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[1] Drought and sea surface temperature were examined as the causes of severe biomass
burning C emissions in Indonesia for 1997–2006, obtained from the Global Fire
Emissions Database. Eighteen predictor variables were considered under log linear and
piecewise regression models. The predictor variables considered were precipitation totals
of up to 6 months, output from two soil moisture models, and sea surface temperature
(SST) indicators reflecting El Niño and Indian Ocean Dipole strength. Nonparametric
bootstrap techniques were used to estimate confidence intervals for predictability and
thresholds below which severe C emissions are likely. Across equatorial Southeast Asia,
the best predictor was 3-month total precipitation, which explained 79% of variance in C
emissions. When considered individually, and with the incorporation of satellite
precipitation estimates, predictability for southern Sumatra and southern Kalimantan
improved to 97% and 92%, respectively, using 4-month total precipitation. There is a high
risk of severe burning when 4-month precipitation falls below thresholds of 350 mm in
southern Sumatra and 650 mm in southern Kalimantan and when 6-month precipitation falls
below 900 mm in Papua. In general, simple precipitation totals outperformed more
complicated soil moisture models and SST-based indices. Physically, seasonal precipitation
controls fire emissions through its regulation of groundwater level and, hence, the amount of
peat available for drying. Seasonal precipitation, in turn, is strongly influenced by SST
patterns in the tropical Pacific and Indian oceans. The most severe drought and fire events
appear equally influenced by Indian Ocean Dipole events and El Niño events.
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1. Introduction

[2] The interannual growth of CO2 and other greenhouse
gases is not steady but occurs irregularly over timescales of
2–5 years, with biomass burning proposed as the main
source of this interannual growth [Langenfelds et al., 2002].
Zeng et al. [2005] estimated that biomass burning represents
roughly 20% of the mean interannual carbon flux anomaly,
mainly through the increase in tropical fires in response to
drought conditions. Indonesian biomass burning in 1997
was estimated to constitute 15–40% of the mean annual
global C emissions from fossil fuel burning [Page et al.,
2002]. Podgorny et al. [2003] quantified the climatic
impacts of the 1997 event, estimating that aerosol emissions
from the fires resulted in at least a 50% increase in
atmospheric solar heating within the first three vertical
kilometers and at least a 15% reduction in seasonal mean
solar radiation incident at the surface of the equatorial
Indian Ocean. The serious health impacts of transboundary

haze generated by Indonesian fires have also been docu-
mented [Sastry, 2002; Kunii et al., 2002].
[3] With industrial logging and agriculture as the under-

lying causes [Dennis et al., 2005; Langner et al., 2007],
the trigger for severe fire and haze episodes in Indonesia is
drought. There is significant interannual variability in dry
season rainfall over Indonesia, due to changes in ocean
and atmospheric circulation in the tropical Pacific and
Indian oceans. In the Pacific, the anomalously high sea
surface temperatures (SST) appear in the east, weakening
the Walker circulation and resulting in a reduced pooling
of warm water and convection in the western Pacific
[Gutman et al., 2000; Hendon, 2003]. Over Indonesia,
this results in a pronounced decrease in rainfall during
the dry seasons, as convection shifts eastward into the
central Pacific. Similar impacts also result from SST
anomalies in the Indian Ocean, where precipitation shifts
northwestward away from western Indonesia [Saji et al.,
1999]. During these periods, burning escapes control,
igniting vast deposits of peat soils, whose water holding
capacity has been reduced because of extensive draining
[Page et al., 2002; Usup et al., 2004]. The provinces of
Riau, Jambi, and South Sumatra on the island of
Sumatra and West, Central, South and East Kalimantan
are the main fire prone regions of Indonesia [Heil and
Goldammer, 2001].
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[4] Because of the large amounts of smoke produced, the
haze signature of the fires is seen clearly in different proxy
measurements, which have also been used to understand
underlying causes of the fires. Field et al. [2004] showed
that reductions in visible range at airports in Sumatra and
Kalimantan during 1994–1998 could be explained by
anomalously low values of a drought code used for fire
danger monitoring in boreal and temperate forests. Over a
longer period from 1973 to 2003, Wang et al. [2004]
showed that reductions in visible range over Sumatra were
in phase with warm ENSO periods in 1982/1983, 1987/
1988, 1991/1992, 1994/1995, 1997/1998 and 2002/2003, as
indicated by the Niño3.4 SST index.
[5] Kita et al. [2000] and Thompson et al. [2001] also

showed qualitatively that enhancements of the Total Ozone
Mapping Spectrometer Aerosol Index (TOMS AI) over
Indonesia have occurred during the El Niño episodes of
1982/1983, 1987/1988 and 1991/1992 and 1997/1998, also
using SSTs as an explanatory variable. Severe burning was
also observed more recently in 2006 [Lohman et al., 2007],
and elevated CO and O3 measurements from the Tropo-
spheric Emission Spectrometer (TES) and Measurements of
Pollution in the Troposphere (MOPITT) instruments were
attributed to Indonesian fires, and ultimately to El Niño-
induced drought [Logan et al., 2008]. These atmospheric
indicators provide useful longer-term characterizations of
smoke but are complicated by several factors. Visible range
data is a useful surface indicator, but is somewhat subjective
in that it records maximum distance seen by a human
observer. The TOMS sensor and AI retrieval algorithm
have limited detection ability in the lower troposphere
[Herman et al., 1997], resulting in underdetection problems
and a lag between the onset of severe haze and its detection.
It is also difficult to attribute observed atmospheric haze to a
specific origin, due to transport and mixing of smoke from
different sources.
[6] Satellite-detected hot spots are the best available fire

indicator for many regions of the world [Duncan et al.,
2003] and provide a means for quantifying the underlying
causes of fire, especially in regions such as Indonesia which
lack systematic aerial estimates of burned area. Over Indo-
nesia, Sudiana et al. [2003] assessed the relationship
between AVHRR hot spot occurrence from 1981 to 1993,
showing qualitatively that fire episodes occurred under
dryer conditions, as reflected by a fire danger index cali-
brated for North American conditions.
[7] van der Werf et al. [2008] examined the relationship

between climate and fire over the entire tropics and
subtropics using TRMM fire counts. Using an index of
fire potential based on dry season length and total dry
season precipitation, they showed that fire in some regions
of Indonesia was correlated with high fire potential, and
that high fire count years were associated with anomalous-
ly low dry season rainfall. Other studies using satellite-
detected hot spots in Indonesia have shown that fire
occurrence is related to land use [Stolle and Lambin,
2003] and occurs under dryer conditions associated with
El Niño conditions [Dymond et al., 2005; Fuller and
Murphy, 2006].
[8] The goal of this study was to better understand

climatic factors contributing to biomass burning emissions
in Indonesia. Specifically, we tried to identify, from among

a broad pool, climate variables which explain the highest
proportion of variance in direct C emissions from biomass
burning over Indonesia, as estimated from the Global Fire
Emissions Database of van der Werf et al. [2006], for 1997
to 2006. Particular attention was devoted to interregional
variability of emissions and predictability, and the degree to
which drought thresholds could be identified for improved
interpretation of seasonal rainfall forecasts. Formal quanti-
tative estimates of proportion of variance in fire occurrence
explained by climate predictor variables have been limited
to Field et al. [2004] and Fuller and Murphy [2006]. Given
the potential application of such predictor variables in
seasonal prediction or in climate change outlooks, detailed
assessments of the uncertainty of predictions were also
made.

2. Data and Methods

2.1. The Global Fire Emissions Database

[9] Estimates of biomass burning emissions over Indo-
nesia were obtained from the Global Fire Emissions Data-
base (GFED) [van der Werf et al., 2006], which is currently
the best available source of global fire emissions data. The
data is available on a 1� by 1� grid for the period 1997–
2006 at monthly temporal resolution. Fire occurrence and
area burned are determined from cross-calibrated ATSR,
TRMM, and MODIS hot spot counts. Emissions estimates
are based on fuel load predictions from a global vegetation
model, a soils map for subsurface fuels, and emissions
factors specific to different combustion products. Over
Indonesia, an important distinction is also made between
organic soils and nonburning mineral soils. Following Page
et al. [2002] and van der Werf et al. [2006], we used direct
carbon (C) emissions as our emissions indicator.
[10] Previous case studies have shown that the seasonality

of fire emissions can vary considerably across Indonesia.
The 1998 fires in East Kalimantan during February to April
1998, for example, were decoupled from the 1997 July–
November burning across the rest of Kalimantan [Heil and
Goldammer, 2001; Siegert and Hoffmann, 2000] and oc-
curred under localized drought conditions not seen in other
parts of Kalimantan [Field et al., 2004]. To identify Indo-
nesia’s main seasonal burning regions, a spatial principal
component analysis was performed to identify regions of
coherent seasonal burning, similar to the approach of
Gedalof et al. [2005]. Each region was then analyzed
individually to identify possible climatic drivers.

2.2. Climatic Indices

[11] We considered a broad range of variables in trying to
predict severe biomass burning. Following Fuller and
Murphy [2006], we used the sea level-pressure-based South-
ern Oscillation Index and sea surface temperature-based
Niño3.4 index as indicators of El Niño strength. In addition,
we considered the Multivariate ENSO Index (MEI) [Wolter
and Timlin, 1993] and the recently developed Dipole Mode
Index (DMI) of Saji et al. [1999]. The MEI is a hybrid index
incorporating the SLP behavior of the SOI and the SST
behavior of the Niño3.4. The DMI measures the strength of
the Indian Ocean Dipole events, whereby anomalies appear-
ing in the basin are related to anomalously low precipitation
in Indonesia.
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[12] To examine the direct relationship between drought
and fire in Indonesia, we considered two different precip-
itation data sets and two soil moisture models, all of which
have global coverage and monthly temporal resolution. The
NCEP Precipitation over Land (PRECL) data set [Chen et
al., 2002] was the simplest data set considered, consisting of
rain gauge only measurements interpolated onto a 2.5� �
2.5� grid. The Global Precipitation Climatology Project
(GPCP) data set [Adler et al., 2003] uses gauge data, but
also incorporates infrared and microwave satellite retrievals.
The incorporation of satellite data was warranted for inclu-
sion in this analysis given the sparse rain gauge coverage
over much of Indonesia. To distinguish between single
months with anomalously low precipitation and persistent
seasonal drought, precipitation totals for up to 6 months
prior were considered as individual drought indices.
[13] Given the significant contribution of peat burning to

emissions, we also examined output from two soil moisture
models as predictor variables. The National Centre for
Environmental Prediction Global Soil Moisture (SOILM)
data set of Fan and van den Dool [2004] is based on a
simple single bucket moisture model. Although the data are
available globally, model parameters are based on field
studies in the U.S. Great Plains, and currently with no
parameter variation across soil or land cover types. As
input, the model uses the monthly precipitation data from
PRECL, and surface air temperature data from the NCEP-
NCAR reanalysis [Kalnay et al., 1996]. Data are distributed
at a 0.5 by 0.5 spatial resolution, but have an effective
resolution of 2.5� � 2.5� corresponding to that of the
PRECL data set.
[14] The Palmer Drought Severity Index (PDSI) comput-

ed globally by Dai et al. [2004] was also considered. Like
the SOILM model, the PDSI was designed mainly for
agricultural applications in the U.S., to measure the cumu-
lative departure in moisture supply and loss at the surface,
but has been applied in numerous other applications, includ-
ing historical forest fire and climate analyses [Westerling
et al., 2002; Hessl et al., 2004]. It is an anomaly based
index, in that local climatological means of rainfall are
included as moisture parameters, and is cumulative, with
the current month’s PDSI a function of the current
month’s weather and last month’s PDSI.
[15] The PDSI uses a two-layer soil model, and unlike the

SOILM model, does distinguish between the water holding
capacity of different soil types. PDSI values are on a
standardized scale, with a minimum of �10 corresponding
to severe moisture deficit and a maximum of +10 cor-
responding to a moisture surplus. The technical details of
the PDSI are described by Ntale and Gan [2003]. Unlike the
SOILM model, the PDSI has undergone some validation
against field data outside of the U.S., showing strong corre-
lation with measured soil moisture in southern China and
streamflow in Brazil and the Congo, particularly compared
with raw rainfall measurements [Dai et al., 2004].
[16] In total, 18 predictor variables were considered,

including the 1- to 6-month back totals for each of the
precipitation indices.

2.3. Threshold Estimation

[17] Although there is a regular wet and dry season cycle
driven by the Asian-Australian monsoon, it is only during

anomalously dry years that fires are a serious problem. Field
et al. [2004] showed this to be the case over the period from
1994 to 1999, when there were severe haze events during
the dry seasons of the 1994 and 1997 El Niño years, but a
near absence of haze events during the other non El Niño
years. Their analysis showed that the absence of haze during
non El Niño years corresponded to a moisture threshold
above which conditions are too wet to support extensive
biomass burning and haze.
[18] Presumably, this threshold corresponds to a moisture

threshold in vegetation and organic soil, which is supported
by experimental data. Frandsen [1997] found this to be the
case in a series of experimental burns for different organic
soils across North America, showing that the probability of
ignition increases below a moisture content of 120% for the
majority of soil types, and with a higher threshold for soil
types with a higher inorganic content. In Indonesia, de
Groot et al. [2005] showed that dead ‘‘alang-alang’’ grass,
a key surface fuel type leading to subsurface fires, had a
moisture content ignition threshold of 27.8%. Moisture
content in Indonesian peatlands will begin to decrease when
the groundwater level falls below the surface and the peat is
exposed to unsaturated air.
[19] Piecewise regression was used to estimate the rela-

tionship between drought and emissions in such a way as to
explicitly include an estimate of drought threshold. The
model consists of two linear segments, constrained to be
equal at an unknown change point which is interpreted as
the threshold value in this context. Using the formulation of
Toms and Lesperance [2003], the model is given by

f xð Þ ¼ b0 þ b1x; x � a
b0 þ b1xþ b2 x� að Þ; x > a

�
ð1Þ

where a is the change point to be estimated, b1 is the slope
of the line below the change point and b1 + b2 is the slope
of the second line, x is a given predictor variable, and f (x) is
the emissions. This formulation constrains continuity
between the two model sections at a, which provides a
less ambiguous threshold estimate than the curvature-based
approach of Field et al. [2004]. The model was estimated
through straightforward use of nonlinear fitting routines.
For a comparison to Fuller and Murphy [2006], basic log-
transformed relationships were also considered for each
variable and analysis region, which implicitly models the
drought-emissions relationship in a nonlinear fashion.
Drought-emissions relationships were examined individu-
ally for each subregion region identified through the
principal component analysis, rather than the analysis of
Field et al. [2004] or Dymond et al. [2005], who aggregated
data across all of Sumatra and Kalimantan, and Fuller and
Murphy [2006], who focused on the entire Indonesian
archipelago.
[20] Ultimately, we wished to identify the moisture index

which best predicted serious emissions episodes, and which
separated severe drought from normal conditions. The
performance of different models and predictor variables
was evaluated using the coefficient of determination (R2).
To estimate a confidence interval for R2 and threshold
statistics, we used a fully nonparametric bootstrapping
approach [Efron and Tibshirani, 1993]. Using this method,
the random samples of pairs (xi, yi) are drawn with replace-
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ment from the original sample, rather than resampling the
residuals, which is more sensitive to the underlying distri-
bution of error terms. The change point function (1) was fit
to each random sample, yielding a distribution of R2 and â
estimates for each model. 95% confidence intervals for the
estimates were obtained from the 2.5th and 97.5th percen-
tiles of the bootstrapped distributions. For each moisture
index and region, a total of 1000 resamples were drawn.

3. Results

3.1. Emissions Characteristics

[21] Figure 1 shows the mean annual C emissions across
all of Indonesia, during the 1997–2006 period, calculated
from the GFED data set [van der Werf et al., 2006]. The

spatial principal component analysis yielded five main
regions where C emissions tended to covary (Figure 2)
within the entire Indonesian region (EQSA, for equatorial
Southeast Asia): central Sumatra (CSUM), southern Sumatra
(SSUM), southern Kalimantan (SKAL), eastern Kalimantan
(EKAL) and Papua (PAP). Figure 2a shows the spatial
loadings of the first EOF, which is a dominant mode of
burning during the southeast monsoon dry season, and
coincides with the primary precipitation zone of Aldrian
and Susanto [2003]. Figure 2b shows the second EOF, which
mainly reflects the early 1998 burning in EKAL. Figure 2b
shows the third EOF, which is dominated by early season
burning in 2002, 2005, and 2006 in CSUM. The first three
EOFs explain 59%, 12%, and 10% of the variability in C
emissions, respectively.

Figure 1. Mean annual C emissions (Tg), 1997–2006, and the five burning regions considered within
the EQSA domain. Regional names do not correspond to province names.

Figure 2. (a) First, (b) second, and (c) third EOF patterns of C emissions.
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[22] C emissions in each region were marked by large
interannual differences (Figure 3). The 1997 event was by
far the biggest during the analysis period, with 960 Tg
emitted across all analysis regions during the burning from
June through November. Of the total emissions during
this event, 50% came from SKAL, 24% from PAP, and
18% from SSUM, with minor contributions from CSUM
and EKAL. The 1998 episode lasted from February until
April; 96% of the 231 Tg total emissions was from
EKAL, with minor contributions from CSUM. The period
from 1999 to 2001 was characterized by only minor
emissions totaling 104 Tg over the 3 years, marked only
by a 35 Tg event in SKAL during June to September
2001. This was followed by emissions of 212 Tg in
2002, which occurred during two isolated episodes: a
49 Tg event during February and March restricted entirely
to the CSUM region, followed by a 153 Tg event from
August to November in SKAL.
[23] Similar to the previous year, there were smaller

isolated events in 2003: 19 Tg during June in CSUM and

32 Tg in SKAL from June until September. Emissions in
2004 were dominated by a 62 Tg event from August until
November in SKAL, preceded by 13 Tg of emissions in
CSUM during June. In 2005, there was a large 130Tg event
in CSUM from January until March, with a near absence of
fire in other regions.
[24] In 2006, there were 25 Tg of emissions in CSUM

during February and March, but burning was dominated by
the 274 Tg of emissions from August to November in
SKAL, over half of which occurred during October. During

Figure 3. (top) Monthly emissions for analysis regions and (bottom) SOI, MEI, Niño3.4, and DMI
indices.

Table 1. Analysis Regions and Abbreviations

Region Abbreviation

Equatorial Southeast Asia EQSA
Central Sumatra CSUM
Southern Sumatra SSUM
Southern Kalimantan SKAL
Eastern Kalimantan EKAL
Papua PAP
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this period, there was also 36 Tg of emissions from CSUM
and 21 Tg of emissions from SSUM. These combined
events led to 2006 being the second-largest emissions year,
after 1997.
[25] Over the analysis period, the SKAL region was the

biggest source of emissions, constituting 39% of emissions
in EQSA during 1997 to 2006, and driving the anoma-
lously high emissions during 1997, 2002, and 2006. The
CSUM region represented the 17% of the emissions,
which often occurred during the first 3 months of a year,
decoupled from the emissions in other regions, such as
SKAL, where burning occurred only in June–November.
The remainder of the total emissions was split evenly
across SSUM (8%), EKAL (12%), and PAP (11%), which
occurred primarily as single large pulses in 1997 and
1998, with only minor contributions at other times. These
five areas together represented 82% of emissions within
the EQSA regions.

3.2. Prediction Across All of Indonesia

[26] Table 1 shows that across the entire EQSA region
and among the 18 predictor variables, the MEI under the
piecewise model was the best climate-based predictor, with
R2 = 0.43, but the performance of the DMI was comparable
with R2 = 0.40, hence SST variability is a better predictor
than SLP variability. Indeed, the SST indices are more
robust climate indicators, being spatially integrated over a
broad region, compared to the SOI which is based on the
SLP variations at two individual sites. Although a strong
quantitative relationship appears not to exist, a general
correspondence between emissions and SST variability is
apparent from Figure 3. The large 1997 and 1998 events
occurred under exceptionally strong El Niño conditions, as
indicated by the Niño3.4 and MEI and also with an Indian
Ocean Dipole event indicated by the DMI. From the
second half of 1998 until 2001, neutral or La Niña
conditions persisted, during which severe fire occurrence
was absent. The elevated emissions in 2002 and 2006
appeared to occur under El Niño conditions, as indicated
by the MEI. The 2006 event also occurred under positive
DMI conditions.
[27] Improvements in predictability were obtained by

considering drought conditions across EQSA, rather than
the ENSO or DMI indices. The best results were obtained
with the piecewise linear model, under which the
PRECL3 was identified as the best predictor with R2 =
0.79. Figure 4 shows the time series of EQSA C
emissions and PRECL3, with the estimated threshold of
413 mm also plotted. The PRECL2, GPCP and GPCP2
indices yielded comparable levels of predictability, but
with slightly wider confidence intervals. The significant
burning events in the dry seasons of 1997, 2002, and
2006 all occurred below threshold values, with a very
fine separation between these years and the only moder-
ately dry years of 2001 and 2004. The significant EKAL
burning in 1998 occurred under EQSA-wide PRECL3
conditions well above the estimated threshold range,
owing to the highly localized nature of the drought in
EKAL.

Figure 4. EQSA monthly C emissions and PRECL3. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.

Table 2. Regression Summary Statistics for EQSA Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.27 (0.15, 0.40) 0.22 (0.11, 0.41) �0.7 (�1.9, 0.7)
MEI 0.32 (0.19, 0.45) 0.43 (0.20, 0.86) �20 (�2.7, �0.5)
NIÑO34 0.28 (0.14, 0.41) 0.33 (0.15, 0.72) �1.2 (�2.9, 0.2)
DMI 0.09 (0.01, 0.23) 0.40 (0.12, 0.78) �0.3 (�1.1, �0.1)

GPCP 0.52 (0.37, 0.65) 0.78 (0.31, 0.92) 109 (92, 128)
GPCP2 0.47 (0.32, 0.60) 0.81 (0.27, 0.94) 203 (169, 207)
GPCP3 0.41 (0.27, 0.53) 0.54 (0.26, 0.86) 437 (295, 527)
GPCP4 0.31 (0.18, 0.45) 0.39 (0.21, 0.82) 626 (481, 794)
GPCP5 0.27 (0.14, 0.41) 0.37 (0.15, 0.76) 734 (480, 978)
GPCP6 0.24 (0.12, 0.38) 0.35 (0.17, 0.69) 916 (631, 1027)
PRECL 0.50 (0.36, 0.63) 0.49 (0.25, 0.84) 142 (103, 168)
PRECL2 0.42 (0.28, 0.55) 0.81 (0.23, 0.94) 257 (244, 265)
PRECL3 0.35 (0.21, 0.50) 0.79 (0.34, 0.90) 413 (379, 456)
PRECL4 0.25 (0.12, 0.39) 0.20 (0.10, 0.30) NA
PRECL5 0.19 (0.08, 0.32) 0.49 (0.14, 0.85) 784 (609, 883)
PRECL6 0.15 (0.05, 0.27) 0.37 (0.12, 0.77) 980 (786, 1099)
SOILM 0.32 (0.19, 0.46) 0.60 (0.22, 0.88) 343 (307, 364)
PDSI 0.31 (0.18, 0.46) 0.28 (0.15, 0.52) �2 (�2, �1)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals. NA, not available.
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3.3. Subregional Prediction

[28] The results for the subregional analyses are listed in
Tables 2–7. In CSUM, none of the climate indices showed
any well-constrained predictive power under either of the
log linear or piecewise models (Table 3). The best
performing drought predictor was GPCP2 under a log
linear model, with R2 = 0.39. The precipitation predictors
were similar to the EQSA region in that predictability
decreased as the precipitation back totaling periods in-
creased beyond 2 months, suggesting a shorter drought
memory with respect to biomass burning emissions. For
CSUM, the best piecewise predictor was GPCP2 with an
R2 of 0.22, and so the piecewise model offered no
improvement over the log linear model, nor did the PDSI
or SOILM indices. The GPCP2 and C emissions for

CSUM are shown in Figure 5 along with the estimated
threshold range. Although the piecewise model provided
less predictability over CSUM than the EQSA region, the
3 most significant emissions episodes in 1997, early 2002,
and early 2005 did occur under GPCP2 conditions below
the lower estimated confidence limit of 317 mm, sug-
gesting some correspondence, albeit more complicated,
between precipitation and C emissions.
[29] In contrast to CSUM, the predictability for the

SSUM region improved compared to the whole EQSA
region (Table 4). The best log linear predictors were the
GPCP2 and GPCP3 variables, and again, the predictabil-
ity for both rainfall-based totals decreased with a longer
back totaling period. The fitted piecewise models had
higher R2 values, but as in the case for EQSA, were less

Table 3. Regression Summary Statistics for CSUM Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.04 (0.00, 0.14) 0.23 (0.00, 0.62) �5.7 (�5.8, �5.6)
MEI 0.02 (0.00, 0.09) 0.02 (0.00, 0.07) �0.7 (�3.2, 2.6)
NIÑO34 0.00 (0.00, 0.04) 0.04 (0.01, 0.08) �0.3 (�0.6, 0.7)
DMI 0.01 (0.00, 0.05) 0.06 (0.00, 0.57) 0.5 (�0.2, 3.1)

GPCP 0.35 (0.23, 0.48) 0.19 (0.10, 0.41) 221 (136, 286)
GPCP2 0.39 (0.23, 0.53) 0.22 (0.10, 0.45) 431 (317, 567)
GPCP3 0.29 (0.16, 0.43) 0.11 (0.03, 0.26) 782 (535, 1076)
GPCP4 0.17 (0.06, 0.30) 0.03 (0.00, 0.09) 772 (288, 2385)
GPCP5 0.09 (0.02, 0.20) 0.01 (0.00, 0.05) 1085 (708, 2307)
GPCP6 0.06 (0.01, 0.15) 0.02 (0.00, 0.06) 1300 (1047, 1879)
PRECL 0.27 (0.15, 0.42) 0.07 (0.02, 0.19) 122 (�144, 487)
PRECL2 0.20 (0.09, 0.34) 0.06 (0.01,0.14) 371 (117, 927)
PRECL3 0.12 (0.04, 0.23) 0.03 (0.01, 0.08) 687 (591, 1044)
PRECL4 0.04 (0.00, 0.14) 0.00 (0.00, 0.03) NA
PRECL5 0.01 (0.00, 0.07) 0.01 (0.00, 0.07) 1150 (719, 1848)
PRECL6 0.00 (0.00, 0.03) 0.00 (0.00, 0.03) NA
SOILM 0.01 (0.00, 0.06) 0.01 (0.00, 0.04) NA
PDSI 0.06 (0.01, 0.13) 0.07 (0.03, 0.13) �3 (�5, �2)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals. NA, not available.

Table 4. Regression Summary Statistics for SSUM Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.14 (0.05, 0.27) 0.07 (0.02, 0.23) �0.2 (�2.1, 3.3)
MEI 0.24 (0.09, 0.41) 0.31 (0.08, 0.97) �1.2 (�2.7, �0.3)
NIÑO34 0.24 (0.08, 0.40) 0.35 (0.09, 0.96) �1.5 (�2.8, �1)
DMI 0.21 (0.06, 0.39) 0.50 (0.17, 0.99) �0.6 (�1.5, �0.2)

GPCP 0.47 (0.30, 0.61) 0.84 (0.09, 0.99) 62 (36, 73)
GPCP2 0.64 (0.46, 0.76) 0.93 (0.17, 0.99) 121 (108, 168)
GPCP3 0.65 (0.46, 0.77) 0.94 (0.31, 1.00) 223 (179, 290)
GPCP4 0.59 (0.43, 0.72) 0.97 (0.64, 1.00) 317 (290, 361)
GPCP5 0.52 (0.36, 0.66) 0.83 (0.21, 0.99) 468 (358, 564)
GPCP6 0.46 (0.30, 0.60) 0.58 (0.16, 0.99) 734 (392, 858)
PRECL 0.47 (0.33, 0.60) 0.97 (0.12, 1.00) 22 (22, 25)
PRECL2 0.59 (0.41, 0.72) 0.94 (0.19, 0.99) 75 (64, 101)
PRECL3 0.57 (0.39, 0.71) 0.92 (0.35, 1.00) 170 (118, 267)
PRECL4 0.51 (0.34, 0.64) 0.95 (0.61, 1.00) 240 (187, 363)
PRECL5 0.42 (0.26, 0.57) 0.73 (0.33, 0.99) 466 (251, 578)
PRECL6 0.34 (0.18, 0.49) 0.41 (0.11, 0.98) 774 (458, 983)
SOILM 0.61 (0.43, 0.74) 0.92 (0.22, 1.00) 440 (401, 486)
PDSI 0.15 (0.04, 0.30) 0.09 (0.02, 0.19) 4 (4, 4)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals.

Table 5. Regression Summary Statistics for SKAL Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.08 (0.01, 0.19) 0.10 (0.05, 0.18) �3.1 (�3.4, �2.6)
MEI 0.16 (0.05, 0.30) 0.18 (0.04, 0.67) �0.1 (�2.7, 2)
NIÑO34 0.19 (0.08, 0.33) 0.23 (0.06, 0.55) �0.3 (�1.8, 1.4)
DMI 0.16 (0.04, 0.31) 0.44 (0.20, 0.76) �0.2 (�0.8, 0.1)

GPCP 0.38 (0.23, 0.53) 0.20 (0.11, 0.31) 603 (603, 603)
GPCP2 0.58 (0.43, 0.70) 0.63 (0.36, 0.92) 306 (160, 356)
GPCP3 0.70 (0.57, 0.80) 0.88 (0.75, 0.97) 411 (275, 465)
GPCP4 0.67 (0.55, 0.77) 0.92 (0.74, 0.98) 595 (472, 656)
GPCP5 0.56 (0.41, 0.68) 0.69 (0.44, 0.91) 882 (688, 1121)
GPCP6 0.42 (0.27, 0.55) 0.47 (0.25, 0.78) 1281 (978,1573)
PRECL 0.52 (0.40, 0.63) 0.40 (0.25, 0.63) 119 (66, 162)
PRECL2 0.66 (0.55, 0.74) 0.61 (0.42, 0.92) 186 (69, 282)
PRECL3 0.67 (0.56, 0.77) 0.71 (0.50, 0.92) 275 (219, 365)
PRECL4 0.59 (0.46, 0.70) 0.69 (0.49, 0.90) 427 (278, 502)
PRECL5 0.49 (0.35, 0.61) 0.27 (0.17, 0.37) NA
PRECL6 0.38 (0.25, 0.52) 0.23 (0.13, 0.34) NA
SOILM 0.69 (0.57, 0.77) 0.70 (0.50, 0.91) 488 (418, 519)
PDSI 0.14 (0.04, 0.26) 0.10 (0.03, 0.19) �4 (�18, 12)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals. NA, not available.

Table 6. Regression Summary Statistics for EKAL Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.24 (0.08, 0.43) 0.35 (0.08, 0.99) �2.1 (�3.3, �0.4)
MEI 0.40 (0.20, 0.55) 0.46 (0.23, 1.00) �2.2 (�2.7, �1.6)
NIÑO34 0.27 (0.12, 0.41) 0.08 (0.02, 0.22) 7.7 (7.7, 7.7)
DMI 0.10 (0.02, 0.26) 0.01 (0.00, 0.18) �0.5 (�3.7, 2.3)

GPCP 0.43 (0.28, 0.56) 0.34 (0.03, 0.96) 84 (21, 106)
GPCP2 0.60 (0.47, 0.71) 0.58 (0.12, 1.00) 171 (81, 293)
GPCP3 0.61 (0.48, 0.71) 0.46 (0.08, 1.00) 298 (193, 573)
GPCP4 0.55 (0.42, 0.66) 0.22 (0.07, 0.85) 637 (375, 826)
GPCP5 0.47 (0.30, 0.60) 0.20 (0.08, 0.72) 833 (597, 1010)
GPCP6 0.41 (0.24, 0.56) 0.28 (0.12, 0.87) 956 (728, 1085)
PRECL 0.29 (0.15, 0.43) 0.02 (0.00, 0.10) NA
PRECL2 0.37 (0.23, 0.52) 0.02 (0.01, 0.30) 252 (�23, 906)
PRECL3 0.35 (0.22, 0.51) 0.02 (0.00, 0.14) 467 (NA)
PRECL4 0.31 (0.19, 0.47) 0.02 (0.00, 0.11) 721 (NA)
PRECL5 0.28 (0.16, 0.44) 0.01 (0.00, 0.14) 1487 (905, 1911)
PRECL6 0.28 (0.15, 0.42) 0.03 (0.01, 0.10) NA
SOILM 0.55 (0.40,0.67) 0.27 (0.06, 0.91) 519 (428, 575)
PDSI 0.32 (0.11, 0.54) 0.52 (0.07, 1.00) �5 (�6, �3)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals. NA, not available.
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well constrained than under the simpler log linear model.
The exception was for the GPCP4 predictor, which had a
high and well-constrained R2 of 0.97. The threshold
estimate for this predictor was 317 mm, above which
severe burning was largely absent (Figure 6). In SSUM,
the SOILM performed substantially better than the PDSI
for both the log linear and piecewise models, whereas in
CSUM and EQSA the results were poor for both soil
moisture models.
[30] The biggest gains in predictability for a subregional

analysis were for the SKAL region (Table 5), the largest
region in terms of area and total emissions. The best overall
predictor was GPCP4, which had a well-constrained R2 of
0.92 under the piecewise model. The GPCP3 performed
comparably, with an R2 of 0.88. The fitted model in this
case performs well in capturing the 208 Tg of emissions
in September 1997, the single largest emissions month

across all regions (Figure 7). The estimated GPCP4
threshold of 595 mm does an excellent job in distinguish-
ing severe haze months, and the magnitude of this index
corresponds to that of the emissions for the 1997, 2002,
and 2006 periods. Over SKAL, the precipitation-based
variables performed significantly better than any of the
ENSO-based indices, the best of which was the DMI with
an R2 of 0.44. Like in SSUM, the SOILM model out-
performed the PDSI, showing potential usefulness on a
limited regional basis.
[31] For reference, Figure 8 shows the fitted piecewise

and log linear models for GPCP4, showing the advantage of
the former’s threshold-based approach. Under the log linear
model, the gradual increase in C emissions with decreasing
precipitation gives no impression of a distinction between
severe and nonsevere burning periods. Converesly, this
distinction is explicit under the piecewise model below a
GPCP4 threshold of 595 mm. The linear segment above
the threshold more appropriately captures the lack of
variability in C emissions above the threshold, whereas
this variability is inflated under the log linear model,
leading to its weaker fit.
[32] In EKAL, the GPCP2 and GPCP3 under a log

linear model were the best predictors, with R2 = 0.60
and R2 = 0.61, respectively (Table 6). Values under the
piecewise model were lower and had higher uncertainty,
with a maximum R2 of 0.58 for the GPCP2 index and a
corresponding threshold estimate of 171 mm. The thresh-
old estimate does, however, distinguish between the burn-
ing and nonburning periods (Figure 9), although not
between magnitudes of the 1997 burning and the much
larger 1998 burning. In PAP, the GPCP5 index was the
best log linear predictor with an R2 of 0.35, but generally
low compared to other regions (Table 7). The GPCP6
under the piecewise model had a somewhat constrained
R2 of 0.91 corresponding to a threshold of 803 mm
(Figure 10). The piecewise estimates for EKAL and
PAP were unique in that, whereas the PRECL R2 esti-
mates were all near 0, the best GPCP estimates indicated
some level of predictability under the piecewise model,

Figure 5. CSUM monthly C emissions and GPCP2. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.

Table 7. Regression Summary Statistics for PAP Regiona

Log Linear R2 Piecewise R2 Piecewise a

SOI 0.05 (0.00, 0.19) 0.06 (0.02, 0.15) 64.4 (64.4, 64.4)
MEI 0.22 (0.05, 0.40) 0.35 (0.10, 1.00) �1.2 (�2.7, �0.7)
NIÑO34 0.21 (0.05, 0.39) 0.34 (0.13, 1.00) �1.5 (�2.8, �0.8)
DMI 0.22 (0.05, 0.41) 0.47 (0.04, 1.00) �0.9 (�1.5, �0.1)

GPCP 0.11 (0.01, 0.26) 0.52 (0.02, 1.00) 55 (29, 83)
GPCP2 0.18 (0.05, 0.35) 0.91 (0.05, 1.00) 122 (103, 156)
GPCP3 0.29 (0.13, 0.46) 0.93 (0.12, 1.00) 285 (254, 337)
GPCP4 0.32 (0.17, 0.50) 0.96 (0.13, 1.00) 322 (279, 333)
GPCP5 0.35 (0.18, 0.54) 0.99 (0.12, 1.00) 531 (503, 536)
GPCP6 0.32 (0.14, 0.52) 0.91 (0.39, 1.00) 803 (564, 905)
PRECL 0.15 (0.04, 0.29) 0.03 (0.01, 0.08) NA
PRECL2 0.20 (0.08, 0.34) 0.04 (0.01, 0.11) NA
PRECL3 0.25 (0.12, 0.40) 0.04 (0.02, 0.22) NA
PRECL4 0.26 (0.13, 0.42) 0.04 (0.02, 0.10) NA
PRECL5 0.25 (0.11, 0.42) 0.04 (0.02, 0.10) NA
PRECL6 0.22 (0.08, 0.39) 0.04 (0.01, 0.10) NA
SOILM 0.24 (0.11, 0.39) 0.04 (0.01, 0.09) NA
PDSI 0.06 (0.01, 0.15) 0.01 (0.00, 0.03) �51 (�99, 55)

aR2 values for log linear fit, R2 values for piecewise fit, threshold
estimate a for piecewise fit. Values in parentheses indicate bootstrap-
derived 95% confidence intervals. NA, not available.
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albeit with considerable uncertainty. This can likely be
explained by the scarcity of ground-based stations in both
regions in the PRECL data set, and hence, the improve-
ment yielded by the incorporation of satellite data, similar
to the SKAL region.

4. Discussion

4.1. Summary of Drought-Fire Predictability

[33] The rainfall-based indices performed significantly
better across all regions than the SST-based predictors,
and in some cases could explain a large proportion of the
variance in C emissions. Across the entire EQSA analysis
domain, the gauge-based PRECL and hybrid gauge-satellite
GPCP indices had comparable performance. The station
density across this large area appears sufficient to warrant
use of a gauge-based index only, although there was no
disadvantage in the inclusion of satellite-based data. In the
case of both the PRECL and GPCP, the predictability of C
using a spatial precipitation average over such a large area

was surprisingly good, given the heterogeneity in precip-
itation seasonality between regions, the inclusion of
regions largely absent of fire such as Sulawesi and Java,
and in the case of the GPCP, the inclusion of nonland
regions.
[34] In SSUM, the incorporation of satellite data provided

only small advantages over the PRECL indices, perhaps
reflecting a more even station distribution or greater proxim-
ity of stations to burning regions. For the SKAL subregion,
the incorporation of satellite data into the GPCP yielded
significant improvements in C emissions predictability. This
was also the case in EKAL and PAP under the log linear
models where the GPCP R2 values were consistently higher
than for the PRECL indices.
[35] In none of the regions did the SOILM model perform

better than the rainfall indices, and the PDSI consistently
had no power in predicting C emissions. The PDSI per-
formed poorly due to the fact that it is an anomaly based
index, reflecting departures from normal precipitation
levels. Fuel moisture, conversely, is controlled by absolute

Figure 7. SKAL monthly C emissions and GPCP4. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.

Figure 6. SSUM monthly C emissions and GPCP4. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.
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precipitation amounts. In Indonesia, even during a wet
season with anomalously low precipitation, there is still
sufficient precipitation to saturate peat soils, an effect
which is not captured by the PDSI. To confirm this, we
repeated all regressions using PRECL and GPCP monthly
total anomalies, and found that their performance was
uniformly poorer than the regressions for the absolute
precipitation totals.
[36] Fire occurrence in CSUM, and to some extent

EKAL, proved more difficult to predict, which was similar
to the results of van der Werf et al. [2008]. In their study,
cell-by-cell correlations were computed between TRMM
hot spot occurrence and a seasonal fire danger index for
1998 to 2006. Strong positive correlations were observed
between hot spot counts and fire danger in the SSUM and
SKAL regions, but were absent or weakly negative in
CSUM and EKAL. We note that both the CSUM and
EKAL fall outside of Indonesia’s primary rainfall region,
as defined by Aldrian and Susanto [2003], who showed that
both regions experience two shorter dry seasons, due to the
twice annual absence of the ITCZ. This is seen most clearly
in the GPCP2 signal for CSUM (Figure 5), which exhibits a

second mode of higher frequency variability not seen in
other regions. In EKAL (Figure 9), the early 1998 drought
was unique compared to other regions where normal north-
west monsoon precipitation was present, confirming the
results of Field et al. [2004].
[37] In contrast, a more pronounced single dry season

occurs across SSUM and SKAL when the Intertropical
Convergence Zone (ITCZ) is positioned to the north. The
lack of fire predictability over CSUM could partly be
explained by the lack of a single persistent dry season to
more narrowly restrict agricultural burning activities.
Other nonclimatic factors such as differences in peat
drainage are also potential explanations which require
further investigation.
[38] Overall, in wanting to identify a single common

index, we suggest that the GPCP4 is appropriate for SSUM
and SKAL, where predictability was robust. In the case of
SSUM, a 4-month rainfall total of less than 350 mm would
indicate the potential for serious haze, as would a 4-month
precipitation total of less than 650 mm in SKAL. In PAP,
serious haze occurred only in 1997 and was associated with
a rainfall threshold of 900 mm.

Figure 9. EKAL monthly C emissions and GPCP2. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.

Figure 8. (left) Log linear and (right) piecewise fits for SKAL with GPCP4 predictor.
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[39] The predictability of fire obtained in this analysis is
stronger than previous studies of Indonesia and comparable
regions. Over all of Indonesia, the predictability of C
emissions from the SOI and Niño3.4 was limited, consistent
with the results of Fuller and Murphy [2006]. During their

analysis period of July 1996 to December 2001, the R2 of
the log linear relationship was R2 = 0.46 for both the SOI
and Niño3.4 for predicting C emissions, nearly identical to
their R2 for counts of ATSR hot spot and the SOI (R2 =
0.46) and Niño3.4 (R2 = 0.49). This is unsurprising given

Figure 11. (top) Groundwater levels near Palangka Raya, central Kalimantan from Usup et al. [2004]
with GFED C emissions from SKAL. (bottom) GPCP4 totals over SKAL.

Figure 10. PAP monthly C emissions and GPCP6. The solid horizontal line is the threshold estimate,
and the dashed lines are 95% confidence intervals.
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that GFED data is based in large part on ATSR fire counts.
During the 1997–2006 period considered in our study,
however, the SOI and Niño3.4 had R2 values of 0.27 and
0.28, respectively, both with considerable uncertainty. The
Fuller and Murphy result was applicable, as suggested by
them, only to the strong 1997/1998 El Niño cycle and
subsequent few years.
[40] For peatlands in western Canada, Turetsky et al.

[2004] showed that large fires occurred under warmer and
drier conditions, but that a series of climatic indices under a
multivariate statistical model could only explain 9% of the
variation in fire size. For their more intensive study region
in central Alberta, a maximum of 40% of the variability in
fire size could be explained by climatic factors. Dolling et
al. [2005] showed that over the Hawaiian islands, the
maximum predictability across all islands using the
Keetch-Byram Drought Index was 18% for both burned
area and for total number of fires. We propose that the
stronger predictability in Indonesia is due to fire being
strictly human caused. In temperate regions, fire manage-
ment agencies are heavily invested in fire prevention and
suppression programs, which under drought conditions will
help to limit the number and size of fires. Furthermore, a
large proportion of ignitions are caused by lightning, which
occurs irregularly and not necessarily in drought regions. In
Indonesia, by contrast, burning is relied upon as a land
clearing tool and will likely occur whenever conditions are
sufficiently dry.

4.2. Precipitation Controls on Peat Fuel Availability

[41] Previous studies have shown that the majority of
emissions in Indonesia result from peat burning, and not
from surface fuel burning [Levine, 1999; Page et al., 2002].
While the fuel moisture of dead alang-alang grass and
agricultural residues will be influenced by precipitation,
fires in these fuel types are important mainly in providing
an ignition source for fires which spread below into peat.
[42] Physically, the seasonal precipitation considered here

controls water table depth, which controls the amount of
peat able to dry, and hence the fuel available for combus-
tion. There are no comprehensive field observations of
water table depth across Indonesia, but some field data
have been collected. Usup et al. [2004] monitored water
table depth from 1993 to September 2002 for a peat swamp
in Central Kalimantan within our SKAL domain. Figure 11
shows the monthly groundwater level (GWL) at their study
site, GFED C emissions for SKAL, and GPCP4 total for the
1993–2002 period and the 1997 drought. On average over
the 1993–2002 period, groundwater levels reached an
annual minimum of 35 cm below the surface in September,
slowly recovering to surface levels during the remainder of
the year. The situation in 1997 was much different. Begin-
ning in June, groundwater levels began to depart from
climatological levels, but were only 10 cm below normal
levels for June and July. This difference widened in August,
with groundwater level of 53 cm, twice the normal depth, at
which time the severe burning started. Groundwater levels
continued to decrease through September (70 cm), reaching
a minimum in October of 85 cm, compared to a climato-
logical average of 28 cm. September and October were also
when C emissions were most severe. Groundwater levels
began to slowly recover in November, reaching a depth of

30 cm in December, at which point burning had stopped.
Postfire measurements in the same region made by Page et
al. [2002] showed a mean depth of burn of 50 cm during
1997, presumably the depth to which sufficient drying had
occurred to sustain peat combustion.
[43] The difference between climatological and 1997

groundwater levels is very well captured by the GPCP4
totals over SKAL. On average, the GPCP4 begins to
decrease in May, and reaches a minimum of 677 mm in
September, increasing through the remainder of the year to
1144 mm in December. In 1997, the GPCP4 July total of
885 mm was only slightly lower than its climatological
normal, but dropped sharply to 502 mm in August, well
below the estimated threshold of 595 mm. This decrease
continued into September, during which only 33 mm of
precipitation occurred, and remained low through October
at 265 mm, slowly recovering through November, and
crossing above the threshold in December with the delayed
arrival of the northwest monsoon. We note that the 1997
groundwater levels are nearly perfectly correlated with the
GPCP4 (R2 = 0.93), much greater than with the single
month GPCP (R2 = 0.51), providing physical evidence of
how the variation in back totaled precipitation reflects the
cumulative nature of water table depth on the landscape.
[44] The estimated threshold is also relevant for severe

burning during the 1994 haze episode. The water table at a
site in central Kalimantan near that of Usup et al. [2004]
reached a minimum depth of roughly 75 cm in October and
November of 1994 [Jauhiainen et al., 2005] corresponding
to a 4-month GPCP October total of 239 mm over SKAL.
Although this predates the GFED data, severe fires were
known to occur during this period, generating regional haze
across western Indonesia, Singapore and Peninsular Malay-
sia [Nichol, 1997; Yonemura et al., 2002; Field et al., 2004].
[45] In Sumatra, where GPCP4 was the best predictor, the

lower threshold of 317 mm indicates a less sensitive fire
environment, with severe fire events occurring only during
more severe droughts than in SKAL. It is not immediately
clear why this would be the case, although perhaps the
peatlands have undergone less drainage, which seems less
likely than there simply being less agricultural activity and
consequent burning during the past decade in SSUM
compared to SKAL.
[46] The PAP region also appears to have a less sensitive

fire environment than SKAL, with the longer-term GPCP6
being the best predictor of C emissions, rather than the
GPCP4. PAP’s only severe fire event occurred in 1997,
although climatologically low GPCP6 values also occurred
during the dry seasons of 2002 and 2004. The simplest
explanation is that PAP has undergone less forest degrada-
tion, and so is less subject to severe fires.

4.3. Spatial Drought Patterns and Underlying Sea
Surface Temperature Controls

[47] Although the SST-based predictors did not perform as
well as the precipitation-based indicators, they did offer some
level of predictability of C emissions which varied meridio-
nally across Indonesia. Under the piecewise model, there is
an apparent decrease from west to east in the influence of
Indian Ocean SSTs and an increase in that of Pacific SSTs on
C emissions. Over SSUM the DMI explained 50% of the
variance in C emissions, compared to 35% explained by the
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Niño3.4. Over SKAL, 44% of variance in C emissions is
explained by the DMI, compared to 23% by the Niño3.4. In
EKAL, which is in a separate rainfall zone as defined by
Aldrian and Susanto [2003], theMEI explained 46% of the C
emissions variability, compared to only 1% explained by the
DMI. PAP was similar, where the DMI was not well con-
strained, but the Niño3.4 had a somewhat well-constrained
predictability at 34%.
[48] Any SST control on C emissions occurs via the

former’s control on atmospheric circulation and precipita-
tion over Indonesia. Detailed investigations on these pre-
cipitation controls have been made by others [Saji et al.,
1999; Hendon, 2003; Juneng and Tangang, 2005] and were

beyond the scope of our analysis, but we did wish to
distinguish between the nature of different drought episodes
over Indonesia with respect to seasonal precipitation and
underlying SST patterns.
[49] GPCP4 anomaly maps for October for 1997 through

2006 are shown in Figure 12. The 1997 dry conditions over
Indonesia can be seen as part of a larger region of anom-
alously low precipitation spanning the central eastern Indian
Ocean in the west to the Solomon Islands in the east. This
dry region is bounded by normal precipitation amounts to
the north and south and a strong positive precipitation
anomaly to the east, corresponding to the eastward shifted
position of the Walker circulation’s terminal convective

Figure 12. October GPCP4 totals (mm) for 1997 to 2006.
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branch. The 1997 event illustrates the sharp distinction
between normal and anomalously low regions of precipita-
tion: the pronounced drought conditions seen over Sumatra
and Kalimantan were absent over the Java Sea, the island of
Java, southern Sulawesi and the Lesser Sunda Islands
stretching to East Timor.
[50] In 1998, conditions over Indonesia had reversed,

with a wet precipitation anomaly over Indonesia of roughly
the same absolute magnitude as the dry anomaly in 1997.
Weaker positive precipitation anomalies persisted over the
region in 1999 and 2000, with near-neutral conditions in
2001. During the moderate El Niño conditions of 2002,
there was a moderate dry anomaly over Indonesia which
was most pronounced to the north of Papua, and appearing
only weakly over Sumatra and Kalimantan. The less severe
burning during 2002 was therefore due to relocation of the
drought center, rather than by the actual absence of severe
drought.
[51] Wet-neutral conditions occurred in 2003 and dry-

neutral conditions in 2004, the weaker anomaly cor-
responding to relatively weak El Niño conditions, but also
to the positioning of the main drought center over the South

China Sea rather than western Indonesia. 2005 saw wet-
neutral conditions over central Indonesia, bounded by strong
wet regions to the east and west. The pronounced dry
anomaly of 2006 was closer in nature to that of 1997 but
limited in extent to Kalimantan, Sumatra and the Indian
Ocean between 75E and 100E and 0 to 15S. There is
therefore considerable spatial variability of drought over in
Indonesia, which further explains why subregional predic-
tion of fire occurrence performed better than that across the
entire EQSA region.
[52] The stronger precipitation anomalies in 1997 and

2006 over SSUM and SKAL appear driven by the com-
bined effects of SST anomalies in the Pacific and Indian
Ocean basins. Figure 13 shows global mean SST anomalies
between 1997 and 2006 for October, when the greatest dry
GPCP4 anomalies would occur. The large 1997 El Niño
event is seen clearly, with the strongest eastern Pacific warm
SST anomaly seen during our analysis period. Similar
anomalies but of weaker magnitude were also seen during
2002 and to a lesser extent in 2006.
[53] Common to both 1997 and 2006, but only weakly

present in 2002 and absent during all other years, is a

Figure 13. October SST anomalies (�C) over the Indian and tropical Pacific oceans from 1997 to 2006
[Reynolds et al., 2002].
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negative SST anomaly in the Indian Ocean off of the coasts
of western Sumatra and the southern coast of Java, coupled
with above average SSTs in the western Indian Ocean,
reflected by the elevated DMI values. Saji et al. [1999]
proposed that this pattern induces anomalously low precip-
itation in western Indonesia via the following mechanism.
The cooler than normal SSTs weaken the southeasterly
trades in the southeastern Indian Ocean, shifting equatorial
convergence to the northwest of its normal position in the
Indian Ocean. As a result, the equatorial westerlies in the
Indian Ocean weaken, suppressing heat supply to and
convergence over western Indonesia, and ultimately, con-
tributing to reduced precipitation. This was consistent with
Hendon’s [2003] analysis, which showed that precipitation
over all of Indonesia was negatively correlated with SSTs in
the southeastern Indian Ocean.
[54] This could explain why none of Indian or Pacific

Ocean based indices were individually able to explain
beyond 50% of C emissions variability; each of the
droughts occurred for different reasons. The severity and
large spatial extent of the 1997 drought resulted from
weaker atmospheric flow from both the east from the Pacific
Ocean and from the southwest from the Indian Ocean,
resulting in weaker convergence over all of Indonesia.
The 2002 drought, which was most severe in eastern
Indonesia, was the result of reduced flux from the Pacific
Ocean, whereas the 2006 drought, most pronounced over
western Indonesia, was the result of reduced flux from the
Indian Ocean. The enhanced biomass burning in 2006 over
Indonesia therefore seems less attributable to the moderate
El Niño, and more to the concurrent IOD event. Similarly,
the significant drought and fire in 1994 [Nichol, 1997;
Fujiwara et al., 1999; Yonemura et al., 2002; Field et al.,
2004] occurred under El Niño conditions weaker than in
2002, but under strongly positive DMI conditions [Saji et
al., 1999]. Overall, the Indian Ocean SSTs appear to have a
comparable, if not greater, effect on west Indonesian
drought than Pacific Ocean SSTs.

4.4. Future Drought Conditions

[55] In the absence of peatland restoration and manage-
ment, any future rainfall decrease in Indonesia’s peatland
regions caused by climate change would increase fire
danger and result in increased C emissions. The most acute
risks are posed by an increase in the frequency at which the
seasonal precipitation thresholds estimated here, and hence
peat moisture levels, are crossed. This could be caused by
an increase in higher frequency of El Niño or Indian Ocean
Dipole events, or a decrease in normal condition dry season
precipitation toward below threshold values.
[56] Climate change projections of precipitation over

Indonesia remain inconclusive, but allow for the possibility
of a decrease in certain regions. The IPCC AR4 projections
of precipitation changes over Indonesia showed little agree-
ment between models in the sign of any change, but this
was an examination only DJF and JJA precipitation, where-
as the most critical changes in Indonesia involve a pro-
longed dry season through the SON period. Li et al. [2007]
considered rainfall over western Indonesia during the more
relevant JAS period under the IPCC SRES A1B anthropo-
genic emissions scenario. Rainfall was seen to decrease for
7 of the 11 models considered, particularly south of the

equator, which they translated into an increase in water table
depth and increased evaporative fraction (ratio of latent heat
flux to net evaporation). Such a change in mean state of
Indonesia’s peatland hydrology would increase the suscep-
tibility to deep peat fires and further C emissions.
[57] As shown in Figure 12, the 1997 and 2006 droughts

were most pronounced over the Indian Ocean to the west of
Sumatra and not over the Indonesian islands. We would
argue that any persistent eastward shift in this drought
center, which seems most closely related to IOD events,
represents the greatest possible increase in Indonesian fire
danger.

5. Summary and Conclusions

[58] We have shown that a large portion of the emissions
from biomass burning in Indonesia are controlled by
drought, which is best characterized by simple rainfall totals
as opposed to more complicated soil moisture models or
SST indices. It should come as no surprise that fire
susceptibility in Indonesia is better explained by regional
precipitation than by SST or pressure-based climate indices.
This analysis has helped to quantify the extent to which this
is the case, and will hopefully lead to better operational fire
management planning to reduce future emissions episodes.
Indeed, the effectiveness of SST indices in predicting fire
occurrence is limited by the strength of their control on
regional precipitation, which in turn is the physical under-
lying trigger for the burning through its control of ground-
water levels in Indonesia’s peatlands.
[59] None of the SST-based indices considered here can

individually explain drought occurrence over Indonesia,
which can vary spatially and result from anomalies in either
or both of the Pacific or Indian Ocean basins. Caution
should therefore be exercised when attributing Indonesian
fire and drought events to a single cause such as El Niño.
Other historical studies [Kita et al., 2000;Wang et al., 2004]
attributing fire episodes strictly to El Niño conditions
appear to have oversimplified controlling factors on fire
occurrence; it would be worthwhile revisiting these anal-
yses to determine the relative contributions of SST vari-
ability in the Pacific and Indian oceans to drought and fire
over Indonesia.
[60] Significant improvements were gained in predicting

fire occurrence by considering rainfall within a specific
region, compared to precipitation across all of Indonesia.
Precipitation and drought are too spatially variable over
Indonesia to be meaningfully quantified by a single drought
indicator. For southern Sumatra and southern Kalimantan,
region-specific analysis allowed for the estimation of pre-
cipitation thresholds suitable for distinguishing between
periods of low and high fire danger. A piecewise regression
model provided a means of estimating this threshold objec-
tively, and nonparametric bootstrapping was useful in
providing confidence limits for predictability and threshold
estimates. The piecewise model also allowed us to avoid the
variance-inflating properties of a log linear model and the
unclear physical interpretation of log-transformed C emis-
sions. Precipitation estimates derived from remote sensing
products appear to have an advantage over strictly gauge-
based products in characterizing the threshold-driven nature
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of the fire response to drought, particularly in southern
Kalimantan.
[61] The daily drought indices considered by Sudiana et

al. [2003], Field et al. [2004], and Dymond et al. [2005] are
appropriate, with local calibration, for operational fire
danger monitoring. The monthly precipitation totals con-
sidered here can complement those indices, and provide
more readily interpretable guidelines against which to
interpret seasonal rainfall outlooks provided from statistical
or ensembles of numerical weather prediction model inte-
grations, such as those described by van Oldenborgh et al.
[2005]. Such thresholds can also serve as benchmark
against which to assess possible future reductions in rainfall
during the dry season over Sumatra and Kalimantan under a
changing climate.
[62] This analysis was based on 10 years worth of data,

with only a few periods of severe biomass burning. As in
the work by Fuller and Murphy [2006] and van der Werf et
al. [2008], this made the robustness of our estimates
difficult to assess, and resulted in wide confidence intervals
for most R2 values under the piecewise model. Every effort
should be made to extend the fire occurrence record back in
time, perhaps by incorporating AVHRR data, following
Sudiana et al. [2003]. In the future, we hope to extend this
type of analysis to the 1970s using observations of visible
range at airports, which were used as a haze indicator by
Wang et al. [2004] over Sumatra from 1973 to 2003. The
start of this period coincided with that of Indonesia’s official
transmigration policies and increased development in the
fire prone areas of Sumatra and Kalimantan [Fearnside,
1997], and could help to separate the influence of natural
interannual rainfall variability from anthropogenic land
cover disturbance, and to further constrain estimates of
predictability and drought thresholds. Further to this, the
threshold-driven nature of severe burning needs to be
considered in the context of possible positive feedbacks
between deforestation, precipitation and fire [Siegert et al.,
2001; Cochrane, 2003; Hoffmann et al., 2003], and between
black carbon emissions, increases in atmospheric stability
and reduced precipitation [Koren et al., 2004; Liu, 2005].
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