrel, and Kirk R. Pruhs. Dynamic speed

scaling to manage energy and temperature. Energy, 2004.

[Bansal et al., 2007a] Nikhil Bansal, Ho-Leung Chan, Rohit Khandekar, Kirk Pruhs, Cliff

Stein, and Baruch Schieber. Non-Preemptive Min-Sum Scheduling with Resource Augmen-

tation. In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),

pages 614–624. IEEE, October 2007.

[Bansal et al., 2007b] Nikhil Bansal, Tracy Kimbrel, and Kirk R. Pruhs. Speed scaling to

manage energy and temperature. Journal of the ACM (JACM), 54(1):3, March 2007.

BIBLIOGRAPHY 139

[Bansal et al., 2008] Nikhil Bansal, D.P. Bunde, Ho Leung Chan, and Kirk R. Pruhs. Average

rate speed scaling. In Proceedings of the 8th Latin American conference on Theoretical

informatics, pages 240–251. Springer-Verlag, December 2008.

[Bansal et al., 2009] Nikhil Bansal, Ho Leung Chan, and Kirk R. Pruhs. Speed scaling

with an arbitrary power function. In Proceedings of the Nineteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 693–701. Society for Industrial and Applied

Mathematics, 2009.

[Bansal et al., 2010] Nikhil Bansal, Ho Leung Chan, T.W. Lam, and L.K. Lee. Scheduling

for speed bounded processors. Automata, Languages and Programming, pages 409–420,

2010.

[Beasley, 1990] J. E. Beasley. OR-Library. Online at http://people.brunel.ac.uk/

~mastjjb/jeb/orlib/wtinfo.html, 1990. [Online; accessed June-2013].

[Benini et al., 2000] Luca Benini, Alessandro Bogliolo, and G. De Micheli. A survey of design

techniques for system-level dynamic power management. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 8(3):299–316, June 2000.

[Carrasco et al., 2013] Rodrigo A Carrasco, Garud Iyengar, and Cliff Stein. Single machine

scheduling with job-dependent convex cost and arbitrary precedence constraints. Operations

Research Letters, 41(5):436–441, September 2013.

[Chang et al., 2011] Hyunseok Chang, Murali Kodialam, Ramana Rao Kompella, T. V.

Lakshman, Myungjin Lee, and Sarit Mukherjee. Scheduling in mapreduce-like systems for

fast completion time. 2011 Proceedings IEEE INFOCOM, pages 3074–3082, April 2011.

[Chekuri and Khanna, 2004] Chandra Chekuri and Sanjeev Khanna. 11. Approximation

Algorithms for Minimizing Average Weighted Completion Time. In Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, pages 1–30. 2004.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

140 BIBLIOGRAPHY

[Chekuri et al., 2001] Chandra Chekuri, R. Motwani, B. Natarajan, and Cliff Stein. Approxi-

mation Techniques for Average Completion Time Scheduling. SIAM Journal on Computing,

31(1):146, 2001.

[Chen et al., 2005] J.J. Chen, T.W. Kuo, and H.I. Lu. Power-saving scheduling for weakly

dynamic voltage scaling devices. Algorithms and Data Structures, pages 338–349, 2005.

[Cheng et al., 1998] T. C. Edwin Cheng, Adam Janiak, and Mikhail Y. Kovalyov. Bicriterion

single machine scheduling with resource dependent processing times. SIAM Journal on

Optimization, 8(2):617–630, 1998.

[Cheng et al., 2001] T. C. Edwin Cheng, Adam Janiak, and Mikhail Y. Kovalyov. Single

machine batch scheduling with resource dependent setup and processing times. European

Journal of Operational, 135(1):177–183, November 2001.

[Cheung and Shmoys, 2011] Maurice Cheung and D. Shmoys. A Primal-Dual Approximation

Algorithm for Min-Sum Single-Machine Scheduling Problems. Approximation, Random-

ization, and Combinatorial Optimization. Algorithms and Techniques, pages 135–146,

2011.

[Comscore, 2013] Comscore. Comscore May 2013 Ranking. Online at http://goo.gl/KLDHV,

2013.

[Cormen et al., 2001] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.

Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[Crauwels et al., 1998] HAJ Crauwels, C.N. Potts, and Luk N. Van Wassenhove. Local search

heuristics for the single machine total weighted tardiness scheduling problem. INFORMS

Journal on . . . , 10(3):341–350, 1998.

[Croce et al., 1995] Federico Della Croce, Wlodzimierz Szwarc, Roberto Tadei, Paolo Baracco,

and Raffaele di Tullio. Minimizing the weighted sum of quadratic completion times on a

single machine. Naval Research Logistics, 42(8):1263–1270, December 1995.

http://goo.gl/KLDHV

BIBLIOGRAPHY 141

[Daniels and Sarin, 1989] Richard L. Daniels and Rakesh K. Sarin. Single machine scheduling

with controllable processing times and number of jobs tardy. Operations Research, 37(6):981–

984, 1989.

[Daniels, 1990] Richard L. Daniels. A multi-objective approach to resource allocation in

single machine scheduling. European journal of operational research, 48:226–241, 1990.

[DOE, 2011] DOE. Department of Energy website. Online at http://goo.gl/BEFdZ, 2011.

[Duffuaa et al., 1999] S Duffuaa, S O Duffuaa, A Raouf, and J D Campbell. Planning and

control of maintenance systems: modeling and analysis. John Wiley & Sons Inc, 1999.

[Goemans et al., 2002] Michel X. Goemans, Maurice Queyranne, Andreas S. Schulz, Martin

Skutella, and Yaoguang Wang. Single Machine Scheduling with Release Dates. SIAM

Journal on Discrete Mathematics, 15(2):165, 2002.

[Goemans, 1997] Michel X. Goemans. Improved approximation algorthims for scheduling

with release dates. ACM-SIAM symposium on Discrete algorithms, pages 591–598, 1997.

[Google, 2009] Google. Google Datacentre Webpage. Online at http://goo.gl/44nDs, 2009.

[Graham et al., 1979] R.L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander

H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and

scheduling: a survey. Discrete optimization, 5:287–326, 1979.

[Gupta and Sen, 1984] S. K. Gupta and Tapan Sen. On the Single Machine Scheduling

Problem with Quadratic Penalty Function of Completion Times: An Improved Branching

Procedure. Management Science, 30(5):644–647, 1984.

[Gurobi Optimization Inc., 2012] Gurobi Optimization Inc. Gurobi Optimizer Reference

Manual. Online at http://www.gurobi.com, 2012.

[Hall and Posner, 2001] NG Hall and ME Posner. Generating experimental data for compu-

tational testing with machine scheduling applications. Operations Research, 49(7):854–865,

2001.

http://goo.gl/BEFdZ
http://goo.gl/44nDs
http://www.gurobi.com

142 BIBLIOGRAPHY

[Hall et al., 1996] Leslie A Hall, David B. Shmoys, and Joel Wein. Scheduling to minimize av-

erage completion time: off-line and on-line algorithms. In Proceedings of the seventh annual

ACM-SIAM symposium on Discrete algorithms, SODA ’96, pages 142–151, Philadelphia,

PA, USA, August 1996. Society for Industrial and Applied Mathematics.

[Hall et al., 1997] Leslie A Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Schedul-

ing to Minimize Average Completion Time: Off-Line and On-Line Approximation Algo-

rithms. Mathematics of Operations Research, 22(3):513–544, August 1997.

[Höhn and Jacobs, 2012] W Höhn and Tobias Jacobs. An experimental and analytical study

of order constraints for single machine scheduling with quadratic cost. Proc. of the 14th

Workshop on Algorithm Engineering and Experiments (ALENEX), pages 103–117, 2012.

[Hwang and Wu, 1997] C.H. Hwang and A.C.H. Wu. A predictive system shutdown method

for energy saving of event-driven computation. In Proceedings of the 1997 IEEE/ACM

international conference on Computer-aided design, pages 28–32. IEEE Computer Society,

December 1997.

[Irani and Pruhs, 2005] Sandy Irani and Kirk R. Pruhs. Algorithmic problems in power

management. ACM SIGACT News, 36(2):63, June 2005.

[Irani et al., 2003] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dy-

namic power management in systems with multiple power-saving states. ACM Transactions

on Embedded Computing Systems (TECS), 2(3):346, August 2003.

[Irani et al., 2007] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power

savings. ACM Transactions on Algorithms, 3(4):41, November 2007.

[Janiak and Kovalyov, 1996] Adam Janiak and Mikhail Y. Kovalyov. Single machine schedul-

ing subject to deadlines and resource dependent processing times. European Journal of

Operational Research, 2217(96), 1996.

BIBLIOGRAPHY 143

[Janiak, 1987] Adam Janiak. One-machine scheduling with allocation of continuously-divisible

resource and with no precedence constraints. Kybernetika, 23(4), 1987.

[Janiak, 1991] Adam Janiak. Single machine scheduling problem with a common deadline and

resource dependent release dates. European Journal of Operational Research, 53:317–325,

1991.

[Jawor, 2005] Wojciech Jawor. Three dozen papers on online algorithms. ACM SIGACT

News, 36(1):71–85, 2005.

[Kalyanasundaram and Pruhs, 2000] Bala Kalyanasundaram and Kirk R. Pruhs. Speed is

as powerful as clairvoyance. Journal of the ACM, 47(4):617–643, July 2000.

[Karlin et al., 1994] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive

randomized algorithms for nonuniform problems. Algorithmica, 11(6):542–571, June 1994.

[Kaspi and Shabtay, 2006] Moshe Kaspi and Dvir Shabtay. A bicriterion approach to

time/cost trade-offs in scheduling with convex resource-dependent job processing times

and release dates. Computers & Operations Research, 33(10):3015–3033, October 2006.

[Kwon and Kim, 2005] Woo-Cheol; Kwon and Taewhan Kim. Optimal voltage allocation

techniques for dynamically variable voltage processors. ACM Transactions on Embedded

Computing, 4(1):211–230, 2005.

[Lawler and Moore, 1969] Eugene L. Lawler and J. Michael Moore. A Functional Equation

and its Application to Resource Allocation and Sequencing Problems. Management Science,

16(1):77–84, September 1969.

[Lawler, 1977] Eugene L. Lawler. A “pseudopolynomial” algorithm for sequencing jobs to

minimize total tardiness. In Studies in integer programming (Proc. Workshop, Bonn, 1975),

volume 1, pages 331–342, Bonn, 1977.

[McNaughton, 1959] R. McNaughton. Scheduling with deadlines and loss functions. Man-

agement Science, 4(1956):1–12, 1959.

144 BIBLIOGRAPHY

[Mondal and Sen, 2000] Sakib A. Mondal and Anup K. Sen. An improved precedence rule

for single machine sequencing problems with quadratic penalty. European Journal of

Operational Research, 125(2):425–428, September 2000.

[Monma et al., 1990] Clyde L. Monma, Alexander Schrijver, Michael J. Todd, and Victor K.

Wei. Convex resource allocation problems on directed acyclic graphs: duality, complexity,

special cases, and extensions. Mathematics of Operations, 15(4):736–748, 1990.

[Moore, 1968] J. Michael Moore. An n job, one machine sequencing algorithm for minimizing

the number of late jobs. Management Science, 15(1):102–109, 1968.

[Phillips et al., 1998] Cynthia A. Phillips, Cliff Stein, and Joel Wein. Minimizing average

completion time in the presence of release dates. Mathematical Programming, 82(1-2):199–

223, June 1998.

[Phillips et al., 2002] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal

time-critical scheduling via resource augmentation. Algorithmica, 32(2):163–200, 2002.

[Pinedo, 2008] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer New

York, New York, NY, 3rd edition, 2008.

[Potts and van Wassenhove, 1991] CN Potts and LN van Wassenhove. Single machine tardi-

ness sequencing heuristics. IIE transactions, (May 2013):37–41, 1991.

[Pruhs et al., 2004] Kirk R. Pruhs, Jiri Sgall, and Eric Torng. 15. Online Scheduling. In

Handbook of Scheduling: Algorithms, Models, and Performance Analysis. 2004.

[Pruhs et al., 2007] Kirk R. Pruhs, Rob Stee, and Patchrawat Uthaisombut. Speed Scaling of

Tasks with Precedence Constraints. Theory of Computing Systems, 43(1):67–80, October

2007.

[Pruhs et al., 2008] Kirk R. Pruhs, Patchrawat Uthaisombut, and Gerhard J. Woeginger.

Getting the best response for your erg. ACM Transactions on Algorithms, 4(3):1–17, June

2008.

BIBLIOGRAPHY 145

[Schaller and Valente, 2012] Jeffrey Schaller and Jorge M.S. Valente. Minimizing the weighted

sum of squared tardiness on a single machine. Computers & Operations Research, 39(5):919–

928, May 2012.

[Schild and Fredman, 1961] Albert Schild and IJ Fredman. On scheduling tasks with associ-

ated linear loss functions. Management Science, 7(3):280–285, 1961.

[Schild and Fredman, 1962] A Schild and I J Fredman. Scheduling tasks with deadlines and

non-linear loss functions. Management Science, 9(1):73–81, 1962.

[Sen et al., 2003] Tapan Sen, Joanne M Sulek, and Parthasarati Dileepan. Static schedul-

ing research to minimize weighted and unweighted tardiness: A state-of-the-art survey.

International Journal of Production Economics, 83(1):1–12, January 2003.

[Shabtay and Kaspi, 2004] Dvir Shabtay and Moshe Kaspi. Minimizing the total weighted

flow time in a single machine with controllable processing times. Computers & Operations

Research, 31(13):2279–2289, November 2004.

[Shabtay and Steiner, 2007] Dvir Shabtay and George Steiner. A survey of scheduling with

controllable processing times. Discrete Applied Mathematics, 155(13):1643–1666, August

2007.

[Shabtay and Steiner, 2011] Dvir Shabtay and George Steiner. A bicriteria approach to

minimize the total weighted number of tardy jobs with convex controllable processing

times and assignable due dates. Journal of Scheduling, 14(5):455–469, November 2011.

[Skutella, 2006] Martin Skutella. List Scheduling in Order of α-Points on a Single Machine.

In Evripidis Bampis, Klaus Jansen, and Claire Kenyon, editors, Efficient Approximation

and Online Algorithms, volume 3484 of Lecture Notes in Computer Science, pages 250–291.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[Sleator and Tarjan, 1985] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of

list update and paging rules. Communications of the ACM, 28(2):202–208, February 1985.

146 BIBLIOGRAPHY

[Sousa and Wolsey, 1992] Jorge P. Sousa and Laurence A. Wolsey. A time indexed formulation

of non-preemptive single machine scheduling problems. Mathematical Programming, 54(1-

3):353–367, February 1992.

[Srivastava et al., 1996] M.B. Srivastava, A.P. Chandrakasan, and R.W. Brodersen. Predic-

tive system shutdown and other architectural techniques for energy efficient programmable

computation. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 4(1):42–

55, 1996.

[Townsend, 1978] W. Townsend. The single machine problem with quadratic penalty function

of completion times: a branch-and-bound solution. Management Science, 24(5):530–534,

1978.

[Van Wassenhove and Baker, 1982] Luk N. Van Wassenhove and Kenneth R. Baker. A

bicriterion approach to time/cost trade-offs in sequencing. European Journal of Operational

Research, 1982.

[Vickson, 1980] R. G. Vickson. Choosing the job sequence and processing times to minimize

total processing plus flow cost on a single machine. Operations Research, 28(5), 1980.

[Wang and Wang, 2011] Ji-Bo Wang and Ming-Zheng Wang. Single-machine scheduling to

minimize total convex resource consumption with a constraint on total weighted flow time.

Computers & Operations Research, 39(3):492–497, March 2011.

[Williams, 1985] T J Williams. Analysis and design of hierarchical control systems: with

special reference to steel plant operations, volume 3. Elsevier, 1985.

[Williamson and Shmoys, 2011] David P. Williamson and David B. Shmoys. The Design of

Approximation Algorithms. Cambridge University Press, New York, NY, USA, 1st edition,

2011.

BIBLIOGRAPHY 147

[Xu et al., 2011] Kailiang Xu, Zuren Feng, and Liangjun Ke. Single machine scheduling with

total tardiness criterion and convex controllable processing times. Annals of Operations

Research, 186(1):383–391, March 2011.

[Yao et al., 1995] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for

reduced CPU energy. In Proceedings of IEEE 36th Annual Foundations of Computer

Science, pages 374–382. IEEE Comput. Soc. Press, 1995.

[Yin, 2012] Wotao Yin. Gurobi Mex: A MATLAB interface for Gurobi. Online at http:

//convexoptimization.com/wikimization/index.php/gurobi_mex, 2012.

[Yun and Kim, 2003] H.S. Yun and Jihong Kim. On energy-optimal voltage scheduling for

fixed-priority hard real-time systems. ACM Transactions on Embedded Computing Systems

(TECS), 2(3):393–430, 2003.

http://convexoptimization.com/wikimization/index.php/gurobi_mex
http://convexoptimization.com/wikimization/index.php/gurobi_mex

	1 Introduction
	2 Preliminaries
	2.1 Resource Dependent Job Processing Time
	2.2 Energy Aware Scheduling
	2.2.1 Power Down Setting
	2.2.2 Speed Scaling Setting

	3 Energy Aware Scheduling
	3.1 Total Weighted Completion Time
	3.1.1 Problem Formulation
	3.1.2 Speed Bounds
	3.1.3 Speed Quantization
	3.1.4 Cases Solvable in Polynomial Time
	3.1.5 Time-and-Speed-Indexed Formulation
	3.1.6 Interval-and-Speed-Indexed Formulation

	3.2 Total Weighted Tardiness
	3.2.1 Problem Formulation
	3.2.2 Interval-and-Speed-Indexed Formulation

	3.3 General Energy Cost Functions
	3.3.1 Weighted Completion Time Problem with General Energy Cost
	3.3.2 Weighted Tardiness Problem with General Energy Cost
	3.3.3 Continuous Speeds

	4 Heuristics and Experimental Results for EAS
	4.1 Heuristic Improvement for Weighted Completion Time
	4.2 Heuristic Improvement for Weighted Tardiness
	4.2.1 Optimality Conditions for Speed-Scaling
	4.2.2 Special Case: Common Deadline

	4.3 Experimental Results
	4.3.1 Experimental Performance for Weighted Completion Time
	4.3.2 Experimental Performance for Weighted Tardiness
	4.3.3 Experimental Performance for Weighted Flow Time
	4.3.4 Experimental Performance for Multiple Machines

	5 Resource Cost Aware Scheduling
	5.1 Problem formulation.
	5.1.1 Interval-indexed formulation.

	5.2 Approximation algorithm for weighted completion time.
	5.2.1 Single machine problem with precedence constraints.
	5.2.2 Single machine problem with precedence and release date constraints.

	6 Scheduling with Uncertain Job Sizes
	6.1 Problem Formulation
	6.2 Dynamic Programming Model
	6.3 Weighted Completion Time and Polynomial Power Cost
	6.3.1 Completion Time and Job Independent Power Cost

	7 Scheduling with Convex Costs
	7.1 Introduction
	7.1.1 Our Results
	7.1.2 Our Methodology

	7.2 Problem Formulation
	7.2.1 Problem Setting
	7.2.2 Interval-Indexed Formulation

	7.3 Approximation Algorithm
	7.4 Experimental Results

	8 Conclusions
	8.1 Future Research Directions

	Bibliography

