Dependence and heavy-tailedness in economics, finance and econometrics: Modern approaches to modeling and implications for economic and financial decisions

Rustam Ibragimov Imperial College Business School (Based on joint works with

Victor de la Peña, G. Lentzas, S. Sharakhmetov & J. Walden)

Department of Statistics
Columbia University
12 October 2013

Objectives and key results

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- General representations for joint cdf's and copulas of arbitrary r.v.'s
 - Joint cdf's and copulas of dependent r.v.'s = sums of U-statistics in independent r.v.'s
 - Similar results: expectations of arbitrary statistics in dependent r.v.'s
 - New representations for multivariate dependence measures
 - Complete characterizations of classes of dependent r.v.'s
 - Methods for constructing new copulas
 - Modeling different dependence structures

Objectives and key results

- Copula-based modeling for time series
- Characterizations of dependence in terms of copulas
 - · Markovness of arbitrary order
 - Combining Markovness with other dependencies:

m-dependence, r-independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE

Objectives and key results

- New flexible copulas to combine dependencies
- Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten copulas)
- power functions (power copulas); Fourier polynomials (Fourier copulas)
- Impossibility/reduction: Copula-based dependence + specific copulas
 ⇔ Independence

Objectives & key results

- Long-memory via copulas: various definitions
- Dependence measures & copulas
- Gaussian & EFGM ⇒ short-memory Markov
- Fast exponential decay of dependence between $X_t \& X_{t+h}$
- Simulations ⇒ Clayton copula-based Markov {Xt}: can behave as long memory (copulas) in finite samples
 - High persistence important for finance & economics
- Long memory-like: X_t & X_{t+h}: slow decay of dependence for commonly used lages h
- Volatility modeling & Nonlinear dependence in finance
- Non-linear CH & long memory-like volatility
- Generalizations of GARCH
- Non-robustness of procedures for detecting long memory in copulas

Stylized Facts of Real-World Returns

Dependence vs. margins in economic and financial problems

- Problems in finance, economics & risk management:
 Solution is affected by both
 - Marginal distributions (Heavy-Tailedness, Skewness)
 - Dependence (Positive or Negative, Asymmetry)
- Portfolio choice & value at risk (VaR)
 - Marginal effects under independence: Heavy-Tailedness
 - Moderately HT vs. extremely HT ⇒ Opposite solutions
 - Different solutions: Positive vs. negative dependence

Imperial College London BUSINESS SCHOOL

Normal vs. Heavy-tailed Power Laws

Simulated normal and heavy-tailed series

Heavy-tailed margins

Many economic & financial time series: power law tails:

$$P(|X| > x) \approx \frac{c}{r^{\alpha}}, \ \alpha > 0$$
: tail index

- **Moments** of order $p \ge \alpha$: **infinite**; $E|X|^p < \infty$ iff $p < \alpha$
 - $\alpha \leq 4 \Longrightarrow$ Infinite fourth moments: $EX^4 = \infty$ $\alpha \leq 2 \Longrightarrow$ Infinite variances: $EX^2 = \infty$

 - $\alpha \leq 1 \Longrightarrow$ Infinite first moments: $E|X| = \infty$
- Returns on many stocks & stock indices: $\alpha \in (2,4)$
 - ⇒ finite variance, infinite fourth moment

A tale of two tails

Figure: Tails of Cauchy distributions are heavier than those of normal distributions. Tails of Lévy distributions are heavier than those of Cauchy or normal distributions

A tale of two tails

Figure: Heavy-tailed distributions: more extreme observations

Heavy-tailed margins

$$P(|X| > x) \approx \frac{C}{x^{\alpha}}$$

- Income: $\alpha \in [1.5, 3] \Rightarrow$ infinite EX^4 , possibly infinite variances
- Wealth: $\alpha \approx 1.5 \Rightarrow$ infinite variances!
- Returns from technological innovations, Operational risks: $\alpha < 1 \Rightarrow$ infinite means $E|X| = \infty$!
- Firm sizes, sizes of largest mutual funds, city sizes: $\alpha \approx 1$
- Economic losses from earthquakes: $\alpha \in [0.6, 1.5]$ \Rightarrow infinite variances, possibly infinite means
- Economic losses from hurricanes: $\alpha \approx 1.56$; $\alpha \approx 2.49$

Stable distributions

• $X \sim S_{\alpha}(\sigma)$: symmetric **stable** distribution, $\alpha \in (0,2]$

CF:
$$E(e^{ixX}) = exp\{-\sigma^{\alpha}|x|^{\alpha}\}$$

- Normal $\mathcal{N}(0, \sigma)$: $\alpha = 2$
- Cauchy: $\alpha = 1$, $f(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$
- Lévy: $\alpha=1/2$, support $[0,\infty)$, $f(x)=\frac{\sigma}{\sqrt{2\pi}}x^{-3/2}\exp(-\frac{1}{2x})$
- Power laws: $P(|X| > x) \approx \frac{c}{x^{\alpha}}, \ \alpha \in (0,2)$
 - Moments $E|X|^p$: finite iff $p < \alpha$
 - Infinite variances for $\alpha < 2$
- **Portfolio** formation: $\sum_{i=1}^n w_i X_i =_d (\sum_{i=1}^n w_i^{\alpha})^{1/\alpha} X_1$

•
$$\alpha = 2$$
 (normal): $\frac{1}{\sqrt{n}}(X_1 + ... + X_n) =_d X_1$

Value at risk (VaR)

- VaR
 - Risk X; positive values = losses
 - Loss probability q
 - $VaR_q(X) = z : P(X > z) = q$
- Risks $X_1, ..., X_n$
- $Z_w = \sum_{i=1}^n w_i X_i$: return on portfolio with weights $w = (w_1, ..., w_n)$
- Problem of interest:

Minimize
$$VaR_q(Z_w)$$

s.t.
$$w_i \geq 0, \sum_{i=1}^n w_i = 1$$

• When diversification ⇒ decrease in portfolio riskiness (VaR)?

Diversification & risk

- Most diversified: $\underline{w} = (1/n, 1/n, ..., 1/n) \Rightarrow Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Least diversified: $\overline{w} = (1, 0, ..., 0) \Rightarrow Z_{\overline{w}} = X_1$
- $X_1, ..., X_n \sim \mathcal{N}(0, \sigma) \ (\alpha = 2)$
 - $Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i =_d \frac{1}{\sqrt{n}} X_1 = \frac{1}{\sqrt{n}} Z_{\overline{w}}$
 - $VaR_q(Z_{\underline{w}}) = \frac{1}{\sqrt{n}} VaR_q(Z_{\overline{w}}) < VaR_q(Z_{\overline{w}})$
 - $VaR_q(Z_{\underline{w}}) : \searrow \text{ as } n \nearrow (\textbf{Diversification } \nearrow)$

Diversification & risk

- $X_1,...,X_n \sim S_{1/2}(\sigma)$, $\alpha = 1/2$, Lévy distribution
 - $Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i =_d \left[\sum_{i=1}^{n} (\frac{1}{n})^{1/2} \right]^2 X_1 = nX_1 = nZ_{\overline{w}}$
 - $VaR_q(Z_{\underline{w}}) = nVaR_q(Z_{\overline{w}}) > VaR_q(Z_{\overline{w}})$
 - $VaR_q(Z_{\underline{w}}): \nearrow \text{ as } n \nearrow (\textbf{Diversification } \nearrow)$
- Heavy tails (margins) matter:
 diversification \iff opposite effects on portfolio riskiness
- Skewness: typically priced

Heavy-tailedness & diversification

• Moderate heavy tails $\alpha > 1$: finite first moments

$$VaR_q(Z_{\overline{w}}) < VaR_q(Z_{\overline{w}}) \ \forall q > 0$$

Optimal to diversify for all loss probabilities q

ullet Extremely heavy tails lpha < 1: infinite first moments

$$VaR_q(Z_{\overline{w}}) < VaR_q(Z_{\overline{w}}) \ \ \forall q > 0$$

Diversification: suboptimal for all loss probabilities q

- Similar conclusions: Many other models in economics & finance
 - Firm growth theory, optimal bundling, monotone consistency of sample mean, efficiency of linear estimators
 - Robust to moderate heavy tails
 - Properties: reversed under extremely heavy tails

What happens for intermediate heavy-tails?

- $X_1,...,X_n$ i.i.d. stable with $\alpha=1$: Cauchy distribution
 - Density $f(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$
 - Heavy power law tails: $P(|X| > x) \approx \frac{C}{x}$
 - Infinite first moment

- $Z_w = \sum_{i=1}^n w_i X_i =_d X_1 \ \forall w = (w_1, ..., w_n) : w_i \ge 0,$
- Diversification: no effect at all!

Summary so far: Diversification for heavy-tailed and bounded distributions

Figure: N = 10 risks/insurer; M = 7 insurers

 D: Individual/non-diversification corners vs insurer and reinsurer equilibrium

Diversification & dependence

- Minimize $VaR_q(w_1X_1 + w_2X_2)$ s.t. $w_1, w_2 \ge 0, w_1 + w_2 = 1$
- Independence:
 - Optimal portfolio: $(\tilde{w}_1, \tilde{w}_2) = (\frac{1}{2}, \frac{1}{2})$ (diversified) if $\alpha > 1$ (not extremely heavy-tailed, finite means)
 - $(\tilde{w}_1, \tilde{w}_2) = (1,0)$ (not diversified, one risk) if $\alpha < 1$ (extremely heavy-tailed, infinite means)

Diversification & dependence

- Extreme positive dependence: $X_1 = X_2$ (a.s.) comonotonic risks
 - $VaR_q(w_1X_1 + w_2X_2) = VaR_q(X_1) \ \forall w$
 - Diversification: no effect at all (similar to Cauchy) regardless of heavy-tailedness
- Extreme negative dependence $X_1 = -X_2$ (a.s.) countermonotonic risks
 - $VaR_q(w_1X_1 + w_2X_2) = (w_1 w_2)VaR_q(X_1)$
 - Optimal portfolio: $\underline{w}=(1/2,1/2)$ (most diversified regardless of heavy-tailedness
- Optimal portfolio choice: affected by both dependence & properties of margins

Copulas and dependence

- Main idea: separate effects of dependence from effects of margins
 - What matters more in portfolio choice: heavy-tailedness & skewness or (positive or negative) dependence?
- Copulas: functions that join together marginal cdf's to form multidimensional cdf

Copulas and dependence

- Sklar's theorem
- Risks X, Y:
 - Joint cdf $H_{XY}(x,y) = P(X \le x, Y \le y)$: affected by **dependence** and by marginal cdf's $F_X(x) = P(X \le x)$ and $G_Y(x) = P(Y \le y)$
 - $C_{XY}(u, v)$: **copula** of X, Y:

$$H_{XY}(x,y) = \underbrace{C_{XY}}_{\text{dependence}} \underbrace{\left(\underbrace{F_X(x), G_Y(y)}_{\text{figures}}\right)}_{\text{dependence}}$$

• C_{XY}: captures all dependence between risks X and Y

Copulas and dependence

Advantages:

- Exists for any risks (correlation: finiteness of second moments)
- Characterizes all dependence properties
- Flexibility in dependence modeling
 - Asymmetric dependence: Crashes vs. booms
 - Positive vs. negative dependence
 - Independence: Nested as a particular case: Product copula, particular values of parameter(s)
 - Extreme dependence: X = Y or X = −Y ⇔ extreme copulas; dependence in C_{XY} varies in between

Copula structures

Eyraud-Farlie-Gumbel-Morgenstern (EFGM):

$$C(u, v) = uv[1 + \gamma(1 - u)(1 - v)]$$

 $\gamma \in [-1,1]$: dependence parameter

Tail independent: no contagion

• Heavy-tailed Pareto marginals:

$$P(X>x)=\frac{1}{x^{\alpha}},\ x\geq 1$$

$$P(Y>y)=\frac{1}{y^{\alpha}},\ y\geq 1$$

• Power laws, tail index α

Diversification: EFGM & heavy tails

• Moderate heavy tails $\alpha > 1$: finite first moments

$$VaR_q\Big(rac{X+Y}{2}\Big) < VaR_q(X) \,$$
 for sufficiently small ${f q}$

Optimal to **diversify for sufficiently small** loss probabilities q

• Extremely heavy tails $\alpha < 1$: infinite first moments

$$VaR_q\left(rac{X+Y}{2}
ight) > VaR_q(X)$$
 for sufficiently small q

Diversification: suboptimal for sufficiently small loss prob. q

- Similar conclusions: Multivariate EFGM copulas
- Complement Embrechts et al. (2009): Archimedean copulas
- Tail independent EFGM & tail dependent Archimedean (Clayton, Gumbel): same boundary $\alpha=1$ as in the case of independence

When dependence helps: Student-t copulas

Conclusions similar to independence: Models with common shocks

$$X_1 = ZY_1, X_2 = ZY_2, ..., X_n = ZY_n$$

- Common shock Z > 0 affecting all risks $X_1, ..., X_n$
- $Y_1, ..., Y_n$: i.i.d. normal or heavy-tailed with tail index α

Z: heavy-tailed with tail index β

Then X_i : heavy-tailed with tail index $\gamma = \min(\alpha, \beta)$

- Important particular case: (Dependent) Multivariate Student-t $X_1, X_2, ..., X_n$ with α d.f. (tail index) \Rightarrow Optimal to diversify for all loss probabilities q regardless of tail index α
 - Tail dependent Student-t copula and heavy-tailed margins with arbitrary tail index α : diversification pays off
- Contrast: Independent Student-t $X_1, X_2, ..., X_n$ with α d.f. (tail index): diversification optimal for $\alpha > 1$; suboptimal for $\alpha < 1$

Diversification: Heavy-tailedness & dependence matter

- Independence, Tail dependent models with common shocks (e.g., Student-t distr. = Student-t copula with Student-t marginals):
 - Diversification always pays off for all loss probabilities q
- Tail independent EFGM, possibly tail dependent Archimedean copulas (e.g., Clayton & Gumbel):
 - Dividing boundary $\alpha = 1$ for sufficiently small loss probability q
- Numerical results on interplay of heavy-tailedness & dependence (copula) assumptions and loss probability q in diversification decisions:
 - Deviations from threshold $\alpha=1$ for different copulas and loss probabilities q
- Theoretical results for general copulas = ?
- (Non-)robustness of other models in economics & finance

Characterizations of copulas & dependence

- $V_1, ..., V_n$: i.i.d. $\mathcal{U}([0,1])$
- C: n-copula iff $\exists \ \tilde{g}_{i_1,...,i_c}$ s.t.

A1 (integrability):

$$\int_{0}^{1}...\int_{0}^{1}|\tilde{g}_{i_{1},...,i_{c}}(t_{i_{1}},...,t_{i_{c}})|dt_{i_{1}}...dt_{i_{c}}<\infty$$

A2 (degeneracy):

$$E_{V_{i_k}}\Big[\tilde{g}_{i_1,...,i_c}(V_{i_1},...,V_{i_{k-1}},V_{i_k},V_{i_{k+1}},...,V_{i_c})\Big]=0$$

A3 (positive definiteness):

$$ilde{U}_n(V_1,...,V_n) \equiv \sum_{c=2}^n \sum_{1 \leq i_1 < ... < i_c \leq n} ilde{g}_{i_1,...,i_c}(V_{i_1},...,V_{i_c}) \geq -1$$

• Representation for C :

$$C(u_1,...,u_n) = \int_0^{u_1} ... \int_0^{u_n} (1 + \tilde{U}_n(t_1,...,t_n)) \prod_{i=1}^n dt_i$$

• \tilde{U}_n : sum of **degenerate** U-statistics

Device for constructing n-copulas and cdf's

Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas & cdf's:

$$C_{ heta}(u,v) = uv (1 + heta(1-u)(1-v))$$
 $H_{ heta}(x,y) = F(x)G(y)\Big(1 + heta(1-F(x))(1-G(y)\Big)$
 $n = 2; \ ilde{g}_{1,2}(t_1,t_2) = heta(1-2t_1)(1-2t_2), \ heta \in [-1,1]$

• Multivariate EFGM copulas & cdf's:

$$C_{\theta}(u_1, u_2, ..., u_n) = \prod_{i=1}^n u_i \left(1 + \theta \prod_{i=1}^n (1 - u_i) \right)$$

$$\tilde{g}_{i_1, ..., i_c}(t_{i_1}, ..., t_{i_c}) = \theta_{i_1, ..., i_c} (1 - 2t_{i_1}) (1 - 2t_{i_2}) ... (1 - 2t_{i_c})$$

 Generalized multivariate EFGM copulas (Johnson and Kotz, 1975, Cambanis, 1977)

$$C(u_1,...,u_n) = \prod_{k=1}^n u_k \left(1 + \sum_{c=2}^n \sum_{1 \le i_1 < ... < i_c \le n} \theta_{i_1,...,i_c} (1 - u_{i_k}) \right)$$

$$\tilde{g}_{i_1,...,i_c}(t_{i_1},...,t_{i_c}) = 0, \ c < n-1$$

$$\tilde{g}_{1,2,...,n}(t_1,t_2,...,t_n) = \theta(1-2t_1)(1-2t_2)...(1-2t_n)$$

 Generalized EFGM copulas: complete characterization of joint cdf's of two-valued r.v.'s (Sharakhmetov & Ibragimov, 2002)

From dependence to independence through U-statistics

 \mathcal{G}_n : sums of U-statistics

$$U_n(\xi_1,...,\xi_n) = \sum_{c=2}^n \sum_{1 \leq i_1 < ... < i_c < n} g_{i_1,...,i_c}(\xi_{i_1},...,\xi_{i_c})$$

 $g_{i_1,...,i_c}$: satisfy A1-A3

- Arbitrarily dependent r.v.'s: sum of U-statistics in independent r.v.'s with canonical kernels
- · Reduction of problems for dependence to well-studied objects
- Transfer of results for *U*-statistics under independence

From dependence to independence through U-statistics

- $X_1, ..., X_n$: **1-cdf's** $F_k(x_k)$
- $\xi_1, ..., \xi_n$: independent copies (1-cdf's $F_k(x_k)$)

 $\exists U_n \in \mathcal{G}_n \text{ s.t. } \forall f : \mathbf{R}^n \to \mathbf{R}$

$$Ef(X_1,...,X_n) = Ef(\xi_1,...,\xi_n) \Big(1 + U_n(\xi_1,...,\xi_n) \Big)$$

• Representation for c.f.'s:

$$\begin{aligned} \textit{Eexp}\left(i\sum_{k=1}^{n}t_{k}X_{k}\right) &= \textit{Eexp}\left(i\sum_{k=1}^{n}t_{k}\xi_{k}\right) + \\ \textit{Eexp}\left(i\sum_{k=1}^{n}t_{k}\xi_{k}\right)U_{n}(\xi_{1},...,\xi_{n}) \end{aligned}$$

‡ CLT for bivariate r.v.'s

Characterizations of dependence

- Canonical g's: complete characterizations of dependence properties
- $X_1, ..., X_n$: r-independent if $\forall r$ jointly independent \Leftrightarrow

$$g_{i_1,...,i_c}(V_{i_1},...,V_{i_c}) = 0$$
 (a.s.) $1 \le i_1 < ... < i_c \le n, \ c = 2,...,r$

•

$$g_{i_{1},...,i_{r+1}}(u_{i_{1}},...,u_{i_{r+1}}) = \frac{\alpha_{1}...\alpha_{n}}{\alpha_{i_{1}}...\alpha_{i_{r+1}}} \left((k+1)u_{i_{1}}^{k} - (k+2)u_{i_{1}}^{k+1} \right) \times ... \times \left((k+1)u_{i_{c}}^{k} - (k+2)u_{i_{c}}^{k+1} \right)$$

$$C(u_{1},...,u_{n}) = \prod_{i=1}^{n} u_{i} \left(1 + \sum_{1 \leq i_{1} < ... < i_{r+1} \leq n} \frac{\alpha_{1}...\alpha_{n}}{\alpha_{i_{1}}...\alpha_{i_{r+1}}} \times \left(u_{i_{1}}^{k} - u_{i_{1}}^{k+1} \right) \times ... \times \left(u_{i_{r+1}}^{k} - u_{i_{r+1}}^{k+1} \right) \right)$$

Extensions of Wang (1990) (k = 0)

Copulas and Markov processes

- Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness
- $A, B : [0,1]^2 \to [0,1] :$

$$(A*B)(x,y) = \int_0^1 \frac{\partial A(x,t)}{\partial t} \cdot \frac{\partial B(t,y)}{\partial t} dt$$

ullet $A:[0,1]^m
ightarrow [0,1], \ B:[0,1]^n
ightarrow [0,1]: \star - \mathsf{product}$

$$A\star B(x_1,...,x_{m+n-1})=$$

$$\int_0^{x_m} \frac{\partial A(x_1,...,x_{m-1},\xi)}{\partial \xi} \cdot \frac{\partial B(\xi,x_{m+1},...,x_{m+n-1})}{\partial \xi} d\xi$$

Copulas and Markov processes

Transition probabilities

$$P(s, x, t, A) = P(X_t \in A | X_s = x)$$
 satisfy CKE's iff $C_{st} = C_{su} * C_{ut} \; \forall s < u < t$

• X_t: first-order Markov iff

$$C_{t_1,...,t_n} = C_{t_1t_2} \star C_{t_2t_3} \star ... \star C_{t_{n-1}t_n}$$

New results: Higher-order Markovness and copulas

• $\{X_t\}_{t\in\mathcal{T}}$: k-order Markov \Leftrightarrow

$$P(X_t < x_t | X_{t_1}, ..., X_{t_{n-k}}, X_{t_{n-k+1}}, ..., X_{t_n}) =$$

$$P(X_t < x_t | X_{t_{n-k+1}}, ..., X_{t_n})$$

- Complete characterization in terms of (k+1)—copulas
- $C_{t_1,...,t_k}$: copulas of $X_{t_1},...,X_{t_k}$
- $\{X_t\}_{t \in T}$: k-order Markov iff $\forall t_1 < ... < t_n, \ n \ge k+1$

$$C_{t_1,...,t_n} = C_{t_1,...,t_{k+1}} \star^k C_{t_2,...,t_{k+2}} \star^k ... \star^k C_{t_{n-k},...,t_n}$$

Stationary case

• X_t : stationary k-order Markov iff

$$C_{1,...,n}(u_1,...,u_n) = C \star^k C \star^k ... \star^k C(u_1,...,u_n)$$

= $C^{n-k+1}(u_1,...,u_n) \ \forall n \geq k+1$

C: (k+1)— copula s.t.

$$C_{i_1+h,...,i_l+h} = C_{i_1,...,i_l}, \ 1 \le j_1 < ... < j_l \le k+1$$

• C^s : s-fold product \star^k of C

Advantages of copula-based approach

 Modeling higher order Markov processes alternative to transition matrices

‡ Instead of initial distribution & transition probabilities:

Prescribe marginals & (k+1)-copulas

Generate copulas of higher order & finite-dimensional cdf's

‡ **Advantage: separation** of properties of **marginals** (fat-tailedness) & **dependence** properties (conditional symmetry, m-dependence, r-independence, mixing)

Advantages of copula-based approach

• Inversion method:

New k-Markov with dependence similar to a given Markov process Different marginals

 $\ddagger X_t$: stationary k-Markov

$$(k+1)$$
-cdf $\tilde{F}(x_1,...,x_{k+1})$, 1-cdf F

 \Rightarrow (k+1)-copula:

$$C(u_1,...,u_{k+1}) = \tilde{F}(F^{-1}(u_1),...,F^{-1}(u_{k+1}))$$

† Another 1-cdf G:

Stationary k-**Markov**, **same** dependence as $\{X_t\}$, **different** 1-marginal G:

$$(k+1)$$
—copula:

$$C(u_1,...,u_{k+1}) = \tilde{F}(G^{-1}(u_1),...,G^{-1}(u_{k+1}))$$

Representation ⇒ Higher-order copulas & cdf's

 $\{X_t\}$: stationary C-based k-Markov chain

Advantages of copula-based approach

- C: all dependence properties of the time series
- $\ddagger k$ -independence, m-dependence, martingaleness, symmetry
- ‡ On-going project with Johan Walden: characterizations of **time-irreversibility**; focus on $C_{t_1,...,t_k} = C_{t_k,...,t_1}$
- ‡ Applications: **forward-looking vs. backward-looking** market participants ("fundamentalists" vs. noise traders or "chartists")
- ‡ "Compass rose" for P_{t-1} and P_t : symmetry in copulas

Combining higher-order Markovness with other dependence properties

• A number of studies in dependence modeling: Higher-order Markovness + m-dependence & r-independence

Lévy (1949): 2nd order Markovness + pairwise independence

Rosenblatt & Slepian (1962): N-order N-independent stationary Markov

Impossibility/reduction :

N-order Markov + N-independence + two-valued \Leftrightarrow joint independence

† Testing sensitivity to WD in DGP Rosenblatt & Slepian (1962)

Combining Markovness with other dependencies

‡ Examples:

Not 1-order Markovian

But 1-st order transition probabilities

$$P(s, x, t, A) = P(X_t \in A | X_s = x)$$
 satisfy **C-K SE**

$$P(s,x,t,A) = \int_{-\infty}^{\infty} P(u,\xi,t,A)P(s,x,u,d\xi)$$

(other examples: Feller, 1959, Rosenblatt, 1960)

Combining Markovness with other dependencies

```
‡ 1-dependent Markov: Aaronson, Gilat and Keane (1992)
```

Burton, Goulet and Meester (1993), Matúš (1996)

‡ Matúš (1998): *m*—dependent

discrete-space Markov

‡ Impossibility/Reduction:

 \nexists stationary m-dependent Markov if $card(\Omega) < m+2$

Markovness of higher-order and k-independence

• Characterization of stationary

k-independent k-Markov processes

• $\{X_t\}$: C-based k-independent stationary

k-Markov iff

$$\frac{\partial^{k+1}C(u_1,...,u_{k+1})}{\partial u_1...\partial u_{k+1}} = 1 + g(u_1,...,u_{k+1})$$

 $g:[0,1]^{k+1}\to[0,1]$: canonical g-function

(Integrability + more degeneracy + positive definiteness)

Markovness of higher-order and k-independence

$$\int_{0}^{1} ... \int_{0}^{1} |g(u_{1},...,u_{k+1})| du_{1}...du_{k+1} < \infty$$

$$\int_{0}^{1} ... \int_{0}^{1} g(u_{1},...,u_{k+1})g(u_{2},...,u_{k+2})...g(u_{s},...,u_{k+s})du_{i_{1}}...du_{i_{s}} = 0$$

$$\forall s \leq u_{i_{1}} < ... < u_{i_{s}} \leq k+1, \ s = 1,2,..., \left[\frac{k+1}{2}\right]$$

$$g(u_{1},...,u_{k+1}) \geq -1$$

• Integration: w.r. to all s among $u_s, u_{s+1}, ..., u_{k+1}$ common to all g-functions $g(u_1, ..., u_{k+1}), g(u_2, ..., u_{k+2}), ..., g(u_s, ..., u_{k+s})$

k-marginals: product copulas, independence

k-independence: satisfied

Markovness of higher-order and *m*-independence

• $\{X_t\}$: C-based m-dependent 1-Markov iff

$$\frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = 1 + g(u_1, u_2)$$

 $g:[0,1]^2 \rightarrow [0,1]$: canonical g-function:

$$\int_0^1 \int_0^1 |g(u_1, u_2)| du_1 du_2 < \infty$$
 $\int_0^1 g(u_1, u_2) du_i = 0, \ \ g(u_1, u_2) \ge -1$ $\int_0^1 g(u_1, u_2) g(u_2, u_3) ... g(u_m, u_{m+1}) du_2 du_3 ... du_m = 0$

‡ Integration: w.r. to $u_2, u_3, ..., u_m$ more than once among $g(u_1, u_2), g(u_2, u_3),$..., $g(u_m, u_{m+1})$

 X_1 , X_{m+1} : independent; Process: m-dependent

New examples via existing constructions

- Higher-order Markovness + martingaleness
- Inversion method + existing examples ⇒

k-independent, m-dependent Markov processes

different marginals

Reduction & impossibility for *k*-order Markov processes

• $\{X_t\}$: C-based k-independent stationary k-Markov

$$\frac{1}{2} \frac{\partial^{k+1} C(u_1,...,u_{k+1})}{\partial u_1...\partial u_{k+1}} = 1 + g(u_1,...,u_{k+1})$$

‡ g : product form (EFGM-type):

$$g(u_1, u_2, ..., u_{k+1}) = \alpha f(u_1) f(u_2) ... f(u_{k+1})$$

 $\Leftrightarrow \{X_t\}$: jointly independent

Examples: EFGM and power copulas

• (k+1)-**EFGM** copulas:

$$C(u_1, u_2, ..., u_{k+1}) = \prod_{i=1}^{k+1} u_i \Big(1 + \alpha (1 - u_1)(1 - u_2)...(1 - u_{k+1}) \Big)$$

$$g(u_1, u_2, ..., u_{k+1}) = \alpha(1 - 2u_1)(1 - 2u_2)...(1 - 2u_{k+1})$$

• (k+1)-power copulas

$$C(u_1, u_2, ..., u_{k+1}) = \prod_{i=1}^{k+1} u_i \Big(1 + \alpha (u_1' - u_1'^{l+1}) (u_2' - u_2'^{l+1}) ... (u_{k+1}' - u_{k+1}'^{l+1}) \Big)$$

$$l \ge 0$$
 (EFGM: $l = 0$)

Impossibility/reduction for *m*-dependence

• $\{X_t\}$: C-based m-dependent Markov

$$\ddagger \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = 1 + \alpha f(u_1) f(u_2)$$

(separable product form)

- $\Leftrightarrow X_t$: jointly independent
- Representations ⇒

$$\int_0^1 ... \int_0^1 \alpha^m f(u_1) f^2(u_2) ... f^2(u_m) f(u_{m+1}) du_2 ... du_m = 0;$$

$$\alpha^m f(u_1) f(u_{m+1}) \Big[\int_0^1 f^2(u_2) du_2 \Big]^{m-1} = 0$$

$$\Rightarrow f = 0 \Leftrightarrow$$
 Independence

Examples, new and old

‡ EFGM copulas, k = 1:

$$C(u_1, u_2) = u_1 u_2 \Big(1 + \alpha (1 - u_1)(1 - u_2) \Big)$$

 $g(u_1, u_2) = \alpha (1 - 2u_1)(1 - 2u_2)$

• Limitations of EFGM copulas,

separable copulas:

Complement & generalize existing results

Examples, new and old

‡ Cambanis (1991): common dependencies cannot be exhibited by multivariate EFGM

$$egin{aligned} & C_{j_1,...,j_n}(u_{j_1},...,u_{j_n}) = \ & \prod_{s=1}^n u_{j_k} \Big(1 + \sum_{1 \leq l < m \leq n} lpha_{lm} (1 - u_{j_l}) (1 - u_{j_m}) \Big) \end{aligned}$$

‡ Rosenblatt & Slepian (1962): **non-existence** of **bivariate** *N***-independent** *N***-Markov**

Sharakhmetov & Ibragimov (2002):

EFGM copulas for two-valued r.v.'s

† Technical difficulties in modeling

Solution: New flexible copula classes

- Copula-based TS with flexible dependencies
- **†** Copulas based on Fourier polynomials
- k-independent k-Markov: Conditions satisfied for

$$g(u_1,...,u_{k+1}) = \sum_{j=1}^{N} \left[\alpha_j sin(2\pi \sum_{i=1}^{k+1} \beta_i^j u_i) + \gamma_j cos(2\pi \sum_{i=1}^{k+1} \beta_i^j u_i) \right]$$

$$\alpha_{j}, \gamma_{j} \in \mathbb{R}, \ \beta_{i}^{j} \in \mathbb{Z}, \ i = 1, ..., k + 1, \ j = 1, ..., N$$
:

$$\dagger \beta_1^{j_1} + \sum_{l=2}^s \epsilon_{l-1} \beta_l^{j_l} \neq 0$$

$$\epsilon_1, ..., \epsilon_{s-1} \in \{-1, 1\}, \ s = 2, ..., k+1$$

$$\dagger 1 + \sum_{j=1}^{N} \left[\alpha_j \epsilon_j + \gamma_j \epsilon_{j+N} \right] \ge 0, \ \epsilon_1, ..., \epsilon_{2N} \in \{-1, 1\}$$

Fourier copulas

$$C(u_1,...,u_{k+1})=\int_0^{u_1}...\int_0^{u_{k+1}}(1+g(u_1,...,u_{k+1}))du_1...du_{k+1}$$

(k+1)-Fourier copulas

Fourier copulas

• 1-dependent 1-Markov:

Conditions satisfied for Fourier copulas

$$\begin{split} C(u_1,u_2) &= \int_0^{u_1} \int_0^{u_2} (1+g(u_1,u_2)) du_1 du_2 \\ g(u_1,u_2) &= \sum_{j=1}^N \left[\alpha_j sin(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) + \gamma_j cos(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) \right] \end{split}$$

$$\ddagger \alpha_j, \gamma_j \in \mathbf{R}, \, \beta_1^j, \beta_2^j \in \mathbf{Z}$$
:

$$eta_1^{j_1}+eta_2^{j_2}
eq 0 \ eta_1^{j_1}-eta_2^{j_2}
eq 0 \ 1+\sum_{i=1}^Nig[lpha_j\epsilon_j+\gamma_j\epsilon_{j+N}ig]\geq 0$$

$$\forall \epsilon_1, ..., \epsilon_{2N} \in \{-1, 1\}$$

Concluding remarks

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- General representations for joint cdf's and copulas of arbitrary r.v.'s
 - Joint cdf's and copulas of dependent r.v.'s = sums of U-statistics in independent r.v.'s
 - Similar results: expectations of arbitrary statistics in dependent r.v.'s
 - New representations for multivariate dependence measures
 - Complete characterizations of classes of dependent r.v.'s
 - Methods for constructing new copulas
 - Modeling different dependence structures

Concluding remarks

- Copula-based modeling for time series
- Characterizations of dependence in terms of copulas
 - · Markovness of arbitrary order
 - Combining Markovness with other dependencies:

m-dependence, r-independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE

Concluding remarks

- New flexible copulas to combine dependencies
- Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten copulas)
- power functions (power copulas); Fourier polynomials (Fourier copulas)
- Impossibility/reduction: Copula-based dependence + specific copulas
 ⇔ Independence

Copula memory

- Long-memory via copulas: various definitions
- Dependence measures & copulas
- Gaussian & EFGM ⇒ short-memory Markov
- Fast exponential decay of dependence between $X_t \& X_{t+h}$
- Numerical results \Rightarrow Clayton copula-based Markov $\{Xt\}$: can behave as long memory (copulas) in finite samples
 - High persistence important for finance & economics
- Long memory-like: X_t & X_{t+h}: slow decay of dependence for commonly used lages h
- Volatility modeling & Nonlinear dependence in finance
- Non-linear CH & long memory-like volatility
- Generalizations of GARCH

Copula memory

Beare (2008) & Chen, Wu & Yi (2008): numerical & theoretical results on (short & long) memory in copulas

Beare (2008): α , β & ϕ -mixing

- $\kappa(h) \leq \alpha(h) \leq \beta(h) \leq 0.5\phi(h)$
- Numerical results \Rightarrow Clayton: exponential decay in $\beta(h) \Rightarrow$ short κ -memory in copulas

Theoretical results in Chen, Wu & Yi (2008):

- Clayton: weakly dependent & short memory in terms of mixing properties!
- Our numerical results + Chen, Wu & Yi (2008): Non-robustness of procedures for detecting long memory in copulas