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The starting point:
Margins versus dependence

Decomposition of a multivariate cdf F into
I univariate margins F1, . . . ,Fd

I copula C

Idea: the copula C captures the dependence among the d variables,
irrespective of their marginal distributions.
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Course aim

Introduction to the basic concepts and main principles

I Fundamentals

II Models

III Inference

Caveats:

I Personal selection of topics in a wide and fast-growing field

I Speaker’s bias towards (practically useful) theory

I References are a random selection from an ocean of literature
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Some references to start with

Jaworski, P., F. Durante, W. Härdle, and T. Rychlik (2010). Copula Theory and Its
Applications: Proceedings of the Workshop Held in Warsaw, 25-26 September
2009. Lecture Notes in Statistics. Berlin: Springer.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman
& Hall.

Kojadinovic, I. and J. Yan (2010). Modeling multivariate distributions with
continuous margins using the copula R package. Journal of Statistical
Software 34(9), 1–20.

McNeil, A. J., R. Frey, and P. Embrechts (2005). Quantitative Risk Management:
Concepts, Techniques and Tools. Princeton: Princeton University Press. Chapter 5,
“Copulas and Dependence”.

Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.
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+ books on the use of copulas in specific domains, notably finance
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Copulas: An Introduction
I - Fundamentals

Sklar’s theorem

Densities and conditional distributions

Copulas for discrete variables

Measures of association
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Generalized inverse functions

The left-continuous generalized inverse function of a univariate cdf F is
defined as

F←(u) = inf{x ∈ R : F(x) ≥ u}, 0 < u < 1

Ex. Make a picture of F←(u) = x in case

1. F is continuous and increasing in x
2. F is continuous but flat in x
3. F has an atom at x

Ex. Work out F← if F is the cdf of a rv X with P(X = 1) = p = 1− P(X = 0).
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Properties of generalized inverse functions

Let F be a univariate cdf, not necessarily continuous.
I F(F←(u)) ≥ u
I F(x) ≥ u iff x ≥ F←(u)

I If U is uniform (0, 1), then X = F←(U) has cdf F.

Ex. Prove these properties.
[Hint: F is right continuous.]

Ex. How would the second result help you to generate random numbers
from F?
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Probability integral transform:
Reduction to uniformity
If X is a random variable with continuous cdf F, then the distribution of
U = F(X) is Uniform(0, 1), i.e.

P[F(X) ≤ u] = u, u ∈ [0, 1]

Ex. What goes wrong if F is not continuous? Take for instance X Bernoulli(p).

Ex. Prove the above property.
[Hint: Justify the equalities in
P[F(X) ≥ u] = P[X ≥ F←(u)] = 1− F(F←(u)) = 1− u.]

Ex. Generate a pseudo-random sample X1, . . . ,Xn from your favourite
continuous distribution F. Compute F(X1), . . . ,F(Xn) and assess its
‘uniformity’ (e.g. histogram, kernel density estimate, QQ-plot, . . . ).
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So what’s a copula?

A d-variate copula C : [0, 1]d → [0, 1] is the cdf of a random vector
(U1, . . . ,Ud) with Uniform(0, 1) margins:

C(u) = P[U1 ≤ u1, . . . ,Ud ≤ ud]

where
P[Uj ≤ uj] = uj

for j ∈ {1, . . . , d} and 0 ≤ uj ≤ 1.

Remark: Alternative definition possible, in terms of properties of C as a function.
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The representation of a copula as a cdf
implies a number of properties

C(u) = P[U1 ≤ u1, . . . ,Ud ≤ ud], Uj ∼ Uniform(0, 1)

1. If some component uj is 0, then C(u) = 0.
2. C(1, . . . , 1, uj, 1, . . . , 1) = uj if 0 ≤ uj ≤ 1.
3. C is d-increasing, e.g. if d = 2 and aj ≤ bj,

0 ≤ C(b1, b2)− C(a1, b2)− C(b1, a2) + C(a1, a2)

4. C is nondecreasing in each of the d variables.
5. C is Lipschitz and hence continuous:

|C(u)− C(v)| ≤ |u1 − v1|+ · · ·+ |ud − vd|

Ex. Prove these properties.
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Sklar’s theorem I:
How to construct a multivariate cdf

Let C be a d-variate copula and let F1, . . . ,Fd be univariate cdf’s. Then the
function

F(x) = C
(
F1(x1), . . . ,Fd(xd)

)
(Skl)

is a d-variate cdf with margins F1, . . . ,Fd.

Proof.
Let (U1, . . . ,Ud) ∼ C and put

Xj = F←j (Uj) ∼ Fj.

Then X ∼ F.
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Sklar’s theorem II:
Any multivariate cdf has a copula

If F is a d-variate cdf with univariate cdf’s F1, . . . ,Fd, then there exists a
copula C such that (Skl) holds.

If the margins are continuous, then C is unique and is equal to

C(u) = F
(
F←1 (u1), . . . ,F←d (ud)

)
Proof.
Assume the margins are continuous. Let X ∼ F and put

Uj = Fj(Xj) ∼ Uniform(0, 1).

Then U ∼ C with C as given in the display, and (Skl) holds.
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Elementary examples
Let (X,Y) be a random vector with continuous margins and copula C.

I X and Y are independent if and only if their copula is

C(u, v) = uv

I If Y = g(X) with g increasing, then

C(u, v) = min(u, v) =: M(u, v)

I If Y = g(X) with g decreasing, then

C(u, v) = max(u + v− 1, 0) =: W(u, v)

Ex. 1. Show the above relations.
2. Show that M is the cdf of (U,U). What is its support?
3. Show that W is the cdf of (U, 1− U). What is its support?
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Fréchet–Hoeffding upper and lower bounds:
Supported on the (anti)diagonal
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Fréchet–Hoeffding bounds

Any bivariate copula C verifies

max(u + v− 1, 0) ≤ C(u, v) ≤ min(u, v)

Ex. Show these inequalities.
Hint: use the Bonferroni inequalities

P(A) + P(B)− 1 ≤ P(A ∩ B) ≤ min{P(A),P(B)}

Ex. Extend the bounds to d-variate copulas.

I The upper bound is the copula of the random vector (U, . . . ,U).
I The lower bound is not a copula if d ≥ 3.
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Invariance under monotone transformations

If
I C is a copula of X ∼ F
I T1, . . . ,Td are increasing functions

then
I C is also a copula of (T1(X1), . . . ,Td(Xd))

Ex. Show the above property.
[Hint: the cdf of Tj(Xj) is Fj(T−1

j ). Calculate the joint cdf of
(T1(X1), . . . ,Td(Xd)), using Sklar’s representation of F.]
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Survival copulas:
Linking joint and marginal survival functions

Assume continuous margins. If X = (X1, . . . ,Xd) and Uj = Fj(Xj),
then 1− Uj is uniform on (0, 1) too.

The cdf C̄ of (1− U1, . . . , 1− Ud) is the survival copula of X, and

P[X1 > x1, . . . ,Xd > xd] = C̄
(
F̄1(x1), . . . , F̄d(xd)

)
linking the joint survival function with the marginal ones,

F̄j(xj) = 1− Fj(xj) = P[Xj > xj]

This way of modelling dependence is popular in survival analysis.
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Example: the Ali–Mikhail–Haq (survival) copula

Cθ(u, v) =
uv

1− θ (1− u) (1− v)
, θ ∈ [−1, 1)
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Survival copulas are copulas too

Ex. In dimension d = 2, show that

C̄(u, v) = u + v− 1− C(1− u, 1− v)

Ex. Show that if C is the copula of (X1, . . . ,Xd),
then C̄ is the copula of (−X1, . . . ,−Xd),
or more generally of (T1(X1), . . . ,Td(Xd)) for decreasing functions Tj.

Ex. If (U,V) ∼ C, calculate the cdf’s (copulas) of (1− U,V) and (U, 1− V).
More generally, to a d-variate copula C, one can associate 2d copulas by
considering transformations (T1, . . . ,Td) with Tj in/de-creasing.
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Symmetries

Let U ∼ C.

The copula C is called symmetric or exchangeable
if, for any permutation, σ, of {1, . . . , d},

(Uσ(1), . . . ,Uσ(d))
d
= (U1, . . . ,Ud)

The copula C is called radially symmetric if C̄ = C:

(1− U1, . . . , 1− Ud)
d
= (U1, . . . ,Ud)

Presence or absence of certain symmetries can be a guide towards model
selection.
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Example: the Plackett copula is (radially) symmetric
The Plackett copula arises in the study of 2× 2 contingency tables.

U ≤ u U > u
V ≤ v C(u, v) v− C(u, v)
V > v u− C(u, v) 1− u− v + C(u, v)

Cθ(u, v) is defined as the smaller one of the two roots of the equation

odds ratio θ =
Cθ(u, v) {1− u− v + Cθ(u, v)}
{u− Cθ(u, v)} {v− Cθ(u, v)}

∈ (0,∞)

Ex. Show that the Plackett copula is both

I exchangeable
I radially symmetric

[Hint: either solve for Cθ(u, v) and verify the two symmetries by
computation, or prove the two properties from inspecting the equation.]
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Random samples from the Plackett copula

Random sample of size 500 from Cθ
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Sklar’s theorem and weak convergence

Let Fn(x) = Cn(Fn,1(x1), . . . ,Fn,d(xd)) and similarly for F. Assume
continuous margins. Then

Fn(x)→ F(x) ∀x

⇐⇒
{

Cn(u) → C(u) ∀u
Fn,j(xj) → Fj(xj) ∀j, ∀xj

Proof.

⇒ Continuous mapping theorem, uniform convergence to continuous limits.

⇐ Uniform convergence to continuous limits.

Johan Segers (UCL) Copulas. I - Fundamentals Columbia University, Oct 2013 24 / 74



Example: the sample maximum and minimum
Let X1,X2, . . . be iid with continuous distribution F. The copula of(

max(X1, . . . ,Xn),−min(X1, . . . ,Xn)
)

is given by the Clayton copula with parameter θ = −1/n

Cn(u, v) = max(u1/n + v1/n − 1, 0)n (MaxMin)

Ex. Show (MaxMin).
[Hint: −min(x1, . . . , xn) = max(−x1, . . . ,−xn).]

Ex. Show that
lim

n→∞
Cn(u, v) = uv

The sample maximum and minimum are ‘asymptotically independent’.
[Hint: n(u1/n − 1)→ log(u) and (1 + x/n)n → ex.]

Johan Segers (UCL) Copulas. I - Fundamentals Columbia University, Oct 2013 25 / 74



Random samples from the Clayton copula

Random sample of size 500 from Cn
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Sklar’s theorem: Some literature

Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.
Chapter 2.

Ruschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and
the empirical copula process. Journal of Statistical Planning and
Inference 139, 3921–3927.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges.
Publ. Inst. Statist. Univ. Paris 8, 229–331.
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Copulas: An Introduction
I - Fundamentals

Sklar’s theorem

Densities and conditional distributions

Copulas for discrete variables

Measures of association
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Copula density

A copula C being a multivariate cdf, its density c, if it exists, is just

c(u) =
∂d

∂u1 · · · ∂ud
C(u)

Ex. Recall the Clayton copula Cn in (MaxMin).

I Compute its density cn.
I Show analytically or graphically that cn(u, v)→ 1 as n→∞.

Ex. Compute the density of the Gumbel–Hougaard copula:

C(u) = exp
[
−
{

(− log u1)θ + · · ·+ (− log ud)θ
}1/θ]

, θ ≥ 1

Up to which d do you get?
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Density of the Clayton copula

U

V

density

Clayton copula density, theta = −1/n = −1/5
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Density of the Gumbel-Hougaard copula

U

V

density

Gumbel copula density, theta = 1.5
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The joint density of a multivariate cdf factors into
the marginal densities and the copula density
If the margins of F admit densities f1, . . . , fd and if the copula C admits a
density c, then F admits a joint density

f (x) = c
(
F1(x1), . . . ,Fd(xd)

)
f1(x1) · · · fd(xd)

Inversely, the copula density can be found from

c(u) =
f (x)

f1(x1) · · · fd(xd)
, xj = F−1

j (uj)

Ex. Prove these formulas.

Ex. Find the density of the Gaussian copula, i.e. the copula of the
multivariate Gaussian distribution with invertible correlation matrix R.
Hint: the density of such a Gaussian distribution is

f (z) =
1

(2π)d/2 det(R)1/2 exp
(
−1

2
z′ R−1 z

)
, z ∈ Rd
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Density of the Gaussian copula

U

V

density

Gaussian copula density, rho = 0.5
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Conditional copula densities given a single variable
are equal to the joint density

The density of a uniform variable being 1 on [0, 1], the conditional density of
U−j given Uj = uj is just c itself:

cU−j|Uj(u−j | uj) = c(u)

Ex. For the copula Cn in (MaxMin), check that the function u 7→ cn(u, v), for
fixed v, indeed defines a univariate density with ‘parameter’ v. Plot these
densities and study the impact of n and v. What happens as n→∞?

Ex. For fixed j and uj, is the function u−j 7→ c(u) again a copula density?
Why (not)?
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Conditional densities of the Clayton copula

Conditional pdf of U | V = 0.2 for the Clayton copula
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Conditional distribution functions

The cdf of the conditional distribution of U−j given Uj = uj is

∂C(u)/∂uj

Ex. Is the function u−j 7→ ∂C(u)/∂uj a copula? Why (not)?

Ex. Compute ∂C(u, v)/∂v for

I C(u, v) = uv
I C(u, v) = M(u, v) = min(u, v)
I C(u, v) = W(u, v) = max(u + v− 1, 0)

What are the corresponding distributions for U | V = v?

Ex. Compute ∂Cn(u, v)/∂v with Cn as in (MaxMin).
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The Gaussian copula density generates a
two-parameter family of densities on the unit interval

Density of the bivariate Gaussian copula with parameter ρ ∈ (−1, 1):

cρ(u, v) =
1√

1− ρ2
exp
(
−1

2
ρ2x2 − 2ρxy + ρ2y2

1− ρ2

)
,

x = Φ−1(u), y = Φ−1(v)

View this as a two-parameter family of densities on (0, 1) via

u 7→ cρ(u, v), parameter (ρ, v) ∈ (−1, 1)× (0, 1)

This is the pdf of U | V = v if (U,V) ∼ cρ.
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Conditional densities of the bivariate Gaussian copula

Conditional pdf of U | V = 0.3 if (U,V) ∼ Cρ
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Conditional copula densities
and kernel smoothing on a compact interval

Ex. Show that if (U,V) ∼ Cρ (Gaussian copula), then

(U | V = v)
d
= Φ

(
ρΦ−1(v) + (1− ρ2)1/2Z

)
, Z ∼ N(0, 1)

What happens if ρ→ 1?

Ex. Suppose one wants to estimate a density f on (0, 1) based on a sample
X1, . . . ,Xn. Heuristically motivate the following kernel density estimator:

f̂n(x) =
1
n

n∑
i=1

cρ(x,Xi), x ∈ (0, 1)

the ‘bandwidth’ being h = (1− ρ2)1/2.
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A variant of the probability integral transform:
the Rosenblatt transform

Random pair (X,Y) ∼ F. Conditional cdf

F(y|x) = P[Y ≤ y | X = x]

Suppose that y 7→ F(y|x) is continuous for all x.

Rosenblatt transform

W = F(Y|X)

I W ∼ Uniform(0, 1)

I X and W are independent

Extends to higher dimensions: X1, F2|1(X2|X1), F3|21(X3|X1,X2), . . .
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Turning the inverse Rosenblatt transform
into a simulation algorithm

If (U,V) ∼ C, then

P[V ≤ v | U = u] =
∂C(u, v)

∂u
=: Ċ1(u, v)

Defining W = Ċ1(U,V), it follows that
I U and W are independent Uniform(0, 1) rv’s
I (U, q(W,U)) ∼ C with q defined by q(w, u) = v ⇐⇒ Ċ1(u, v) = w

⇒ Generic way to generate random variates from a copula C.

Ex. Write and implement a simulation algorithm for the Frank copula

C(u, v) =
1

log(a)
log
(

1 +
(au − 1)(av − 1)

a− 1

)
, a ∈ (0,∞) \ {1}
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Random samples from a Frank copula
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In a triple, apply the Rosenblatt transform to pairs

Uniform triple (U1,U2,U3) ∼ C.

Rosenblatt transforms for (U1,U2) and (U3,U2) conditionally on U2:

U1|2 =
∂C12(u1, u2)

∂u2

∣∣∣∣
(u1,u2)=(U1,U2)

=: C1|2(U1|U2)

U3|2 =
∂C32(u3, u2)

∂u2

∣∣∣∣
(u3,u2)=(U3,U2)

=: C3|2(U3|U2)

Then
I U1|2 and U3|2 are again Uniform(0, 1);
I U1|2 and U3|2 are both independent of U2.

Still,
I the pair (U1|2,U3|2) is in general not independent of U2.
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Dependence or independence?
A brain teaser

Ex. For the Farlie–Gumbel–Morgenstern copula

C(u1, u2, u3) = u1u2u3
(
1 + θ (1− u1)(1− u2)(1− u3)

)
, θ ∈ [−1, 1],

check that

I the variables U1,U2,U3 are pairwise independent
I and thus U1|2 = U1 and U3|2 = U3

although

I (U1|2,U3|2) = (U1,U3) is not independent of U2
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Let’s simplify:
After conditioning, independence

Simplifying assumption
The copula of the conditional distribution of (U1,U3) | U2 = u2
does not depend on the value of u2.

Equivalently:

(U1|2,U3|2) and U2 are independent.

In this case, the conditional copula of (U1,U3) | U2 = u2, whatever u2, is
equal to the unconditional copula (cdf) of U1|2,U3|2:

C13|2(u1, u3) = P[U1|2 ≤ u1,U3|2 ≤ u3]

Ex. Does the simplifying assumption hold for the trivariate FGM copula?
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The simplifying assumption allows
a reduction to pair copulas

Under the simplifying assumption, the trivariate copula C is determined by
the three pair copulas C12,C23,C13|2:

C12 99K conditional distribution of U1 given U2,

C32 99K conditional distribution of U3 given U2,

C13|2 99K copula of the conditional distribution of (U1,U3) given U2

In terms of densities:

c(u1, u2, u3) = c13|2
(
C1|2(u1|u2), C3|2(u3|u2)

)
c12(u1, u2) c32(u3, u2)

Higher-dimensional extensions lead to vine copulas or pair copula
constructions.
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For the Gaussian copula,
the simplifying assumption holds
The copula of the multivariate normal distribution:

CR(u) = ΦR
(
Φ−1(u1), . . . ,Φ−1(ud)

)
I R is a d × d correlation matrix
I ΦR is the cdf of Nd(0,R)

I Φ−1 is the N(0, 1) quantile function

Ex. What if we also allow for non-zero means or non-unit variances?

Ex. For the Gaussian copula, the simplifying assumption holds. Which are
the pair copulas? Hint: if (Z1,Z2,Z3) ∼ N3(0,R), then (Z1,Z3)|Z2 = z2 is
bivariate Gaussian with correlation equal to the partial correlation

ρ13|2 =
ρ13 − ρ12ρ23

(1− ρ2
12)1/2 (1− ρ2

23)1/2
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Densities and conditional distributions: Some literature

Hofert, M., M. Mächler, and A. J. McNeil (2012). Likelihood inference for
archimedean copulas in high dimensions under known margins. Journal of
Multivariate Analysis 110, 133–150.

Hofert, M. and D. Pham (2013). Densities of nested archimedean copulas.
Journal of Multivariate Analysis 118, 37–52.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London:
Chapman & Hall. Section 4.5.

Jones, M. and D. Henderson (2007). Miscellanea kernel-type density
estimation on the unit interval. Biometrika 94(4), 977–984.
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Multivariate discrete distributions:

Which multivariate discrete distributions do you know?
I Multinomial
I Negative multinomial
I Multivariate Poisson
I . . .

Limited number of parametric families, with specific margins and dependence
structures
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Sklar’s theorem revisited

Margins F1, . . . ,Fd and copula C, then

F(x) = C
(
F1(x1), . . . ,Fd(xd)

)
is a d-variate cdf with margins F1, . . . ,Fd,
even if (some of) F1, . . . ,Fd are discrete.

Proof.
If F←j (u) = inf{x ∈ R : Fj(x) ≥ u} denotes the left-continuous inverse of Fj,
then the rhs above is the cdf of(

F←1 (U1), . . . ,F←d (Ud)
)

with (U1, . . . ,Ud) ∼ C.
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Probability mass function

The pmf follows from the inclusion-exclusion formula:
For a pair of count variables (X1,X2) ∼ F and for (x1, x2) ∈ N,

p(x1, x2) = P[X1 = x2,X2 = x2]

= C
(
F1(x1),F2(x2)

)
− C

(
F1(x1 − 1),F2(x2)

)
− C

(
F1(x1),F2(x2 − 1)

)
+ C

(
F1(x1 − 1),F2(x2 − 1)

)
From the pmf, one retrieves the conditional distributions.

Ex. Let (X1,X2) be a pair of Bernoulli variables with success probabilities p1
and p2, linked via a copula C.

1. Calculate the pmf of (X1,X2).
2. Show that C1 and C2 induce the same distribution on (X1,X2) as

soon as
C1(1− p1, 1− p2) = C2(1− p1, 1− p2)
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Non-uniqueness and (lack of) identifiability:
The issue

The copula C is determined only on F1(R)× · · · × Fd(R). Hence, the copula
C of F is not unique if Fj(R) 6= (0, 1), i.e. if Fj is not continuous. The copula
is non-identifiable.

If C1(u) = C2(u) for all u ∈ F1(R)× · · · × Fd(R), then

C1
(
F1(x1), . . . ,Fd(xd)

)
= C2

(
F1(x1), . . . ,Fd(xd)

)
and both C1 and C2 are copulas of F, even if C1 6= C2.
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Non-uniqueness and (lack of) identifiability:
A solution

For parametric models {Cθ : θ ∈ Θ}, the parameter θ usually is identifiable
by the values of Cθ on F1(R)× · · · × Fd(R).

Ex. For a pair of Bernoulli variables (X1,X2) with

P(Xj = 1) = pj = 1− P(Xj = 0), j ∈ {1, 2},

linked by the Farlie–Gumbel–Morgenstern copula

Cθ(u, v) = uv
(
1 + θ (1− u)(1− v)

)
, −1 ≤ θ ≤ 1,

show that the parameter θ is identifiable.
[Hint: Calculate P[X1 = 0,X2 = 0].]
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Model construction

Sklar’s theorem yields endless possibilities to construct multivariate
distributions with discrete margins.

Ex. I Invent a new parametric family of distributions for bivariate count
data by combining margins and a copula of your choice. (Modestly
name it after yourself.)

I Write software to compute its pmf and implement the maximum
likelihood estimator for the parameter vector.

I Apply to it a fashionable data set.
I Publish the results in a prestigious journal.
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Finding a copula for a multivariate discrete distribution:
The issue

Let X = (X1, . . . ,Xd) be a random vector with values in Nd. The function

u 7→ F
(
F←1 (u1), . . . ,F←d (ud))

is not a copula (its margins are not uniform, since Fj(F←j (uj)) 6= uj).

How to find a copula C for F?
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Finding a copula for a multivariate discrete distribution:
A solution

Let V1, . . . ,Vd be independent uniform (0, 1) random variables, independent
of X. Consider

Yj = Xj + Vj − 1, Y = (Y1, . . . ,Yd)

Then Yj is continuous and

{Yj ≤ xj} = {Xj ≤ xj}, xj ∈ N.

The (unique) copula C of Y is also a copula of X.

Ex. Given the cdf of Xj, draw the one of Yj.

Ex. Apply this construction to find a copula for the Bernoulli pair X1,X2 above
P[X1 = 1,X2 = 1] = p12. Explain the name ‘checker-board copula’.
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Copulas for discrete variables: Some literature

Denuit, M. and P. Lambert (2005). Constraints on concordance measures in
bivariate discrete data. J. Multivariate Anal. 93(1), 40–57.

Genest, C. and J. Nešlehová (2007). A primer on copulas for count data.
Astin Bull. 37(2), 475–515.

Genest, C., J. Nešlehová, and B. Rémillard (2013). On the empirical
multilinear copula process for count data. Bernoulli, in press.

Joe, H. (1997). Multivariate Models and Dependence Concepts. London:
Chapman & Hall. Chapters 7 and 11.
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Reducing a copula to a number

I Copulas are a fairly complex way to describe dependence.
I Simplify to numerical summary measures of the dependence structure.
I Different summary measures focus on different aspects.
I Distinct copulas may share the same value of a summary measure.

I Zero correlation does not imply independence.
E.g. X ∼ N(0, 1) and Y = X2

I For parametric copula families, the value of a numerical summary
measure may sometimes identify the parameter.

To avoid problems with ties, restrict to continuous distributions.
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Association versus dependence

Association: The extent up to which large (small) values of X go together
with large (small) values of Y .

Dependence: The extent up to which the outcome of Y is predictable from
the outcome of X.

I Example: If X ∼ N(0, 1) and Y = X2, then X and Y are perfectly
dependent but not associated.

In this section, we will consider measures of association.
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Association, dependence, and linear correlation
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Criticisms on Pearson’s linear correlation

cor(X,Y) =
cov(X,Y)√

var(X) var(Y)
∈ [−1, 1]

I Does not even exist if E[X2] =∞ or E[Y2] =∞
I Even for increasing f and g, in general cor(f (X), g(Y)) 6= cor(X,Y)

I Even if X and Y are perfectly associated, cor(X,Y) need not be 1

Ex. Calculate cor(X,X3) for X ∼ N(0, 1).
[Hint: E[X2p] = (2p− 1)× (2p− 3)× · · · × 1 for integer p ≥ 1.]
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Kendall’s tau: concordance versus discordance

Measure assocation by probabilities of con/dis-cordance:
if (X1,Y1) and (X2,Y2) are iid F, then

τ(F) = P[X1 − X2 and Y1 − Y2 have the same sign]

−P[X1 − X2 and Y1 − Y2 have opposite signs]

Ex. Draw pairs of points (x1, y1) and (x2, y2) in the plane which are

I concordant
I discordant

Ex. Show that τ(W) = −1 ≤ τ(F) = τ(C) ≤ 1 = τ(M) with M and W the
Fréchet–Hoeffding upper and lower bounds.
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Kendall’s tau as a copula property

Since τ(F) is invariant if we apply increasing transformations f and g to X
and Y , respectively, one can show that

τ(F) = τ(C) = 4
∫
[0,1]2

C(u, v) dC(u, v)− 1

Ex. Show that τ(Cθ) = 2θ/9 for Cθ the FGM copula

Cθ(u, v) = uv
(
1 + θ (1− u) (1− v)

)
, −1 ≤ θ ≤ 1.

How does this impair the applicability of the FGM copula?
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Spearman’s rho: Pearson’s linear correlation revisited
Random pair (X,Y) with margins F and G.
Put U = F(X) and V = G(Y), so (U,V) ∼ C.

ρS(C) = cor(U,V) = 12
∫
[0,1]2

C(u, v) du dv− 3

Ex. Prove the second equality.

Ex. Show that ρ(W) = −1 ≤ ρ(F) = ρ(C) ≤ 1 = ρ(M) with M and W the
Fréchet–Hoeffding upper and lower bounds.

Ex. For the Plackett copula Cθ with odds ratio θ > 0, show that

ρS(Cθ) =
θ + 1
θ − 1

− 2θ
(θ − 1)2 log θ

What happens if θ → 0, θ = 1, or θ →∞? First guess, then compute.
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Spearman’s rho of the Plackett copula
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Coefficients of tail dependence:
Joint exceedances below or above thresholds
If focus is on joint exceedances below (small) thresholds, consider

cor(1{U ≤ w}, 1{V ≤ w}) =
C(w,w)− w2

w(1− w)
, 0 < w < 1

Coefficient of lower tail dependence:

λL(C) = lim
w↓0

cor(1{U ≤ w}, 1{V ≤ w})

= lim
w↓0

C(w,w)

w
∈ [0, 1]

Coefficient of upper tail dependence:

λU(C) = λL(C̄) = lim
w↓0

2w− 1 + C(1− w, 1− w)

w
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Coefficients of tail dependence:
An exceedance given an exceedance
Lower tails:

C(w,w)

w
= P(U ≤ w | V ≤ w)

= P(V ≤ w | U ≤ w)

Upper tails:

2w− 1 + C(1− w, 1− w)

w
= P(U ≥ 1− w | V ≥ 1− w)

= P(V ≥ 1− w | U ≥ 1− w)

I Coefficients of tail dependence λL(C) and λU(C): limits as w ↓ 0
I Asymptotic tail independence: if λL/U(C) = 0.
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The Clayton copula: lower tail dependence

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ, θ > 0
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Ex. Show that

λL(Cθ) = 2−1/θ

λU(Cθ) = 0

What happens if θ → 0 or θ →∞?
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The Gumbel copula: upper tail dependence

Cθ(u, v) = exp[−{(− log u)θ + (− log v)θ}1/θ], θ ≥ 1
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Ex. Show that

λL(Cθ) = 0

λU(Cθ) = 2− 21/θ

What happens if θ = 1 or θ →∞?
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Many other measures of association

I Spearman’s footrule
I Gini’s gamma
I Blomqvist beta
I van der Waerden rank correlation
I Extensions to more than two variables:

I within random vectors
I between random vectors

I More refined tail dependence coefficients in case of asymptotic
independence

I . . .
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Remarks on association measures

I One-parameter copula families: often a one-to-one relation between the
parameter and the value of an association measure
⇒ reparametrization in terms of this association measure

I Different association measures intend to measure the same thing
⇒ various relations (inequalities etc.) among such measures

I Which association measure to use? No clear rules. Depends on
I Mathematical convenience
I Personal preferences
I . . .
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Measures of association: Some literature

Christian Genest, C., Nešlehová, and N. Ben Ghorbal (2010). Spearman’s footrule
and Gini’s gamma: a review with complements. Journal of Nonparametric
Statistics 22(8), 937–954.

Coles, S., J. Heffernan, and J. Tawn (1999). Dependence measures for extreme value
analyses. Extremes 2(4), 339–365.

Grothe, O., J. Schnieders, and J. Segers (2013). Measuring association and
dependence between random vectors. Journal of Multivariate Analysis (to
appear), arXiv:1107.4381.

Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer. Section 5.1.
Schmid, F., R. Schmidt, T. Blumentritt, S. Gaisser, and M. Ruppert (2010).

Copula-based measures of multivariate association. In P. Jaworski, F. Durante,
W. K. Härdle, and T. Rychlik (Eds.), Copula Theory and Its Applications, Lecture
Notes in Statistics, pp. 209–236. Berlin: Springer.
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