Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Johan Segers1 Ramon van den Akker2 Bas J.M. Werker2

1Université catholique de Louvain (BE) Institut de statistique, biostatistique et sciences actuarielles
2Tilburg University (NL) CentER

Conference on Copulas and Dependence: Theory and Applications
11–12 October 2013, Columbia University, New York City
How to recover the correlation matrix of latent Gaussian variables?

\[
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix} \sim N_2 \left(\begin{pmatrix}
0 \\
0
\end{pmatrix}, \begin{pmatrix}
1 & \theta \\
\theta & 1
\end{pmatrix} \right)
\]

\[
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} = \begin{pmatrix}
\eta_1(Z_1) \\
\eta_2(Z_2)
\end{pmatrix}
\]
Increasing transformations of a latent Gaussian vector with standard margins and unknown correlation matrix

Observables: p-variate sample X_1, \ldots, X_n

Model: X_i are iid $X = (X_1, \ldots, X_p)$ where

$$X_j = \eta_j(Z_j), \quad j = 1, \ldots, p,$$

$$Z = (Z_1, \ldots, Z_p) \sim \mathcal{N}_p(0, R(\theta))$$

where

- $R(\theta)$ is a $p \times p$ correlation matrix indexed by $\theta \in \Theta \subset \mathbb{R}^k$
- p unknown strictly increasing functions $\eta_j : \mathbb{R} \rightarrow \mathbb{R}$

Contribution

Efficient inference on parameter vector θ in the presence of infinite-dimensional nuisance parameters η_1, \ldots, η_p
Higher dimensions: structured correlation matrices

Some k-dimensional models for $p \times p$ correlation matrices $R(\theta)$:

- **Full model**: e.g. if $p = 3$,

$$R(\theta) = \begin{pmatrix} 1 & \theta_{12} & \theta_{13} \\ \cdot & 1 & \theta_{23} \\ \cdot & \cdot & 1 \end{pmatrix}, \quad p(p-1)/2 \text{ parameters}$$

The pairwise normal scores rank correlations are efficient.

[KLAASSEN & WELLNER (1997)]

- **Toeplitz matrices**: if $p = 4$:

$$R(\theta) = \begin{pmatrix} 1 & \theta_1 & \theta_2 & \theta_3 \\ \cdot & 1 & \theta_1 & \theta_2 \\ \cdot & \cdot & 1 & \theta_1 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}, \quad p-1 \text{ parameters}$$

- **Exchangeable models, circular matrices, factor models, ...**
Invariance suggests rank-based inference

Applying arbitrary increasing transformations T_j produces

$$T_j(X_j) = (T_j \circ \eta_j)(Z_j)$$

The parameter of interest, θ, remains the same.

Requirement

The estimator $\hat{\theta}_n$ is invariant w.r.t. increasing transformations:

$$\hat{\theta}_n(X_1, \ldots, X_n) = \hat{\theta}_n(T(X_1), \ldots, T(X_n)), \quad \text{all } T = (T_1, \ldots, T_p)$$

$\Rightarrow \quad \hat{\theta}_n$ depends only on the ranks

$$\hat{\theta}_n(X_1, \ldots, X_n) = \hat{\theta}_n(R_1, \ldots, R_n),$$

$$R_{ij} = \text{rank of } X_{ij} \text{ among } X_{1j}, \ldots, X_{nj}$$
The latent-variable model is a copula model

Recall \(X = (X_1, \ldots, X_p) \) and \(X_j = \eta_j(Z_j) \) with
- \(Z \sim N_p(0, R(\theta)) \)
- \(\eta_1, \ldots, \eta_p \) increasing functions

Then

\[
F(x_1, \ldots, x_p) = C_\theta(F_1(x_1), \ldots, F_p(x_p))
\]

with \(C_\theta \) the Gaussian copula with correlation matrix \(R(\theta) \):

\[
C_\theta(u_1, \ldots, u_p) = \Phi_{R(\theta)}(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_p))
\]

- \(\Phi_{R(\theta)} \) the \(N_p(0, R(\theta)) \) joint cdf
- \(\Phi^{-1} \) the \(N(0, 1) \) quantile function
Finite-dimensional parameter of interest, infinite-dimensional nuisance parameters

Semiparametric model:

\[(X_1, \ldots, X_p) = (\eta_1(Z_1), \ldots, \eta_p(Z_p))\]

where \(Z \sim N_p(0, R(\theta))\)

\[F(x_1, \ldots, x_p) = C_\theta(F_1(x_1), \ldots, F_p(x_p))\]

where \(C_\theta\) is Gaussian \(R(\theta)\)-copula

Parameter of interest: correlation parameter \(\theta \in \Theta \subset \mathbb{R}^k\) in dimension \(k \leq p(p-1)/2\)

Nuisance “parameters”: functions \(\eta_1, \ldots, \eta_p\) or, alternatively, the margins \(F_1, \ldots, F_p\), infinite-dimensional
Questions

Information bound for θ?
- Minimal asymptotic variance of $\sqrt{n}(\hat{\theta}_n - \theta)$ for regular estimators?
- Compare with information bounds based on rank likelihood

[Hoff, Niu & Wellner (2013)]

Efficient, rank-based estimators?
- Estimator achieving the minimal asymptotic variance?
- Finite-sample performance?
- Compare with pseudo-likelihood estimator [Genest, Ghoudi & Rives (1995)]
- Efficient sieve estimator for semiparametric copula models: not rank-based [Chen, Fan & Tsyrennikov (2006)]

Information loss?
- Price to pay for not knowing the margins?
- Adaptivity? When does not knowing the margins does not matter?
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Estimators
 The infeasible MLE
 The PLE
 The one-step update estimator

Tangent space geometry
 Where do the information bounds come from?
 What’s a tangent space?
 The efficient score function

Asymptotics and efficiency comparisons
 Asymptotic normality and efficiency
 Specific models
 Conclusion
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Estimators
 The infeasible MLE
 The PLE
 The one-step update estimator

Tangent space geometry
 Where do the information bounds come from?
 What’s a tangent space?
 The efficient score function

Asymptotics and efficiency comparisons
 Asymptotic normality and efficiency
 Specific models
 Conclusion
Densities of latent and observable variables

- Assume $R(\theta)$ is of full rank; put $S(\theta) = R(\theta)^{-1}$
- Assume F_1, \ldots, F_p possess Lebesgue densities f_1, \ldots, f_p

1. Density of $Z = (Z_1, \ldots, Z_p)$: **Gaussian** (latent)

 $$
 \varphi_\theta(z) = \frac{1}{\sqrt{(2\pi)^p \det R(\theta)}} \exp\left\{-\frac{1}{2} z' S(\theta) z \right\}
 $$

2. Density of $U = (\Phi(Z_1), \ldots, \Phi(Z_p))$: **Uniform** (latent)

 $$
 c(u; \theta) = \frac{\varphi_\theta(Z_1, \ldots, Z_p)}{\varphi(Z_1) \cdots \varphi(Z_p)}, \quad z_j = \Phi^{-1}(u_j)
 $$

3. Density of $X = (F_1^{-1}(U_1), \ldots, F_p^{-1}(U_p))$: **Arbitrary** (observable)

 $$
 f(x) = c(F_1(x_1), \ldots, F_p(x_p); \theta) \ f_1(x_1) \cdots f_p(x_p)
 $$
If margins were known, we could estimate the correlation parameter by maximum likelihood

If margins f_1, \ldots, f_p are known, the model is parametric in θ:

$$f(x) = c(F_1(x_1), \ldots, F_p(x_p); \theta) f_1(x_1) \cdots f_p(x_p)$$

Maximum likelihood estimator:

$$\hat{\theta}_{n,MLE} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \left(\log c(F_1(X_{i1}), \ldots, F_p(X_{ip}); \theta) + \sum_{j=1}^{p} \log f_j(X_{ij}) \right)$$

Under regularity conditions on $\theta \mapsto R(\theta)$, the MLE behaves as expected, see below.
If margins are unknown, estimate them nonparametrically and pretend they are known

Pseudo-likelihood estimator for θ

1. Estimate F_j by the empirical distribution function

$$\hat{F}_{n,j}(x_j) = \frac{1}{n+1} \sum_{i=1}^{n} 1(X_{ij} \leq x_j)$$

2. Pretend these are the true margins and use MLE:

$$\hat{\theta}_{n,\text{PLE}} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log c(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \theta)$$

- The estimator is rank-based: $\hat{F}_{n,j}(X_{ij}) = \frac{1}{n+1} R_{ij}$
- Pseudo-likelihood: margins are ignored
Although not necessarily efficient, the PLE works quite well in practice.

- Estimation strategy applies to general copula models, but the PLE need not be semiparametrically efficient.

- For multivariate Gaussian copula models, the PLE is efficient for some models and not efficient for some other ones.

 [Hoff, Niu & Wellner (2013)]
Efficient scores and their covariance matrix

For \(\theta \in \Theta \subset \mathbb{R}^k \) and \(m = 1, \ldots, k \), let

\[
A_m(\theta) = \text{[easily computable matrix in terms of } R(\theta) \text{ and its partial derivatives w.r.t. } \theta_m] \in \mathbb{R}^{p \times p}
\]

Efficient score function

For each component \(m = 1, \ldots, k \) of \(\theta \):

\[
\ell_{\theta,m}^*(u; \theta) = \frac{1}{2} z' A_m(\theta) z, \quad z_j = \Phi^{-1}(u_j)
\]

Efficient information matrix

For \(m, m' = 1, \ldots, k \):

\[
l_{mm'}^*(\theta) = \frac{1}{2} \text{tr}\{ R(\theta) A_m(\theta) R(\theta) A_{m'}(\theta) \}
\]
So what is this mysterious matrix?

Verify that the following objects can be readily computed:

\[
\begin{align*}
\mathbf{g}_m(\theta) &= -(I_p + R(\theta) \circ S(\theta))^{-1} (\dot{R}_m(\theta) \circ S(\theta)) \nu_p & \mathbb{R}^{p \times 1} \\
A_m(\theta) &= S(\theta) \text{ diag}(\mathbf{g}_m(\theta)) + \text{ diag}(\mathbf{g}_m(\theta)) S(\theta) - \dot{S}_m(\theta) & \mathbb{R}^{p \times p}
\end{align*}
\]

- \(S(\theta) = R(\theta)^{-1} \)
- ‘\(\circ \)’ the elementwise product of matrices
- \(I_p \) the \(p \times p \) identity matrix
- \(\nu_p = (1, \ldots, 1)' \in \mathbb{R}^{p \times 1} \)
Description of the one-step estimator: updating an initial estimator

1. Compute $\hat{F}_{nj}(X_{ij}) = R_{ij}/(n + 1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$
2. Compute an initial, rank-based estimate $\tilde{\theta}_n$
 - Should be \sqrt{n}-consistent.
 - For instance take the PLE.
 - In theory, needs to discretized to a grid in \mathbb{Z}^k of mesh $n^{-1/2}$.
3. Compute $A_{m}(\tilde{\theta}_n, m)$ for $m = 1, \ldots, k$
4. Compute $l_{\theta, m}^*(\cdot; \tilde{\theta}_n)$ and $l_{mm'}^*(\tilde{\theta}_n)$ for $m, m' = 1, \ldots, k$
5. Compute the one-step update estimator:

$$\hat{\theta}_{n,OSE} = \tilde{\theta}_n + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l^*(\tilde{\theta}_n)^{-1} l_{\theta}^*(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \tilde{\theta}_n)$$
Getting some feeling for the one-step estimator

\[\hat{\theta}_{n,\text{OSE}} = \tilde{\theta}_n + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I^*(\tilde{\theta}_n)^{-1} \dot{\ell}^*_\theta(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \tilde{\theta}_n) \]

- Reminiscent of one-step update estimators in parametric models
 - The “efficient score” replaces the ordinary score function
- If initial estimator is rank-based, so is one-step estimator
- Update step is easy to implement – linear algebra only

Q: So where does it come from?
A: Tangent space calculations.

Q: Cute, but does it really work?
A: Yes!
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Estimators
 The infeasible MLE
 The PLE
 The one-step update estimator

Tangent space geometry
 Where do the information bounds come from?
 What’s a tangent space?
 The efficient score function

Asymptotics and efficiency comparisons
 Asymptotic normality and efficiency
 Specific models
 Conclusion
Intermezzo: the Fréchet–Cramér–Rao inequality

Consider a parametric model \(\{f_\theta : \theta \in \mathbb{R}\} \). Let

\[
\hat{\ell}_\theta(X) = \frac{\partial}{\partial \theta} \log f_\theta(X)
\]

score function

\[
I(\theta) = \text{var}_\theta \{\hat{\ell}_\theta(X)\}
\]

Fisher information

Lower bound for the variance of a statistic \(T(X) \):

\[
\text{var}_\theta \{T(X)\} \geq I(\theta)^{-1} \left\{ \partial \mathbb{E}_\theta[T(X)]/\partial \theta \right\}^2
\]

Exercise: Proof by Cauchy–Schwarz and differentiation under integral sign.
Efficiency of estimators in semiparametric models: look at worst-case parametric submodels

- Estimation of θ in the semiparametric model is at least as hard as in any parametric submodel
- For a parametric submodel, the inverse Fisher information gives a lower bound for the asymptotic variance of regular estimators
- The largest such lower bound is a lower bound for the asymptotic variance of a regular estimator in the semiparametric model
- This lower bound can be found via the geometry of tangent spaces and the theory of limits of experiments

[Le Cam & Yang (1990), Bickel, Ritov, Klaassen & Wellner (1993), van der Vaart (1998), ...]
Semiparametric Gaussian copula model

Let

\[\mathcal{F}_{\text{ac}} = \{ \text{absolutely continuous distributions on } \mathbb{R} \} \]

\[P_{\theta,F_1,\ldots,F_p} = \text{law of } X \text{ with copula } C_\theta \text{ and margins } F_1, \ldots, F_p \]

Model for one observation \(X \):

\[\mathcal{P} = \left(P_{\theta,F_1,\ldots,F_p} \mid \theta \in \Theta, F_1, \ldots, F_p \in \mathcal{F}_{\text{ac}} \right), \]

Data-generating process: \(X_1, \ldots, X_n \) iid \(X \).
Tangent space of the model at a distribution:
collection of score functions of parametric submodels

Tangent space at $P_{\theta, F_1, \ldots, F_p} \in \mathcal{P}$:
collection of scores functions of local parametric submodels

$$\frac{\partial}{\partial \eta} \log p_{\theta + \eta \alpha, F_1, \eta, \ldots, F_p, \eta}(x) \bigg|_{\eta=0}, \quad x \in \mathbb{R}^p,$$

- $\eta \mapsto F_{j, \eta}$ is a path in \mathcal{F}_{ac} that passes through F_j at $\eta = 0$
- $p_{\theta + \eta \alpha, F_1, \eta, \ldots, F_p, \eta}$ is the density of $P_{\theta + \eta \alpha, F_1, \eta, \ldots, F_p, \eta}$

Local description of the model \mathcal{P} in $L^2(P_{\theta, F_1, \ldots, F_p})$:
how do small changes to the parameters affect the joint density?
The tangent space is the sum of a parametric and a nonparametric part

Tangent space at $P_{\theta} = P_{\theta,F_1,\ldots,F_p}$ for F_j Uniform$(0, 1)$:

- **Parametric scores:** only θ changes. Spanned by
 \[u \mapsto \frac{\partial}{\partial \theta_m} \log c(u; \theta), \quad m = 1, \ldots, k \]

- **Nonparametric scores:** only the margins change. Spanned by
 \[u \mapsto h(u_j) + \frac{\partial}{\partial u_j} \log c(u; \theta) \int_0^{u_j} h(v) \, dv, \quad j = 1, \ldots, p \]
 where $h \in L^2([0, 1])$ and $\int_0^1 h(v) \, dv = 0$
The efficient score function is a projection of the parametric score function

Efficient score function $\hat{\ell}_\theta^*(u; \theta)$: orthogonal projection in $L^2(P_\theta)$ of parametric scores on the orthocomplement of the space of nonparametric scores.

Efficient information matrix $I^*(\theta)$: variance matrix of the efficient score function. Its inverse yields a lower bound for the variance of regular estimators.
For Gaussian copulas, the efficient score function can be explicitly computed

For *Gaussian copula models*, the projections can be computed explicitly, leading to the expression stated earlier:

\[\ell_{\theta, m}(\mathbf{u}; \theta) = \frac{1}{2} \mathbf{z}' A_m(\theta) \mathbf{z}, \quad z_j = \Phi^{-1}(u_j) \]

where \(A_m(\theta) \) depends on \(R(\theta) \) and its partial derivatives w.r.t. the \(k \) components of \(\theta \)

For *general copula models*, computing the efficient score function amounts to a system of coupled Sturm–Liouville differential equations.
Summary of tangent space geometry

Parametric and nonparametric scores quantify how the distribution changes if θ and the margins change.

If parametric and nonparametric scores are correlated, not knowing the margins makes identifying changes in θ harder.

Adaptivity: if parametric and nonparametric scores are uncorrelated, not knowing the margins does not matter for estimation of θ.
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Estimators
The infeasible MLE
The PLE
The one-step update estimator

Tangent space geometry
Where do the information bounds come from?
What’s a tangent space?
The efficient score function

Asymptotics and efficiency comparisons
Asymptotic normality and efficiency
Specific models
Conclusion
Assumption on the correlation matrices

Suppose $\Theta \subset \mathbb{R}^k$ is open and for all $\theta \in \Theta$:

(i) The inverse $S(\theta) = R^{-1}(\theta)$ exists.

(ii) The matrices of partial derivatives $\dot{R}_m(\theta)$, for $m = 1, \ldots, k$, exist and are continuous in θ.

(iii) The matrices $\dot{R}_1(\theta), \ldots, \dot{R}_k(\theta)$ are linearly independent.

\Rightarrow The parametric model in θ with known margins in \mathcal{F}_{ac} is regular.
The one-step estimator is efficient

Theorem
Suppose there exists a rank-based estimator \(\tilde{\theta}_n \) such that

\[
\tilde{\theta}_n = \theta + O_p(1/\sqrt{n}) \quad \text{under every } P_{\theta,F_1,\ldots,F_p} \in \mathcal{P}
\]

Then for all \(F_1, \ldots, F_p \in \mathcal{F}_{ac} \) and \(\theta \in \Theta \),

\[
\sqrt{n} \left(\hat{\theta}_n, \text{OSE} - \theta \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I^*_{\theta}^{-1}(\theta) \dot{\ell}^{*}_{\theta}(F_1(X_{i1}), \ldots, F_p(X_{ip}); \theta) + o_P(1)
\]

\[
\to_d N_k(0, I^*(\theta)^{-1})
\]

Moreover, the one-step estimator is an efficient estimator of \(\theta \) in the semiparametric Gaussian copula model \(\mathcal{P} \).
Asymptotic covariance matrices:
The OSE is at least as efficient as the PLE

For the MLE for θ if margins are known:

$$I(\theta)^{-1} \quad \text{where} \quad I_{mm'}(\theta) = \frac{1}{2} \text{tr}\{R(\theta) \dot{S}_m(\theta) R(\theta) \dot{S}_{m'}(\theta)\}$$

For the one-step estimator:

$$I^*(\theta)^{-1} \geq I(\theta)^{-1}$$

For the pseudo-likelihood estimator:

$$\Sigma_{\text{PLE}}(\theta) \geq I^*(\theta)^{-1}$$

Notation: $A \succeq B$ iff $A - B$ is positive semi-definite
An efficiency criterion for the PLE

Theorem

The PLE is semiparametrically efficient at \(P_{\theta, F_1, \ldots, F_p} \in \mathcal{P} \) if and only if, for every \(m = 1, \ldots, k \), the matrix

\[
L_m(\theta) - \frac{1}{2} \left(\text{diag}(L_m(\theta)) R(\theta) + R(\theta) \text{diag}(L_m(\theta)) \right)
\]

with

\[
L_m(\theta) = R(\theta) \text{diag}(\dot{R}_m(\theta) S(\theta)) R(\theta)
\]

belongs to the linear span of \(\dot{R}_1(\theta), \ldots, \dot{R}_k(\theta) \).
Adaptivity is the exception rather than the rule

The semiparametric Gaussian copula model is said to be adaptive at \(P_{\theta,F_1,\ldots,F_p} \in \mathcal{P} \) if

\[
I^*(\theta) = I(\theta)
\]

i.e. knowing the margins or not does not make a difference.

Theorem

A necessary and sufficient condition for adaptivity is

\[
\text{diag}(R(\theta)\dot{S}_m(\theta)) = 0, \quad m = 1, \ldots, k.
\]

Apart from independence, this does not usually seem to occur:
See the next few examples.
The full model: The PLE is efficient

Without restrictions, there are \(p(p-1)/2 \) parameters, e.g. if \(p = 3 \),

\[
R(\theta) = \begin{pmatrix}
1 & \theta_{12} & \theta_{13} \\
\cdot & 1 & \theta_{23} \\
\cdot & \cdot & 1
\end{pmatrix}
\]

- The OSE, PLE and normal scores rank correlations are asymptotically equivalent and semiparametrically efficient.
- Adaptivity only occurs at independence.

[Klaassen & Wellner (1997)]
Exchangeable correlation matrices: The PLE is still efficient

Determined by a single parameter $\theta \in (-1/p, 1)$, for instance if $p = 3$:

$$R(\theta) = \begin{pmatrix} 1 & \theta & \theta \\ \\ \\ . & 1 & \theta \\ . & . & 1 \end{pmatrix}$$

The PLE is efficient, and the inverse Fisher information for θ is

$$I^{-1}(\theta) = \begin{cases} \frac{1}{3}(\theta - 1)^2(2\theta + 1)^2 & \text{if } p = 3 \\ \frac{1}{6}(\theta - 1)^2(3\theta + 1)^2 & \text{if } p = 4 \end{cases}$$

If the margins were known, the minimal asymptotic variance would reduce to

$$I^{-1}(\theta) = \begin{cases} I^{-1}(\theta)/(1 + 2\theta^2) & \text{if } p = 3, \\ I^{-1}(\theta)/(1 + 3\theta^2) & \text{if } p = 4, \end{cases}$$

so that adaptivity occurs at independence ($\theta = 0$) only.

[Hoff, Niu & Wellner (2013)]
In high dimensions, the OSE seems less biased

\[R(\theta) = \begin{pmatrix} 1 & \theta & \cdots & \cdots & \theta \\ \vdots & 1 & \theta & \cdots & \theta \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & 1 \end{pmatrix} \]

\[p = 100, n = 50 \]
Circulation correlation matrices:
The PLE is nearly efficient

The circular model has a single parameter $\theta \in (-1, 1)$:

$$R(\theta) = \begin{pmatrix}
1 & \theta & \theta^2 & \theta \\
\cdot & 1 & \theta & \theta^2 \\
\cdot & \cdot & 1 & \theta \\
\cdot & \cdot & \cdot & 1
\end{pmatrix}$$

The PLE is not efficient, but still nearly. Adaptivity occurs at independence only.

$$I^{-1}(\theta) = \frac{1}{4} (1 - \theta^2)^2$$
unknown margins, OSE

$$\sigma^2_{\text{PLE}} = I^{-1}(\theta) \left(1 + \frac{2\theta^6}{(1 + 2\theta^2)^2} \right)$$
unknown margins, PLE

$$I^{-1}(\theta) = \frac{1}{1 + 2\theta^2}$$
known margins, MLE

[HOFF, NIU & WELLNER (2013)]
Factor models: the PLE is efficient

Suppose \(p \geq 3 \) and if there are \(q \) factors, \(1 \leq q < p \), then

\[
R(\theta) = \theta \theta' - \text{diag}(\theta \theta') + I_p, \quad \theta \in \mathbb{R}^{p \times q}
\]

Identifiability issue: resolve by reparametrization \(\nu \mapsto \theta(\nu) \).

The efficiency criterion can be shown to be fulfilled

\(\Rightarrow \) the PLE is efficient.
Toeplitz models: The PLE can be quite inefficient

The Toeplitz model has $p - 1$ parameters, e.g. in $p = 4$:

\[
R(\theta) = \begin{pmatrix}
1 & \theta_1 & \theta_2 & \theta_3 \\
\cdot & 1 & \theta_1 & \theta_2 \\
\cdot & \cdot & 1 & \theta_1 \\
\cdot & \cdot & \cdot & 1
\end{pmatrix}
\]

$p = 3$ The PLE is still semiparametrically efficient.

$p = 4$ Not anymore! See next plots.
The OSE may do much better than the PLE

Toeplitz model in $\rho = 4$: boxplots for $\hat{\theta}_{n,1} - \theta_1$

Monte Carlo, 15,000 samples of size $n = 50$ and $n = 250$

\[
R(\theta) = \begin{pmatrix}
1 & \theta_1 & \theta_2 & \theta_3 \\
. & 1 & \theta_1 & \theta_2 \\
. & . & 1 & \theta_1 \\
. & . & . & 1
\end{pmatrix}
\]

$\theta = (0.4945, -0.4593, -0.8462)$
Contribution: Efficient inference for Gaussian copulas

- Inference in **semiparametric Gaussian copula models**
 - structured correlation matrices
 - unknown, continuous margins
- **One-step estimator**
 - rank-based
 - semiparametrically efficient
 - outperforms the pseudo-likelihood estimator
- **Adaptivity** usually occurs only at independence

http://arxiv.org/abs/1306.6658
Next: Efficient, rank-based inference in general semiparametric copula models

- Efficient score function and information matrix?
- One-step estimator?
- Efficient estimation of the margins as well?
- Time series?
- Discrete margins? E.g. multivariate probit models
- ...