Dependence and heavy-tailedness in economics, finance
and econometrics: Modern approaches to modeling and
implications for economic and financial decisions

Rustam Ibragimov
Imperial College Business School
(Based on joint works with

Victor de la Pefia, G. Lentzas, S. Sharakhmetov & J. Walden)

Department of Statistics
Columbia University

12 October 2013



Objectives and key results

o (Sub-)Optimality of diversification under heavy tails & dependence

¢ (Non-)robustness of models in economics & finance to heavy tails,

heterogeneity & dependence

o General representations for joint cdf’s and copulas of arbitrary r.v.’s

e Joint cdf’s and copulas of dependent r.v.'s = sums of U—statistics in
independent r.v.'s

e Similar results: expectations of arbitrary statistics in dependent r.v.'s

e New representations for
multivariate dependence measures

o Complete characterizations of
classes of dependent r.v.'s

e Methods for constructing new copulas

e Modeling different dependence structures
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Objectives and key results

e Copula-based modeling for time series

e Characterizations of dependence in terms of copulas

e Markovness of arbitrary order
e Combining Markovness with other dependencies:
m—dependence, r—independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE
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Objectives and key results

New flexible copulas to combine dependencies

Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten

copulas)

power functions (power copulas); Fourier polynomials (Fourier copulas)

Impossibility /reduction: Copula-based dependence + specific copulas

< Independence
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Objectives & key results

Long-memory via copulas: various definitions
Dependence measures & copulas
Gaussian & EFGM =- short-memory Markov

Fast exponential decay of dependence between X; & Xiip

Simulations = Clayton copula-based Markov {Xt} : can behave as long
memory (copulas) in finite samples
e High persistence important for finance & economics

Long memory-like: X; & X:yh : slow decay of dependence for

commonly used lages h

Volatility modeling & Nonlinear dependence in finance
Non-linear CH & long memory-like volatility
Generalizations of GARCH

Non-robustness of procedures for detecting long memory in copulas
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Daily % changes in the Dow Jones Industrial Average,
Jan. 1980 - Sept. 2007
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Dependence vs. margins in economic and financial
problems

e Problems in finance, economics & risk management:
Solution is affected by both
e Marginal distributions (Heavy-Tailedness, Skewness)

e Dependence (Positive or Negative, Asymmetry)

¢ Portfolio choice & value at risk (VaR)

e Marginal effects under independence: Heavy-Tailedness
Moderately HT vs. extremely HT — Opposite solutions

e Different solutions: Positive vs. negative dependence
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Imperial College ~ NOrmal vs. Heavy-tailed Power Laws

London
BUSINESS SCHOOL

Simulated normal and beavy-tailed series
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Heavy-tailed margins

e Many economic & financial time series: power law tails:

P(|X| > x) ~ %, a> 0 tail index

e Moments of order p > « : infinite; E|X|? < oo iff p <

o o < 4 = Infinite fourth moments: EX* = oo
o a < 2 = Infinite variances: EX?2 = co
e o <1 = Infinite first moments: E|X| = oo

e Returns on many stocks & stock indices: « € (2,4)

= finite variance, infinite fourth moment
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A tale of two tails

Light vs. heavy tails

Normal distributiion

Levy distribution a=1/2

Cauchy distribution a=1

Figure: Tails of Cauchy distributions are heavier than those of normal
distributions. Tails of Lévy distributions are heavier than those of Cauchy

or normal distributions.
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A tale of two tails

Simulated data from Normal, Cauchy and Levy distributions, n=25
T T T ;

Normal

Cauchy a=1 -

Levy a=1/2

Figure: Heavy-tailed distributions: more extreme observations
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Heavy-tailed margins

P(X|>x)~ &

X

e Income: « € [1.5,3] = infinite EX*, possibly infinite variances

e Wealth: a =~ 1.5 = infinite variances!

e Returns from technological innovations, Operational risks: o < 1 =
infinite means E|X| = oo!

o Firm sizes, sizes of largest mutual funds, city sizes: o ~ 1

e Economic losses from earthquakes: « € [0.6,1.5]

= infinite variances, possibly infinite means

e Economic losses from hurricanes: o =~ 1.56; o ~ 2.49

5 /65



Stable distributions

e X ~ S,(c) : symmetric stable distribution, a € (0, 2]
CF: E(e™) = exp{ — o®|x|*}
e Normal N(0,0): a =2
e Cauchy: a =1, f(x) = m
e Lévy: a =1/2, support [0,00), f(x) = \/%st/z exp(—i)

e Power laws: P(|X| > x) ~ 5, a €(0,2)

e Moments E|X|P: finite iff p < o
o Infinite variances for a < 2

e Portfolio formation: 7, wiX; =4 (30, w?)Y* X
e o =2 (normal): ﬁ(Xl + i+ Xn) =g X1
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Value at risk (VaR)

VaR

e Risk X; positive values = losses
e Loss probability g
o VaRy(X)=z: P(X>z)=q

Risks Xi, ..., X,

Zy, =Y i, wiX;: return on portfolio with weights w = (w1, ..., wy)

Problem of interest:

MinimizeVaR,(Z,)

st.w; >0, w=1

When diversification =- decrease in portfolio riskiness (VaR)?
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Diversification & risk

 Most diversified: w = (1/n,1/n,...,1/n) = Z, = 137 X

e Least diversified: w = (1,0,...,0) = Zz = Xi

o Xi,... Xp ~N(0,0) (@ =2)

¢ Zu= 1 0 Xi=d X = el
o VaRy(Zw) = 1 77 VaRq(Zi) < VaRq(Zw)

e VaR4(Zy) :\( as n /* (Diversification )



Diversification & risk

o Xi,....Xp ~ S12(0), @ = 1/2, Lévy distribution
e Zy = %Zin:l Xi =d [27:1(%)1/2]2)(1 = nXy = nZy

e VaRy(Zw) = nVaRq(Zw) > VaRy(Zw)

e VaRy(Zw) : / as n / (Diversification )

e Heavy tails (margins) matter:

diversification = opposite effects on portfolio riskiness

e Skewness: typically priced
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Heavy-tailedness & diversification
e Moderate heavy tails a > 1 : finite first moments
VaRy(Zy) < VaRy(Zw) Vg >0
Optimal to diversify for all loss probabilities g
e Extremely heavy tails a < 1 : infinite first moments
VaR,(Zw) < VaRy(Zw) Vg >0
Diversification: suboptimal for all loss probabilities g
e Similar conclusions: Many other models in economics & finance

e Firm growth theory, optimal bundling, monotone consistency of sample
mean, efficiency of linear estimators

e Robust to moderate heavy tails

o Properties: reversed under extremely heavy tails
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What happens for
intermediate heavy-tails?

o Xi,..., X, i.i.d. stable with o« = 1: Cauchy distribution

o Density f(x) =

o
m(02+x2)
e Heavy power law tails: P(|X| > x) = g

o Infinite first moment

(] ZW = Z;’:l W,'X,' =d X1 VYw = (W1, ceey Wn) Wi Z 07

e Diversification: no effect at all!
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Summary so far: Diversification for heavy-tailed and bounded
distributions

VaR of a portfolio of

Zj with equal A. Light-tailed i.i.d. Zj with

weights e ditional
Example: Traditional

(1/n, l/n, ---“ 1/n) situation with normal Zj

D. Bounded Zi

,,,,,,,,,,,,,,,,,,,,,,, C. Specific boundary case:
i.i.d. Cauchy Zj with a=1

B.Extremely heavy-tailed i.i.d.

Zj with a<1.

Example: Levy distribution with o=1/2
.y

1 10 70 100 Number of risks in
portfolio, n

Figure: N = 10 risks/insurer; M = 7 insurers

¢ D: Individual/non-diversification corners vs insurer and
reinsurer equilibrium
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Diversification & dependence

e Minimize VaRq(W1X1 + W2X2) st. mmp,wo >0, vy +wr =1

¢ Independence:

e Optimal portfolio: (W, Wp) = (%, %) (diversified) if o > 1 (not extremely
heavy-tailed, finite means)

o (W1, W) = (1,0) (not diversified, one risk) if o < 1 (extremely
heavy-tailed, infinite means)



Diversification & dependence

e Extreme positive dependence: X; = X, (a.s.) comonotonic risks

o VaRy(w1 X1 + waXa) = VaRy(X1) Vw
o Diversification: no effect at all (similar to Cauchy) regardless of

heavy-tailedness

e Extreme negative dependence X; = —X> (a.s.) countermonotonic risks

(] VaRq(W1X]_ + W2X2) = (W1 — W2)V2Rq(X1)

e Optimal portfolio: w = (1/2,1/2) (most diversified regardless of
heavy-tailedness

e Optimal portfolio choice: affected by both dependence & properties of

margins
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Copulas and dependence

e Main idea: separate effects of dependence from effects of margins

e What matters more in portfolio choice: heavy-tailedness & skewness or
(positive or negative) dependence?

e Copulas: functions that join together marginal cdf's to form

multidimensional cdf
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Copulas and dependence

e Sklar's theorem
e Risks X, Y:

e Joint cdf Hxy(x,y) = P(X < x,Y < y): affected by dependence and by
marginal cdf's Fx(x) = P(X < x) and Gy(x) = P(Y <)

e Cxy(u,v): copula of X,Y:
Hxy(x,y) = Cxy (Fx(x), Gy(y))

dependence marginals

e Cxy: captures all dependence between risks X and Y
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Copulas and dependence

Advantages:

e Exists for any risks (correlation: finiteness of second moments)

o Characterizes all dependence properties

e Flexibility in dependence modeling

o Asymmetric dependence: Crashes vs. booms
e Positive vs. negative dependence

e Independence: Nested as a particular case: Product copula, particular
values of parameter(s)

e Extreme dependence: X = Y or X = —Y & extreme copulas;
dependence in Cxy varies in between
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Copula structures

e Eyraud-Farlie-Gumbel-Morgenstern (EFGM):
C(u,v) = uv[l+ (1 —u)(1—v)]
v € [-1,1] : dependence parameter
Tail independent: no contagion
e Heavy-tailed Pareto marginals:
1
PX>x)=—, x>1
Xa
1

o Power laws, tail index «
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Diversification: EFGM & heavy tails

Moderate heavy tails a > 1 : finite first moments

VaR,

X+Y
(L) < VaR,(X) for sufficiently small g

Optimal to diversify for sufficiently small loss probabilities g
Extremely heavy tails a < 1 : infinite first moments

X+Y

VaRq( ) > VaRy(X) for sufficiently small q

Diversification: suboptimal for sufficiently small loss prob. g
Similar conclusions: Multivariate EFGM copulas
Complement Embrechts et al. (2009): Archimedean copulas

Tail independent EFGM & tail dependent Archimedean (Clayton,

Gumbel): same boundary a =1 as in the case of independence
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When dependence helps: Student-t copulas
e Conclusions similar to independence: Models with common shocks

X1 = ZY1, Xo = ZYs, .., Xo = ZY,

e Common shock Z > 0 affecting all risks Xi, ..., Xp
® Yi,...,, Yp:ii.d. normal or heavy-tailed with tail index o
Z : heavy-tailed with tail index 3
Then X; : heavy-tailed with tail index v = min(a, 8)
o Important particular case: (Dependent) Multivariate Student-t
X1, X2, ..., Xn with  d.f. (tail index) = Optimal to diversify for all loss
probabilities g regardless of tail index «
o Tail dependent Student-t copula and heavy-tailed margins with arbitrary

tail index « : diversification pays off

e Contrast: Independent Student-t Xi, X, ..., X, with « d.f. (tail index):

diversification optimal for o > 1; suboptimal for o < 1
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Diversification: Heavy-tailedness & dependence
matter

Independence, Tail dependent models with common shocks (e.g.,
Student-t distr. = Student-t copula with Student-t marginals):

o Diversification always pays off for all loss probabilities g

Tail independent EFGM, possibly tail dependent Archimedean copulas
(e.g., Clayton & Gumbel):

e Dividing boundary o = 1 for sufficiently small loss probability g

Numerical results on interplay of heavy-tailedness & dependence
(copula) assumptions and loss probability g in diversification decisions:

o Deviations from threshold o = 1 for different copulas and loss
probabilities g

Theoretical results for general copulas = 7

(Non-)robustness of other models in economics & finance
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Characterizations of copulas & dependence

o Vi, Vor iid. U([0,1])

e C: n—copula iff 3 g, i s.t.
Al (integrability):
1 1
/ ‘g’,'l ,,,,, ,'c(t,'17...7t,'c)|dt,'1.‘.dt,‘c < o0
0 0

A2 (degeneracy):
E\/,-k [g‘fhu-xic(vfn sy \/ik—17 Vitm \/ik+17 ceey Vlc)] =0

A3 (positive definiteness):

U V17 ceey Z Z é—ilw-w"c(\/iu sy \//c) Z -1

c=21<i1<...<ic<n
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¢ Representation for C :

C(ut, .y tn) = /Ou1 /Ou (14 On(ts, . ta)) [ ] ot

i=1

o {,: sum of degenerate U—statistics
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Device for constructing n—copulas and cdf’s

o Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas & cdf’s:
Co(u,v) =uv(14+6(1—u)(l—v))

Ho(x, y) = F(x)G(y) (1+0(1 = F(x))(1 - G(»))

n=2; g1o(t1, ) = 0(1 — 2t1)(1 — 2tr), 6 € [-1,1]

o Multivariate EFGM copulas & cdf’s:
Cg(ul, up, ..., U,,) = H u;j <1 —+ 0H(1 — u,-)>
i=1 i=1

i,.ie(tiny oy i) = O i (L= 28, )(1 = 2t5)...(1 — 28
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o Generalized multivariate EFGM copulas (Johnson and Kotz, 1975,
Cambanis, 1977)

n

C(uty oy tp) = uk(1+z Z 9,'1,..A,ic(1—u;k))

=1 c=2 1< <...<ic<n
&y,.ie(ty, . ti)=0,c<n—1
2172,,”7,,(1'1, to, ..., t,,) = 9(1 — 2t‘1)(1 — 2t2)...(1 — 21’,,)

o Generalized EFGM copulas: complete characterization of joint cdf’s of

two-valued r.v.’s (Sharakhmetov & lbragimov, 2002)
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From dependence to independence through
U—statistics

Gn: sums of U-—statistics

Un(&1; -, 6n) = Z Do il i)

c=21<i<...<ic<n

gi,....i.. satisfy A1-A3

o Arbitrarily dependent r.v.’s:
sum of U—statistics in independent r.v.’s

with canonical kernels
e Reduction of problems for dependence to well-studied objects

e Transfer of results for U—statistics under

independence
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From dependence to independence through
U—statistics

® Xi,...,Xn: 1-cdf’s Fy(xx)
e &1, ..., &y independent copies (1-cdf’s Fi(xx))

JU,egG,st. VF:R" =R

Ef(Xi, ..., X») = Ef(&1, .‘.,5,,)(1 + Un(&r, ...,gn))

e Representation for c.f.’s:

Eexp (Ii thk> = Eexp (Ii tk§k> +

k=1 k=1

Eexp (i Z tk§k> Un(&1, -5 €n)

k=1

T CLT for bivariate r.v.'s



Characterizations of dependence

e Canonical g’s: complete characterizations of

dependence properties

e Xi,...,X,: r—independent if V r jointly independent <

g,ic(Vi, o, Vi) =0(as) 1<i<..<ic<n c=2,..,r

gils“‘v’-rJrl(uil’ ey ui,+1) =

ot (4 DY — (k4 2)uf ™) x ox (k4 1)uf — (k4 2)uf™)

Qjp e Qg1 i ic

n
a1...0p
C(ul,...,un):Hu;(1+ E — 7 x
i—1 Oy oo Q1

1< <...<ipg1<n

B P k k+1
(U,‘l — ul.1+ ) X ... X (uiH,l - u"ril ))

Extensions of Wang (1990) (k = 0)



Copulas and Markov processes

e Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness
e A B:[0,1> = [0,1] :

LAA(x, t) _9B(t,y)

0 ot ot dt

(Ax B)(x,y) =

e A:[0,1]" — [0,1], B:[0,1]" — [0,1] : x—product

Ax B(Xt, .oy Xmin—1) =

X 6A(X1,...,Xm,1,£) ) 88(§,Xm+1,...,xm+,,,1)
0 9 2

d¢
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Copulas and Markov processes

e Transition probabilities
P(s,x,t,A) = P(X: € A|Xs = x) satisfy CKE's

ifFCst:CSU*Cut\V/S<U<t
e X;: first-order Markov iff

Gty = Coyep x Ct2f3 *o..x Ctn—ltn



New results: Higher-order Markovness and

copulas
e {X;}tet: k—order Markov <
P(X: < xt}th, s Xty s Xty psgsoor Xty) =
P(Xe < x| Xey_ys1s s Xen)

e Complete characterization in

terms of (k + 1)—copulas

o Ci.....t,: copulas of Xy, ..., Xz,

e {X;}ier: k—order Markov iff Vt; < ... <t,, n>k+1

Ciivovvtn = Cotyo e % Coorstiin ¥ oo % Coy ity
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Stationary case

e X;: stationary k—order Markov iff
Cronlun, oy up) = C+F C+F %" Clun, ..., up)

=C" "Ny, . up) VR > k+1

C: (k+1)— copula s.t.

Cothyioh=GCi iy 1< i< . <ji<k+1

e C°: s—fold product +* of C
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Advantages of copula-based approach

e Modeling higher order Markov processes

alternative to transition matrices

I Instead of initial distribution & transition probabilities:
Prescribe marginals & (k + 1)—copulas

Generate copulas of higher order & finite-dimensional cdf’s

T Advantage: separation of properties of marginals (fat-tailedness) &
dependence properties (conditional symmetry, m—dependence,

r—independence, mixing)
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Advantages of copula-based approach

e Inversion method:
New k—Markov with dependence similar to a given Markov process

Different marginals

T X;: stationary k—Markov
(k4 1)—cdf F(x1, ..., xk41), 1—cdf F

= (k + 1)—copula:

C(ury ey Uks1) = :‘N-_(F_l(m)7 - F_I(Uk+1))



T Another 1—cdf G:

Stationary k—Markov, same dependence as {X:}, different 1-marginal G:

(k + 1)—copula:

C(ur, ..oy Ukg1) = IN-_(G_I(U1)7 v G_I(Ukﬂ))

Representation = Higher-order copulas & cdf’s

{X:}: stationary C—based k—Markov chain
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Advantages of copula-based approach

e C: all dependence properties of the time series
I k—independence, m—dependence, martingaleness, symmetry

T On-going project with Johan Walden: characterizations of

time-irreversibility; focuson G;,,....t, = G ,...01y

T Applications: forward-looking vs. backward-looking market participants

(“fundamentalists” vs. noise traders or “chartists”)

I “Compass rose” for P;_; and P;: symmetry in copulas
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Combining higher-order Markovness with other
dependence properties

e A number of studies in dependence modeling: Higher-order Markovness +

m—dependence & r—independence
Lévy (1949): 2nd order Markovness + pairwise independence
Rosenblatt & Slepian (1962): N—order N—independent stationary Markov

e Impossibility /reduction :
N—order Markov + N—independence + two-valued < joint independence

I Testing sensitivity to WD in DGP Rosenblatt & Slepian (1962)
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Combining Markovness with other dependencies

T Examples:
Not 1—order Markovian

But 1-st order transition probabilities

P(s,x,t, A) = P(X; € A|X; = x) satisfy C-K SE

Plsxt.A) = [ T P(u,6.t, A)P(s, x, u, d€)

(other examples: Feller, 1959, Rosenblatt, 1960)
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Combining Markovness with other dependencies

T 1-dependent Markov: Aaronson, Gilat and Keane (1992)
Burton, Goulet and Meester (1993), Mati$ (1996)

T Matd¥ (1998): m—dependent

discrete-space Markov
I Impossibility /Reduction:

# stationary m—dependent Markov if
card(Q) < m+2
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Markovness of higher-order and k—independence

e Characterization of stationary

k—independent k—Markov processes

e {X;}: C—based k—independent stationary

k—Markov iff
8‘(_HC(U17 ceey uk+1)

8u1...8uk+1

=1 +g(ul7 ey uk+1)

g :[0,1]*** = [0,1]: canonical g—function

(Integrability + more degeneracy + positive definiteness)
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Markovness of higher-order and k—independence

1 1
/ / lg(ur, ..., tkg)|dur...dugr < oo
0 0
1 1
/ / g(u, .oy uky1)g(uz, ooy Uki2)...8 (Us, ..., Ukts)duy ...dui;, = 0

0 0

Vs<uy <..<u, <k+1s=12, .., [%]
g(ut, .o y1) > —1

e Integration: w.r. to all s among us, Ust1, ..., Uk+1 common to all g—functions
g(u17 cey Uk+1), g(u27 ceey Uk+2), ey g(u57 sy Uk+5)

k—marginals: product copulas, independence

k—independence: satisfied
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Markovness of higher-order and m—independence

e {X;}: C—based m—dependent 1-Markov iff

D?C(u1, )

=1
8U16U2 + g(U17 U2)

g :[0,1]*> — [0, 1]: canonical g—function:

1 1
//|g(U1,U2)|dU1duQ<oo
o Jo
1

/ g(u, w)du; =0, g(u, ) > -1
0

1
/ g(ur, w)g(u2, u3)...g(Um, Ums1)dundus...dum = 0
0

I Integration: w.r. to up, us, ..., Um more than once among g(u1, t2), g(u2, us),

s &(tm, 1)

X1, Xm+1: independent; Process: m—dependent
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New examples via existing constructions

e Higher-order Markovness + martingaleness
e Inversion method + existing examples =
k—independent, m—dependent Markov processes

different marginals
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Reduction & impossibility for k—order Markov
processes

e {X;}: C—based k—independent stationary k—Markov

+ O L C(uy,.. ups1)
Ouy...0u 1

=1 +g(u17 ey uk+1)

T g : product form (EFGM-type):

g(ul, uz, ..., uk+1) = ocf(ul)f(U2)..,f(uk+1)

< {X:}: jointly independent
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Examples: EFGM and power copulas

e (k+ 1)—EFGM copulas:

k+1

Clur, uzy ..oy Upy1) = H uj (1 + ol —u)(l — w)...(1— uk+1))

i=1

g(ur, uzy ooy k1) = a1 — 2u1)(1 — 2w2)...(1 — 2up41)

e (k + 1)—power copulas

kt1
C(ur, Uy eey Uky1) = H u;(l + a(u — uy™)(uh — ub™). (U — ufjrll))

i=1

I >0 (EFGM: | = 0)
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Impossibility /reduction for m—dependence

e {X;}: C—based m—dependent Markov
I aai(l‘gl’l;’z =1+ af(u)f(uw)
(separable product form)

< X jointly independent

e Representations =

/01 /01 Q" () FP (). P (Um) F (U1 ) dUz...dum = 0;
O™ () (1) [/01 ()] =0

= f = 0 < Independence
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Examples, new and old

T EFGM copulas, k = 1:
Clus, o) = uren (1+ L — w)(1 - m))
g(ur, ) = a(l — 2u1)(1 — 2uw)

e Limitations of EFGM copulas,
separable copulas:

Complement & generalize existing results
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Examples, new and old

T Cambanis (1991): common dependencies

cannot be exhibited by multivariate EFGM

Gir,eoin (Ui ooy 1) =
1w (1 + Y am(l— ) (1 - Ujm))
s=1 1</I<m<n

I Rosenblatt & Slepian (1962): non-existence of bivariate N—independent
N—Markov

Sharakhmetov & Ibragimov (2002):

EFGM copulas for two-valued r.v.’s

T Technical difficulties in modeling
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Solution: New flexible copula classes

e Copula-based TS with flexible dependencies
T Copulas based on Fourier polynomials

e k—independent k—Markov: Conditions satisfied for

N k+1 k+1
glur, oy tugy1) = Z [ajsin(2m Z Blui) + yjcos(2m Z Blui)]
=1 =1 =1

ta,yeR B ez i=1..k+1,j=1..N:
T8+ e-18 #0
€1, .61 € {—1,1}, s =2, k+1

T14+ Y, (o6 +v€an] >0, e, .. en € {~1,1}
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Fourier copulas

u1 Uk+1
C(ul,...,ukﬂ) :/ / (1—i—g(ul,...,ukH))dul...dukH
0 0

(k 4+ 1)—Fourier copulas
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Fourier copulas

e 1—dependent 1—Markov:

Conditions satisfied for Fourier copulas

up up
C(ur, u2) :/ / (1 + g(u1, w2))durdun
o Jo

N
g(u1, u) =Y [aysin(2m(Blur + Bhuz)) + yjcos(2m (Bl + Bhu2))]
j=1

fa,ER, B BeZ:
Bl + 67 #0
-k £0
N
1+Z[C¥j€j+’}/j5j+N} >0

j=t

V€1, 6N € {71, 1}
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Concluding remarks

o (Sub-)Optimality of diversification under heavy tails & dependence

¢ (Non-)robustness of models in economics & finance to heavy tails,

heterogeneity & dependence

o General representations for joint cdf’s and copulas of arbitrary r.v.’s

e Joint cdf’s and copulas of dependent r.v.'s = sums of U—statistics in
independent r.v.'s

e Similar results: expectations of arbitrary statistics in dependent r.v.'s

e New representations for
multivariate dependence measures

o Complete characterizations of
classes of dependent r.v.'s

e Methods for constructing new copulas

e Modeling different dependence structures
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Concluding remarks

e Copula-based modeling for time series

e Characterizations of dependence in terms of copulas

e Markovness of arbitrary order
e Combining Markovness with other dependencies:
m—dependence, r—independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE
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Concluding remarks

New flexible copulas to combine dependencies

Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten

copulas)

power functions (power copulas); Fourier polynomials (Fourier copulas)

Impossibility /reduction: Copula-based dependence + specific copulas

< Independence



Copula memory

Long-memory via copulas: various definitions
Dependence measures & copulas
Gaussian & EFGM = short-memory Markov

Fast exponential decay of dependence between X; & Xiip

Numerical results = Clayton copula-based Markov {Xt} : can behave as
long memory (copulas) in finite samples
e High persistence important for finance & economics

Long memory-like: X: & X;, : slow decay of dependence for

commonly used lages h
Volatility modeling & Nonlinear dependence in finance
Non-linear CH & long memory-like volatility

Generalizations of GARCH
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Copula memory
Beare (2008) & Chen, Wu & Yi (2008): numerical & theoretical results on

(short & long) memory in copulas

Beare (2008): «, 8 & ¢—mixing

o k(h) < a(h) < B(h) < 0.5¢(h)
e Numerical results = Clayton: exponential decay in 3(h) = short

kK—memory in copulas
Theoretical results in Chen, Wu & Yi (2008):

e Clayton: weakly dependent & short memory in terms of mixing
properties!
e Our numerical results + Chen, Wu & Yi (2008): Non-robustness of

procedures for detecting long memory in copulas
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