Extreme Dependence and Asset Pricing: Returns and Liquidity

Stefan Ruenzi, Michael Ungeheuer, and Florian Weigert

University of Mannheim

Copulas and Dependence - October 11, 2013

Crash Aversion: Evidence from the Options Literature

Figure: Engle & Rosenberg (2002, JFE)

• Investors value financial instruments that offer protection against extreme market downturns

Main Findings

...with respect to returns

- Copula-based lower tail dependence (LTD) coefficients between individual stocks and the market can capture crash-sensitivity
- Crash-sensitive stocks deliver higher expected returns

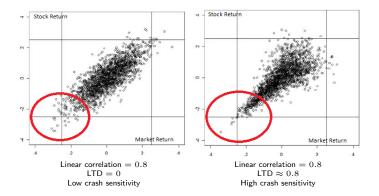
Main Findings

...with respect to returns

- Copula-based lower tail dependence (LTD) coefficients between individual stocks and the market can capture crash-sensitivity
- Crash-sensitive stocks deliver higher expected returns

...with respect to liquidity

- Extreme dependence between individual stock returns/liquidity changes and market returns/market liquidity changes can be captured based on copulas
- Stocks with strong extreme dependence in liquidity deliver significantly higher returns


Related Literature - Returns

- Aggregate tail risk and aggregate market returns (Bali, Demirtas, and Levy (2009, JFQA), Bollerslev and Todorov (2011, JF), Jiang and Kelly (2013))
- Downside beta (Ang, Chen, and Xing (2006, RFS))
- Tail risk exposure and individual stock returns (Jiang and Kelly (2013), Cholette/Lu (2012))

Related Literature - Returns

- Aggregate tail risk and aggregate market returns (Bali, Demirtas, and Levy (2009, JFQA), Bollerslev and Todorov (2011, JF), Jiang and Kelly (2013))
- Downside beta (Ang, Chen, and Xing (2006, RFS))
- Tail risk exposure and individual stock returns (Jiang and Kelly (2013), Cholette/Lu (2012))

Capturing Crash Sensitivity of Stocks: LTD

$$\mathsf{LTD} = \lim_{q \to 0+} P(r_i \le F_i^{-1}(q) | r_m \le F_m^{-1}(q))$$

Lower Tail Dependence

Estimation of the Tail Dependence Coefficient

- Estimation approach relies on the semiparametric estimation procedure for Copulas of Genest/Ghoudi/Rivest (1995)
- We estimate 64 convex combinations of basic copulas (for which closed-form solutions for TD exist) to allow for maximum flexibility:

$$\begin{split} C(u_1, u_2, \Theta) &= w_1 \cdot C_{\mathsf{LTD}}(u_1, u_2; \theta_1) \\ &+ w_2 \cdot C_{\mathsf{NTD}}(u_1, u_2; \theta_2) + (1 - w_1 - w_2) \cdot C_{\mathsf{UTD}}(u_1, u_2; \theta_3) \end{split}$$

Estimation of the Tail Dependence Coefficient

- Estimation approach relies on the semiparametric estimation procedure for Copulas of Genest/Ghoudi/Rivest (1995)
- We estimate 64 convex combinations of basic copulas (for which closed-form solutions for TD exist) to allow for maximum flexibility:

$$\begin{split} C(u_1, u_2, \Theta) &= w_1 \cdot C_{\mathsf{LTD}}(u_1, u_2; \theta_1) \\ &+ w_2 \cdot C_{\mathsf{NTD}}(u_1, u_2; \theta_2) + (1 - w_1 - w_2) \cdot C_{\mathsf{UTD}}(u_1, u_2; \theta_3) \end{split}$$

- Estimation procedure (for stock *i* and year *t*):
 - Estimation of a set of copula parameters Θ_j for j = 1,...,64 different parametric copulas C_j(·,·;Θ_j) between an individual stock return r_i and the market return r_m

 - Ompute the tail dependence coefficients LTD and UTD implied by the estimated parameters Θ^{*} of the selected copula C^{*}(·, ·; Θ^{*})

Conclusion

Does LTD capture a stock's crash sensitivity?

Table: Daily Excess Returns of LTD Portfolios during Financial Crises

Portfolio	Black Monday	Asia Crisis	Dot-Com Bubble Burst	Lehman Crisis	$r_{M}^{e} < -5\%$
1 Weak LTD 2 3 4 5 Strong LTD	$ \begin{vmatrix} -9.5\% \\ -13.3\% \\ -15.7\% \\ -16.3\% \\ -18.7\% \end{vmatrix} $	$\begin{array}{c c} -2.4\% \\ -4.4\% \\ -5.7\% \\ -6.3\% \\ -6.8\% \end{array}$	-1.7% -3.1% -4.3% -5.9% -7.3%	$ \begin{array}{c} -5.9\% \\ -6.9\% \\ -9.4\% \\ -11.2\% \\ -11.8\% \end{array} $	$\begin{array}{c} -4.4\% \\ -6.0\% \\ -7.3\% \\ -8.4\% \\ -9.2\% \end{array}$
$5 \; {\rm Strong} - {\rm Weak}$	-9.2%	-4.4%	-5.6%	-5.9%	$-4.8\%^{***}$

 During financial crises, strong LTD stocks perform significantly worse than weak LTD stocks

- $\bullet\,$ Consider two stocks A and B that have identical $\beta{}'s$
- In addition, stock B exhibits lower tail dependence (LTD)

- $\bullet\,$ Consider two stocks A and B that have identical $\beta{\,}^{\prime}{\rm s}$
- In addition, stock B exhibits lower tail dependence (LTD)
- When the market performs poorly, asset B has a higher probability of underperforming relative to asset A

- $\bullet\,$ Consider two stocks A and B that have identical $\beta{\,}^{\prime}{\rm s}$
- In addition, stock B exhibits lower tail dependence (LTD)
- When the market performs poorly, asset B has a higher probability of underperforming relative to asset A
- Crash-averse investors holding asset B want to be compensated for the disadvantage in the asset's extreme dependence structure

- $\bullet\,$ Consider two stocks A and B that have identical $\beta{\,}^{\prime}{\rm s}$
- In addition, stock B exhibits lower tail dependence (LTD)
- When the market performs poorly, asset B has a higher probability of underperforming relative to asset A
- Crash-averse investors holding asset B want to be compensated for the disadvantage in the asset's extreme dependence structure

Main Hypothesis

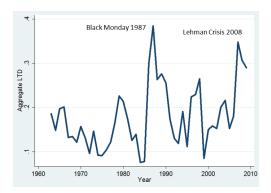
Stocks with strong LTD exposure have higher expected returns than stocks with weak LTD exposure.

Empirical Research Design

Dataset + **Estimation of Extreme Dependence Structures**

- Daily returns from US common shares trading on the NYSE or AMEX in the period 1963 2009
- Estimation of LTD coefficients for each stock and year
- Final sample: 96767 stock year observations

Empirical Research Design


Dataset + **Estimation of Extreme Dependence Structures**

- Daily returns from US common shares trading on the NYSE or AMEX in the period 1963 2009
- Estimation of LTD coefficients for each stock and year
- Final sample: 96767 stock year observations

Empirical Strategy

- Focus: Contemporaneous relation between average realized returns and realized LTD (as in Lewellen & Nagel, 2006, JFE)
- Time horizon: Non-overlapping intervals of one year
- Portfolio sorts and Fama-MacBeth regressions on the firm level
- Trading strategy results

Tail Dependence Over Time

Evolution of Aggregate LTD

(Yearly value-weighted, cross-sectional average of individual stock LTD)

Conclusion

Main Result: Univariate Portfolio Sorts

Table: Equal-Weighted Portfolio Sorts: LTD

Portfolio	LTD	Return	CAPM-Alpha	FF-Alpha	CAR-Alpha
1 Weak LTD 2 3 4 5 Strong LTD	$\begin{array}{c c} 0.01 \\ 0.06 \\ 0.12 \\ 0.18 \\ 0.29 \end{array}$	+3.99%+8.84%+10.39%+14.07%+19.70%	-1.28% +2.82% +4.06% +7.12% +12.25%	-6.27% -1.86% -0.07% +3.24% +9.92%	-3.30% -0.04% +1.15% +4.85% +10.76%
Strong - Weak	0.28***	$ \begin{array}{c c} 15.71\%^{***} \\ (8.70) \end{array} $	$13.53\%^{***}$ (7.09)	$16.19\%^{***}$ (5.83)	$14.06\%^{***}$ (4.77)

Monotonically increasing pattern between realized excess returns and realized LTD

Bivariate Portfolio Sorts: Alternative Explanations

β	1 Low	2	3	4	5 High	Average
Weak LTD	4.48%	3.57%	4.53%	5.97%	10.40%	5.79%
: Strong LTD	9.71%	: 12.04%	: 13.76%	: 16.76%	28.69%	: 16.19%
Strong - Weak	$5.23\%^{***}$ (3.28)	$8.48\%^{***}$ (5.67)	$9.23\%^{***}$ (5.12)	$10.79\%^{***}$ (5.03)	$18.29\%^{***}$ (6.88)	$10.40\%^{***}$ (5.20)

Panel A: Beta (β) and Lower Tail Dependence (LTD) [Sharpe (1964, JF), Lintner (1965, RoES)]

Bivariate Portfolio Sorts: Alternative Explanations

Panel A: Beta (β) and Lower Tail Dependence (LTD) [Sharpe (1964, JF), Lintner (1965, RoES)]

β	1 Low	2	3	4	5 High	Average
Weak LTD	4.48%	3.57%	4.53%	5.97%	10.40%	5.79%
: Strong LTD	9.71%	$\frac{12.04\%}{12.04\%}$: 13.76%	: 16.76%	28.69%	: 16.19%
Strong - Weak	$5.23\%^{***}$ (3.28)	$8.48\%^{***}$ (5.67)	$9.23\%^{***}$ (5.12)	$10.79\%^{***}$ (5.03)	$18.29\%^{***}$ (6.88)	$\begin{array}{c} 10.40\%^{***} \\ (5.20) \end{array}$

Panel B: Downside Beta (β^{-}) and Lower Tail Dependence (LTD) - [Ang, Chen & Xing (2006, RFS)]

β^{-}	1 Low	2	3	4	5 High	Average
Strong	$6.89\%^{***}$	$5.16\%^{***}$	$7.98\%^{***}$	$9.40\%^{***}$	$12.98\%^{***}$	$8.48\%^{***}$
- Weak	(5.02)	(3.57)	(4.24)	(4.32)	(3.95)	(4.02)

Conclusion

Alternative Downside Beta Definitions

LTD Portfolio Strong - Weak

Cut-Off	1 Low β^-	2	3	4	5 High β^-	Average
20% Quantile	$4.99\%^{***}$	$6.87\%^{***}$	$9.06\%^{***}$	$9.10\%^{***}$	$17.30\%^{***}$	$9.46\%^{***}$
	(3.98)	(6.36)	(4.89)	(4.06)	(6.21)	(5.10)
10% Quantile	$6.96\%^{***}$	$8.82\%^{***}$	$12.57\%^{***}$	$13.69\%^{***}$	$17.84\%^{***}$	$11.97\%^{***}$
	(4.56)	(7.10)	(7.53)	(7.26)	(6.89)	(6.67)
5% Quantile	$10.73\%^{***}$	$10.21\%^{***}$	$12.15\%^{***}$	$16.34\%^{***}$	$17.56\%^{***}$	$13.40\%^{***}$
	(5.44)	(6.15)	(7.72)	(8.21)	(5.84)	(6.67)
2% Quantile	$12.52\%^{***}$	$11.39\%^{***}$	$12.55\%^{***}$	$15.72\%^{***}$	$19.82\%^{***}$	$14.40\%^{***}$
	(6.14)	(6.15)	(7.92)	(9.85)	(6.45)	(7.30)
1% Quantile	$15.93\%^{***}$	$13.31\%^{***}$	$13.15\%^{***}$	$15.81\%^{***}$	$17.97\%^{***}$	$15.23\%^{***}$
	(7.46)	(6.25)	(7.31)	(8.13)	(8.53)	(7.53)

Main Result: FMB-Regressions

	(1) Return	(2) Return	(3) Return	(4) Return	(5) Return	(6) CAR-Alpha	Econ. Sign.
LTD	0.551*** (8.44)	0.584*** (9.11)	0.555*** (11.59)	0.448 ^{***} (9.89)	0.452*** (10.16)	0.441 ^{***} (9.84)	5.01%
UTD		-0.326***	-0.254***	-0.296***	-0.292***	-0.241***	-2.25%
β^{-}					0.0375***	0.00292	+0.21%
β^+					0.00960	0.00846	+0.65%
β			0.0748**	0.140***			
size			-0.0121*	-0.0302***	-0.0279***	-0.0220***	- 4.66%
btm			0.0383***	0.0300***	0.0286***	0.0167***	+1.22%
coskew			0.127**	0.0863**	0.114**	0.127**	+3.90%
illiq			0.228***	0.198***	0.172***	0.108*	+1.43%
past ret.				-0.0173	-0.0136	-0.0192	-0.88%
idvol.				-3.758**	-1.682	-2.994**	-3.54%
cokurt				0.0063	0.0057	0.0019	+0.51%
max				-0.250**	-0.222**	-0.214**	- 1.57%
const.	0.0460 (1.38)	0.0678* (1.92)	0.0558 (0.56)	0.385 ^{***} (4.97)	0.325*** (4.51)	0.296 ^{***} (4.56)	
R^2	0.019	0.024	0.110	0.150	0.146	0.086	

The Impact of How Bad 'Bad' Really Is

• Estimated coefficient for LTD from FMB regression in subsamples

	Std.	Dev.	VaR		
	low	high	low	high	
LTD	0.241***	0.811***	0.673***	0.269***	
(Returns)	(9.88)	(9.31)	(9.07)	(9.64)	
LTD	0.242***	0.812***	0.675***	0.270***	
(CAPM- α)	(9.86)	(9.27)	(9.01)	(9.64)	
LTD	0.239***	0.814***	0.675***	0.269***	
(FF93- $lpha$)	(9.42)	(9.28)	(9.08)	(9.41)	
LTD	0.236***	0.785***	0.654***	0.264***	
(CAR97- α)	(9.17)	(9.00)	(8.78)	(9.41)	

Momentum and LTD

	(1)	(2)	(3)
	Mom	Mom	Mom
market	-0.255	-0.456**	-0.409**
	(-1.54)	(-2.53)	(-2.43)
smb	-0.0880	-0.0766	-0.0416
	(-0.44)	(-0.40)	(-0.22)
hml	-0.361*	-0.104	-0.0580
	(-1.76)	(-0.46)	(-0.25)
LTD^{ew} Strong-Weak		0.676** (2.31)	
LTD^{vw} Strong-Weak			0.757** (2.46)
alpha	0.128***	0.0188	0.0391
	(3.97)	(0.33)	(0.82)
Ν	47	47	47

Momentum and LTD

	(1)	(2)	(3)
	Mom	Mom	Mom
market	-0.255	-0.456**	-0.409**
	(-1.54)	(-2.53)	(-2.43)
smb	-0.0880	-0.0766	-0.0416
	(-0.44)	(-0.40)	(-0.22)
hml	-0.361*	-0.104	-0.0580
	(-1.76)	(-0.46)	(-0.25)
LTD^{ew} Strong-Weak		0.676** (2.31)	
LTD^{vw} Strong-Weak			0.757** (2.46)
alpha	0.128***	0.0188	0.0391
	(3.97)	(0.33)	(0.82)
Ν	47	47	47

- Contemporaneous LTD factor can explain the profits of a momentum strategy.
- Partial explanatory power also based on lagged LTD factor.

Conclusion

Trading Strategy based on past LTD

- Buy stocks with strong past LTD (Top Quintile) and sell stocks with weak past LTD (Bottom Quintile) over the previous year
- Examine equal-weighted returns and alphas on these portfolios over the next month

Portfolio	(1) Return	(2) CAPM- Alpha	(3) FF- Alpha	(4) CAR- Alpha
1 Weak LTD	0.499%	0.097%	$-0.333\%^{***}$	$-0.195\%^{**}$
2	0.671%	0.236%	$-0.192\%^{**}$	-0.029%
3	0.713%	0.256%	$-0.129\%^{*}$	+0.019%
4	0.775%	0.295%	-0.039%	$+0.109\%^{*}$
5 Strong LTD	0.862%	0.350%	+0.122%	$+0.187\%^{**}$
Strong - Weak	$0.363\%^{***}$	$0.253\%^{**}$	$0.454\%^{***}$	$0.383\%^{***}$
Annualized Alpha	(2.99) 4.34%	(2.29) 3.04%	(4.65) 5.45%	$(3.86) \\ 4.57\%$

Stability

Results are stable if we

- apply value-weighted portfolio sorts (instead of equal-weighted portfolio sorts)
- apply alternative factor models in the asset pricing tests
- use industry-, DGTW-, and risk-adjusted returns
- examine the effect of LTD during different subsamples
- use a longer estimation horizon for LTD
- use alternative LTD estimation procedures
- use different regression methods (instead of FMB-regressions)
- do not pick optimal copula combination

- Crash sensitivity in the form of LTD is an important driver of the cross-sectional variation of expected stock returns
- An increase of one standard deviation in LTD is associated with an average return premium of approximately 5% p.a.

- Crash sensitivity in the form of LTD is an important driver of the cross-sectional variation of expected stock returns
- An increase of one standard deviation in LTD is associated with an average return premium of approximately 5% p.a.
- This premium cannot be explained by beta, downside beta or firm characteristics. Impact of Ang/Chen/Xing (2006) downside beta vanishes after controlling for LTD.

- Crash sensitivity in the form of LTD is an important driver of the cross-sectional variation of expected stock returns
- An increase of one standard deviation in LTD is associated with an average return premium of approximately 5% p.a.
- This premium cannot be explained by beta, downside beta or firm characteristics. Impact of Ang/Chen/Xing (2006) downside beta vanishes after controlling for LTD.
- $\rightarrow\,$ Investors get a compensation for holding stocks with a strong sensitivity to extreme market downturns

- Crash sensitivity in the form of LTD is an important driver of the cross-sectional variation of expected stock returns
- An increase of one standard deviation in LTD is associated with an average return premium of approximately 5% p.a.
- This premium cannot be explained by beta, downside beta or firm characteristics. Impact of Ang/Chen/Xing (2006) downside beta vanishes after controlling for LTD.
- $\rightarrow\,$ Investors get a compensation for holding stocks with a strong sensitivity to extreme market downturns
- $\rightarrow\,$ Implications for risk taking incentives of financial institutions and systemic stability

Extreme Dependence in Liquidity - Main Research Question

Do investors require a liquidity risk premium for holding stocks that are particularly sensitive to liquidity crises or market crashes?

Core Literature: Underlying Theory and Empirical Studies

	returns	returns & illiquidity	
aummatric	Sharpe (1964)	Acharya/Pedersen (2005)	
symmetric	Snarpe (1904)	Pastor/Stambaugh (2003)	
<i>extreme</i> downside	Ang/Chen/Xing (2006) <i>Ruenzi/Weigert (2013)</i>	THIS STUDY	

Core Literature: Underlying Theory and Empirical Studies

	returns	returns & illiquidity
symmetric	Sharpe (1964)	Acharya/Pedersen (2005)
		Pastor/Stambaugh (2003)
<i>extreme</i> downside	Ang/Chen/Xing (2006) <i>Ruenzi/Weigert (2013)</i>	THIS STUDY

 \rightarrow Hypothesis: There is a premium for downside liquidity risk.

Linear Risk Measures: Acharya/Pedersen (2005)

	market-return	market-liquidity
security-return	β_{CAPM}	β_{L2}
security-liquidity	eta_{L3}	β_{L1}

 \rightarrow Acharya/Pedersen (2005) find a small premium for overall linear liquidity risk (i.e. $\sum_{i}^{3} \beta_{Li}$).

 \rightarrow Results are driven by β_{L2} and β_{L3} .

Introducing Extreme Downside Liquidity Risk (EDLR)

...where Extreme Downside Liquidity Risk is defined as:

$$EDLR_{1,i} = \lim_{t \to 0^+} P(d_i \le G_i^{-1}(t) | d_M \le F^{-1}(t))$$

and $G_i^{-1}(t)$ and $F^{-1}(t)$ are inverses of d_i 's and d_M 's CDFs.

Introducing Extreme Downside Liquidity Risk (EDLR)

...where Extreme Downside Liquidity Risk is defined as: $EDLR_{1,i} = \lim_{t \to 0^+} P(d_i \le G_i^{-1}(t) | d_M \le F^{-1}(t))$

and $G_i^{-1}(t)$ and $F^{-1}(t)$ are inverses of d_i 's and d_M 's CDFs.

Overall Liquidity-Beta and EDLR measures:

$$\beta_L = \beta_{L1} + \beta_{L2} + \beta_{L3}$$
$$EDLR = EDLR_1 + EDLR_2 + EDLR_3$$

Data and Variables

Data:

- Daily NYSE & AMEX common stock return and volume, from CRSP 1963-2011
- Controls from Compustat and factor returns from Kenneth French's homepage

Data and Variables

Data:

- Daily NYSE & AMEX common stock return and volume, from CRSP 1963-2011
- Controls from Compustat and factor returns from Kenneth French's homepage

Variables:

- Amihud illiquidity ratio as main illiquidity proxy (Amihud, 2002)
- Shocks to weekly illiquidity
- Weekly returns

Data and Variables

Data:

- Daily NYSE & AMEX common stock return and volume, from CRSP 1963-2011
- Controls from Compustat and factor returns from Kenneth French's homepage

Variables:

- Amihud illiquidity ratio as main illiquidity proxy (Amihud, 2002)
- Shocks to weekly illiquidity
- Weekly returns

Measures of dependence (β and tail dependence):

- Estimated based on rolling 3-year-window of weekly data
- Used out-of-sample

Estimation Procedure: Illiquidity Shocks

- (1) Compute Amihud's illiquidity ratio for each week and stock
- (2) Winsorize and scale illiquidity ratio (following Acharya/Pedersen (2005))
- (3) Compute market-liquidity as value-weighted average of stock-liquidity
- (4) Estimate illiquidity shocks for each stock and the market via AR(4)-model on a 3-year rolling window basis

Estimation Procedure: Tail Dependence

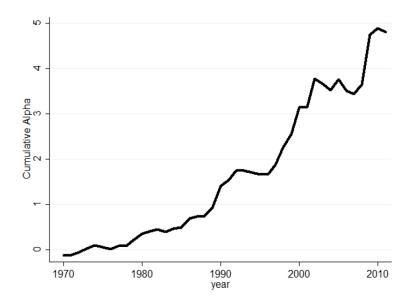
- (1) Use 3-year moving window of weekly returns & liquidity shocks for each stock and the market
- (2) Select best-fitting copula based on first three years of data for each risk component
- (3) Estimate marginal distributions non-parametrically and parameters for copulas (Genest/Ghoudi/Rivest, 1995)
- (4) Compute lower tail dependence coefficients implied by parameters for each stock/moving-window-combination
- (5) Use tail dependence (to form portfolios or predict returns) only out-of-sample

Liquidity LTD

Conclusion

Univariate Sort by EDLR

Portfolio-Returns	EDLR
Weak	6.08%
2	7.75%
3	8.84%
4	8.84%
Strong	9.67%
Strong - Weak	$3.59\%^{***}$
	(3.43)


 \rightarrow Strong EDLR stocks return significant premium of 3.6% p.a.

Univariate Sort by EDLR & Components

Portfolio-Returns	EDLR	$EDLR_1$	$EDLR_2$	$EDLR_3$
Weak	6.08%	7.75%	6.66%	6.40%
2	7.75%	7.85%	8.11%	7.64%
3	8.84%	8.58%	7.59%	8.16%
4	8.84%	8.74%	8.42%	9.41%
Strong	9.67%	8.27%	9.36%	9.78%
Strong - Weak	$3.59\%^{***}$	0.52%	$2.70\%^{***}$	$3.38\%^{***}$
	(3.43)	(0.62)	(3.38)	(3.24)

 \rightarrow Strong EDLR stocks return significant premium of 3.6% p.a.

Performance of Strong-Weak Portfolio

Robustness to Choice of Liquidity Proxy

Proxy	$Return_{t+2}$	CAR	
EDLR 5-1	Low Frequence	су (1969-2011)	
Amihud (2002)	$3.56\%^{***}$	$4.31\%^{***}$	
Corwin/Schultz (2012)	(3.43) 3.23%*** (2.68)	(4.65) 4.15%*** (3.90)	
Zeros (Lesmond, Ogden and Trzcinka, 1999)	1.20%*	$1.04\%^*$	
FHT (Fong, Holden and Trzcinka, 2011)	(1.78) $3.62\%^{***}$ (4.79)	(1.77) 4.10%*** (5.60)	
EDLR 5-1	High Frequen	cy (2000-2010)	
Effective Spread	$3.73\%^{*}$	4.87%**	
Relative Spread	(1.69) 1.08% (0.43)	(2.35) 1.83% (0.76)	
Intraday Amihud	5.59%**	5.88%***	
Price Impact	(2.07) 2.96%*** (1.35)	(2.69) 3.74%* (1.86)	

-

Fama-MacBeth-Regressions: EDLR & Liquidity-CAPM

	(1)	(2)	(3)	(4)
EDLR	0.00139***	0.00073**	0.00082***	0.00081***
	(3.02)	(2.35)	(2.89)	(2.37)
β_L		0.00081	0.00137^{*}	
		(1.17)	(1.93)	
EDRR		0.00248^{***}	0.00138^{***}	0.00120^{**}
		(5.02)	(2.63)	(2.25)
Illiq			0.00105	0.00184
			(0.31)	(0.54)
β_L^-				0.00042
Ľ				(0.62)
β_L^+				0.000365
Ľ				(0.52)
Const	0.00118**	0.00260^{*}	0.00589^{***}	0.00592***
	(2.48)	(1.89)	(4.02)	(4.04)
Controls	No	Yes	Yes	Yes

Controls: Mkt, Size, BM, Mom, EURR, idiovola, coskew

- \rightarrow EDLR-premium robust to linear liquidity-risk and liquidity-level.
- \rightarrow EDLR-premium robust to firm-specific controls.

Other Robustness Checks

The EDLR premium is robust if we vary:

- the factor model in the asset pricing tests
- the estimation windows for EDLR (1, 2 and 5 years)
- the choice of the copula function
- the weighting-method (value-weighting)
- the lag between EDLR-estimation and return period (1, 3 and 4 weeks)
- the rebalancing frequency (monthly returns)
- or if we industry-adjust returns or compute DGTW-alphas

Conclusion

- Main result: Statistically and economically significant premium for overall extreme downside liquidity risk.
- Effect is different from impact of liquidity level and linear (downside) liquidity risk.
- Impact of Acharya/Pedersen (2005) linear liquidity risk virtually vanishes after including EDLR.

Conclusion

Thank you!

Ruenzi, S./Weigert F. (2013): Crash Sensitivity and the Cross-Section of Expected Stock Returns.

Ruenzi, S./Ungeheuer, M./Weigert, F. (2013): Extreme Downside Liquidity Risk.

Tables

Stock Level Correlation Among Dependencies and Liquidity

Correlations	EDLR	β_L	β_L^-	EDRR	Illiq
EDLR	1.00	_	_	_	_
β_L	0.05	1.00	_	_	_
β_L^-	0.11	0.79	1.00	_	_
EDRR	0.24	-0.02	-0.01	1.00	_
Illiq	-0.06	0.05	0.10	-0.15	1.00

Dependent Bivariate Sort by β_L and EDLR

Portfolio	\mid Weak β_L	2	3	4	Strong β_L
Weak EDLR 2	6.43% 5.63%	6.37% 6.53%	6.01% 7.91%	7.81% 9.12%	$6.34\% \\ 9.86\%$
$\frac{2}{3}$	8.10%	7.31%	7.57%	8.15%	10.37%
	9.27%	8.32%	8.32%	9.54%	11.11%
4	8.38%	8.32%	8.32%	9.54%	11.11%
Strong EDLR		8.42%	8.20%	10.01%	11.12%
Strong-Weak	1.95%	2.04%*	2.19%*	2.20%*	4.77%***
	(1.40)	(1.78)	(1.84)	(1.69)	(2.85)

 \rightarrow EDLR-premium not due to linear liquidity-risk.

Dependent Bivariate Sort by β_L^- and EDLR

Portfolio	Weak β_L^-	2	3	4	Strong β_L^-
Weak EDLR	6.46%	5.58%	5.78%	8.31%	6.05%
2	7.03%	7.12%	7.60%	9.04%	9.00%
3	7.85%	7.70%	7.38%	8.39%	11.00%
4	9.76%	7.50%	8.58%	9.27%	10.40%
Strong EDLR	10.08%	7.91%	8.74%	9.54%	10.49%
Strong-Weak	3.62%** (2.40)	2.32%** (2.11)	2.96%** (2.43)	1.23% (0.94)	4.44%*** (2.73)

 \rightarrow EDLR-premium not due to simple downside liquidity-risk.

Dependent Bivariate Sort by EDRR and EDLR

Portfolio	Weak EDRR	2	3	4	Strong EDRR
Weak EDLR	4.48%	5.60%	5.88%	7.57%	9.58%
2	5.27%	6.17%	7.33%	9.38%	11.19%
3	6.23%	6.86%	9.33%	8.85%	9.82%
4	6.80%	8.06%	8.88%	8.65%	10.45%
Strong EDLR	7.23%	8.15%	9.55%	9.67%	10.39%
Strong-Weak	2.75%* (1.83)	2.55%* (1.84)	3.67%*** (2.71)	2.10%* (1.69)	0.81% (0.61)

 \rightarrow EDLR-premium not due to extreme downside return risk.

Correlations

	LTD	UTD	β	β^{-}	β^+	size	bookmarket	illiq	past retu
LTD	1.00	-	-	-	-	-	-	-	-
UTD	0.12	1.00	-	-	-	-	-	-	-
β	0.38	0.31	1.00	-	-	-	-	-	-
β^{-}	0.49	0.07	0.77	1.00	-	-	-	-	-
β^+	0.19	0.48	0.78	0.47	1.00	-	-	-	-
size	0.29	0.30	0.05	0.03	0.16	1.00	-	-	-
bookmarket	-0.09	-0.11	-0.11	-0.07	-0.08	-0.34	1.00	-	-
illiq	-0.28	-0.28	-0.22	-0.08	-0.19	-0.84	0.30	1.00	-
past return	0.08	-0.05	0.10	0.12	0.05	0.07	0.18	-0.01	1.00
idiovola	-0.09	-0.09	0.23	0.27	0.12	-0.42	0.05	0.31	-0.13
coskew	-0.37	0.23	0.07	-0.12	0.24	-0.05	0.01	0.07	-0.09
cokurt	0.38	0.23	0.21	0.16	0.20	0.21	-0.09	-0.21	-0.00
max	-0.08	-0.10	0.14	0.18	0.07	-0.39	0.14	0.31	0.04

Copulas and Sklar's Theorem

Definition: Bivariate Copula

- A function C : [0,1]² → [0,1] is called a bivariate copula, if it satisfies the following conditions:
 - $\begin{array}{l} \textcircled{0} \quad C(u_1,u_2) \text{ is increasing in } u_1 \text{ and } u_2 \\ \textcircled{0} \quad C(u,1) = C(1,u) = u \text{ for all } u \in [0,1] \\ \textcircled{0} \quad C(x_1,x_2) C(x_1,y_2) C(y_1,x_2) + C(y_1,y_2) \geq 0 \text{ for all } (x_1,x_2), \\ (y_1,y_2) \in [0,1]^2 \text{ with } x_1 \leq y_1 \text{ and } x_2 \leq y_2 \end{array}$

Theorem: Sklar (1959)

• Let F be a bivariate distribution function with margins F_1 and F_2 . Then there exists a copula $C : [0,1]^2 \mapsto [0,1]$ such that, for all x_1, x_2 in $\mathbb{R} = [-\infty, \infty]$,

$$F(x_1, x_2) = C(F_1(x_1), F_2(x_2)).$$

If the margins are continuous, then C is unique.

Copulas and Tail Dependence Coefficients

- Tail dependence coefficients (LTD and UTD) are measures of extreme dependence that depend only on the underlying copula
- Simple expressions for LTD and UTD in terms of the copula C of the bivariate distribution can be derived based on

$$\mathsf{LTD} = \lim_{u \to 0+} \frac{C(u, u)}{u} \tag{1}$$

$$\mathsf{UTD} = \lim_{u \to 1^{-}} \frac{1 - 2u + C(u, u)}{1 - u}$$
(2)

• Most explicit copula function have closed-form solutions for expressions (1) and (2)