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Abstract—In this paper, we propose an optimal power flow
(OPF) paradigm for hybrid AC/DC microgrids. A meticulous
model of the interlinking converter (IC) is developed and inte-
grated into the OPF problem formulation. The resulting formu-
lation is capable of solving OPF of AC and DC subgrids in their
standalone operations. A computationally-efficient parabolic re-
laxation method transforms the non-convex OPF model into a
convex quadratic-constrained quadratic programming form. A
sequential penalization method is applied to the relaxed OPF to
achieve feasible solutions for the original formulation. Lastly,
a modified IEEE 14-bus system is emulated in a real-time
hardware-in-the-loop setup to validate the proposed framework
with continuously-varying loads and IC switching status.

Index Terms—AC/DC microgrids, Convex optimization, Op-
timal power flow, Parabolic relaxation, Sequential penalization.

I. INTRODUCTION

AC/DC microgrids are frequently used in electrification
of remote areas, shipboard power systems, electrified

transportation fleets, and more-electric aircraft. Compared to
standalone AC or DC microgrids, a hybrid microgrid has fewer
power conversion stages as energy storage units, renewable
sources, and power electronics converters can be directly
integrated into the DC subgrid, and synchronous machines
and power electronics inverters into the AC subgrid. The two
subgrids are interconnected using bidirectional interlinking
converters (ICs) [1]. This paper reexamines the classical non-
convex optimal power flow (OPF) problem to minimize the
generation cost subject to physical constraints for a hybrid
AC/DC microgrid. Interior-point methods can solve the OPF
problems in AC power systems [2], but they may fail to
converge or end up at a local optimum [3]. On the other
hand, convex relaxation methods, such as semidefinite pro-
gramming (SDP) [4] and second-order conic programming
(SOCP) [5], [6] methods have gained considerable attention
in the past decade. These methods rely on lifting the variables
of the OPF problem to higher dimensions and relax them
to convexify the original problem [7], [8]. In AC systems,
SDP and SOCP relaxations guarantee the exact solution under
certain conditions, e.g., sufficient virtual phase-shifters [9],
[10], weakly-cyclic networks [11], or radial networks when
lower bounds on generation are disregarded [12], [13]. SDP
and SOCP relaxation techniques are extended to DC systems
in [14], [15].
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Proper modeling of ICs maintains accurate active power
balance and voltage relation between its AC and DC terminals.
The interior-point method in [16] incorporates IC losses into
the formulation of the objective function. The SDP-relaxed
OPF in [17] lifts the voltage vector of the AC and DC systems
to form a single positive semidefinite matrix. In [18], two
separate positive semidefinite matrices are introduced for the
AC and DC part to mitigate certain numerical challenges
posed by a dingle matrix. In [19], an SOCP-based OPF
formulation is proposed to accommodate the active power
balance constraint at the IC terminal. In [17]–[19], the IC filter
and transformers are modeled as a part of the AC subgrid,
while the voltage phase-angle constraints, that enforce the
active power constraint, have been ignored.

This paper details an improved IC model by considering
the voltage phase-angle and magnitude constraints to respect
the active and reactive power limits of the IC. This modeling
framework is integrated into the OPF formulation for an
AC/DC microgrid. The OPF for individual AC or DC subgrids,
in standalone operations is solved by incorporating the breaker
status in the IC constraints. Subgrid voltages are lifted into
two individual matrices to avoid the numerical challenges
caused by the addition of large resistance terms. The resulting
lifted OPF problem is solved using a parabolic relaxation
technique that is computationally more efficient compared
to conic relaxation approaches [20]. This relaxation trans-
forms the non-convex OPF problem into a convex quadratic-
constraint quadratic programming (QCQP), making it suitable
for the commercially available solvers. Further, sequential
penalization is applied to the relaxed OPF problem to obtain
feasible solutions.

The remainder of the paper is as follows: Section II provides
a summary of notations used throughout this paper. Section III
details the OPF problem formulation for a complete AC/DC
microgrid along with a detailed IC modeling that considers the
active power balance, voltage, and angle constraints. Section
IV presents the lifting, relaxation, and penalization needed to
achieve a feasible solution. In Section V, feasibility of the
OPF is verified using a hardware-in-the-loop (HIL) setup for
a modified IEEE 14-bus network under varying loads and the
IC switching status that highlights standalone OPF operations.
Section VI concludes the paper.

II. NOTATIONS

The real and complex numbers are represented by R and C,
respectively. The symmetric matrix and the complex hermitian
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matrix of size n× n are denoted by Sn and Hn, respectively.
Scalars are presented in italic lower case (a), vectors in bold-
italic lower case (a), and matrices in bold-italic upper case
(A). [a] represents a diagonal matrix with the ‘a’ vector
of diagonal terms. 1n indicates a vector of ones with size
n× 1. The real and imaginary parts of a complex number or
matrix are defined by Re{·} and Im{·}, respectively. diag{·}
indicates the diagonal element vector of a square matrix. The
transpose and conjugate transpose of a matrix are defined by
(·)> and (·)∗, respectively. |·| indicates the absolute value of
a vector or a scalar element. tr(·) represents the trace of a
matrix. The AC subgrid variables and parameters use diacritic
symbol tilde (̃·). Diacritic symbol bar (̄·) is issued for DC
subgrid variables and parameters.

III. OPF PROBLEM FORMULATION

A generalized schematic of a AC/DC microgrid, with AC
and DC subgrids connected through one or more ICs, is shown
in Fig. 1. Let Ñ = {1, 2, ..., ñ} and N̄ = {1, 2, ..., n̄}
represent the sets of AC and DC buses, respectively. The
AC/DC microgrid has N = Ñ

⋃
N̄ buses and L = L̃

⋃
L̄

lines, where L̃ ⊆ Ñ ×Ñ and L̄ ⊆ N̄ ×N̄ . (j, k) ∈ L̃ is a set
of AC lines, and (j, k) ∈ L̄ is a set of DC lines. The microgrid
consists of Ñg = {1, 2, ..., ñg} and N̄g = {1, 2, ..., n̄g}
AC and DC generating units, respectively, with quadratic
generation cost coefficients. The set of all generating units
is denoted by Ng = Ñg

⋃
N̄g. Throughout this section, all

optimization variables are colored in blue to make it easier
for the readers to follow.

A. AC Subgrid

The AC subgrid has Ñ buses, L̃ lines, and Ñg generators.
The complex apparent power for all ñg generators is s̃g =
p̃g + iq̃g ∈ Cñg×1, where p̃g ∈ Rñg×1 and q̃g ∈ Rñg×1

are the vectors of active and reactive power generation. A
generator incidence matrix is defined as G̃ ∈ {0, 1}ñg×ñ. The
load demand at all ñ buses is given by a complex vector d̃ ∈
Cñ×1. The complex bus admittance matrix is given by Ỹ ∈
Cñ×ñ, and the voltage vector by ṽ ∈ Cñ×1. The from and to
admittance matrices are shown as ~̃Y , ~Ỹ ∈ Cñ×ñ, and their
respective branch incidence matrices as ~̃L, ~L̃ ∈ {0, 1}l̃×ñ.

The power and voltage constraints for OPF are formulated
by (1b)-(1g). The conservation of power in the complete AC
subgrid is achieved using bus-injection power balance equality
constraints in (1b). Constraints (1c) and (1d) ensure that the
line flows in either directions are less than the maximum
limit, f̃max. Active power generation vectors are bounded
by [p̃min, p̃max] through (1e). The constraint (1f) bounds the
reactive power generation within [q̃min,q̃max]. The per-unit
voltages are bounded within [ṽmin, ṽmax] via (1g).

B. DC Subgrid

The DC subgrid has N̄ buses, L̄ lines, and N̄g generators.
p̄g ∈ Rn̄g×1 and d̄ ∈ Rn̄×1 are the power generation and
load demand vectors. The bus conductance matrix and voltage
vector are denoted by Ȳ ∈ Rn̄×n̄ and v̄ ∈ Rn̄×1, respectively.

The from and to conductance matrices are ~̄Y , ~Ȳ ∈ Rn̄×n̄.
Define from and to branch incidence matrices as ~̄L, ~L̄
∈ {0, 1}l̄×n̄, and the generator incidence matrix as Ḡ ∈
{0, 1}n̄g×n̄. The bus injection power balance is achieved by
the equality constraint (1h). The power flow through resistive
lines is limited by f̄max via constraints (1i) and (1j). The
generation and bus voltages are limited within [p̄min, p̄max]
and [v̄min, v̄max], using (1k) and (1l), respectively.

C. AC/DC Interlinking Converter

The AC and DC subgrids are connected through a set of ICs,
C = {1, 2, ..., nc}, with Ñc ⊆ Ñ and N̄c ⊆ N̄ as nodes to
which ICs are connected on the AC and DC sides, respectively.
The IC incidence matrices for AC and DC subgrids are defined
as C̃ ∈ {0, 1}nc×ñ and C̄∈ {0, 1}nc×n̄, respectively. s̃c ∈
Cñc×1 and p̄c ∈ Rñc×1 are the converter powers injected into
the AC and the DC subgrids, respectively.

An IC incorporates a voltage-source converter (VSC) that
connects to the AC subgrid through an LC filter and a
transformer. The LC filter has zf phase-reactor impedance and
yc shunt-filter susptance, as shown in Fig. 1. zt indicates the
transformer impedance. The AC and DC voltages across the
VSC are correlated using its modulation index [21]:

|ṽl| ≤
√

3

2
mv̄i = cmv̄i, (3)

where m is the maximum modulation index (≈ 1). ICs control
the power flow directly by controlling the active power flow
or, indirectly, by controlling the DC bus voltage. They also
control the reactive power injection at the AC side. The VSC
obeys the conservation of power [21]

p̄cm + p̃l = ploss, (4)

where ploss are its losses, and pc
m is DC power injected by the

mth IC. p̃l and ṽl are the internal active power and voltage
variables for the mth IC connected between the AC subgrid
(bus j) and the DC subgrid (bus i).

The VSC operating capacity is limited by its maximum
allowable current flow, imax

l [22], i.e.,

|s̃l| =
∣∣∣∣√p̃2

l + q̃2
l

∣∣∣∣ ≤ (|ṽl| ı̃max
l ). (5)

The active power flow from bus l to bus j is limited by the
maximum allowable angle difference at any operating voltage
magnitude, θ̃max, between the bus l and bus j

∠ṽl − ∠ṽj = ∠ṽlṽj
∗ ≤ θ̃max. (6)

The reactive power flow is influenced by the voltage mag-
nitudes for bus l and bus j [22]. The voltage at bus l is
constrained due to the DC voltage at bus i. Enforcing the
voltage constraints

ṽmin
j ≤ |ṽj | ≤ ṽmax

j , (7a)

v̄min
i ≤ |v̄i| ≤ v̄max

i , (7b)

mandates the reactive power flow over the IC. The IC is
modeled to hold the constraints (3)-(6) using AC variables (ṽj ,
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Fig. 1. AC/DC microgrid schematic with a detailed modeling of a DC subgrid, interlinking converter, and AC subgrid.

Original OPF formulation Lifted OPF formulation

Objective function:

min
∑
g∈G̃

f̃(p̃g) +
∑
g∈Ḡ

f̄(p̄g) + ı̃∗[%2 ]̃ı + %>1 |̃ı|+ %>0 1ñc (1a)

AC subgrid constraints:

G̃
>
s̃g + C̃

>
s̃c = d̃+ diag{ṽṽ∗Ỹ ∗} (1b)

|diag{~̃Lṽṽ∗ ~̃Y ∗}| ≤ f̃max
(1c)

|diag{ ~L̃ṽṽ∗ ~Ỹ
∗
}| ≤ f̃max

(1d)

p̃min ≤ Re{s̃g} ≤ p̃max (1e)

q̃min ≤ Im{s̃g} ≤ q̃max (1f)

(ṽmin)2 ≤ |ṽ|2 ≤ (ṽmax)2 (1g)

DC subgrid constraints:

Ḡ
>
p̄g − C̄>p̄c = d̄+ diag{v̄v̄>Ȳ >} (1h)

|diag{~̄Lv̄v̄> ~̄Y >}| ≤ f̄max (1i)

|diag{ ~L̄v̄v̄> ~Ȳ
>
}| ≤ f̄max (1j)

p̄min ≤ p̄g ≤ p̄max (1k)

(v̄min)2 ≤ |v̄|2 ≤ (v̄max)2 (1l)

Interlinking converter constraints:

bs̃c = bdiag{[γ]∗C̃ṽṽ∗C̃
>

+ [α]∗C̃ṽı̃∗} (1m)

b%1 |̃ı| = b
(
p̄c + Re {[η]s̃c} − diag{[ζ]C̃ṽṽ∗C̃

>}+ [σ]|̃ı|2 − %0
)

(1n)

|̃ı|2 ≤ (ı̃max)2 (1o)

− θmax ≤ ∠([ϕ] |Cṽ|2 + [ρ]s̃c∗) ≤ θmax (1p)

diag{[|α|2]C̃ṽṽ∗C̃
>

+ 2Re{[κ]C̃ṽı̃∗}}+ [|β|2] |̃ı| 2 ≤ c2
mdiag{C̄v̄v̄>C̄>}

(1q)

−bk ≤ s̃c ≤ bk, (1r)
−bk ≤ p̄c ≤ bk, (1s)
−bk ≤ ı̃ ≤ bk, (1t)

Objective function:

min
∑
g∈G̃

f̃(p̃g) +
∑
g∈Ḡ

f̄(p̄g) + %>2 õ+ %>1 |̃ı|+ %>0 1ñc (2a)

AC subgrid constraints:

G̃
>
s̃g + C̃

>
s̃c = d̃+ diag{W̃ Ỹ

∗} (2b)

|diag{~̃LW̃ ~̃Y ∗}| ≤ f̃max
(2c)

|diag{ ~L̃W̃ ~Ỹ
∗
}| ≤ f̃max

(2d)

p̃min ≤ Re{s̃g} ≤ p̃max (2e)

q̃min ≤ Im{s̃g} ≤ q̃max (2f)

(ṽmin)2 ≤ diag{W̃ } ≤ (ṽmax)2 (2g)

DC subgrid constraints:

Ḡ
>
p̄g − C̄>p̄c = d̄+ diag{W̄ Ȳ

>} (2h)

|diag{~̄LW̄ ~̄Y >}| ≤ f̄max (2i)

|diag{ ~L̄W̄ ~Ȳ
>
}| ≤ f̄max (2j)

p̄min ≤ p̄g ≤ p̄max (2k)

(v̄min)2 ≤ diag{W̄ } ≤ (v̄max)2 (2l)

Interlinking converter constraints:

bs̃c = bdiag{[γ]∗C̃W̃ C̃
>

+ [α]∗C̃ṽı̃∗} (2m)

b%1
√
õ = b

(
p̄c + Re {[η]s̃c} − [ζ]diag{C̃W̃ C̃

>}+ [σ]õ− %0
)

(2n)

õ ≤ ı̃max2
(2o)

− θmax ≤ ∠([ϕ]diag{C̃W̃ C̃
>}+ [ρ]s̃c∗) ≤ θmax (2p)

diag{[|α|2]C̃W̃ C̃
>

+ 2Re{[κ]C̃ṽı̃∗}}+ [|β|2]õ ≤ c2
mdiag{C̄W̄ C̄

>}
(2q)

−bk ≤ s̃c ≤ bk, (2r)
−bk ≤ p̄c ≤ bk, (2s)
−bk ≤ õ ≤ bk, (2t)

Lifted matrix constraints:

W̃ = ṽṽ∗ (2u)

W̄ = v̄v̄> (2v)

s̃c
m, ı̃l) and DC variables (v̄i, p̄c

m). Accordingly, the following
proposition is made.

Proposition 1. For an IC shown in Fig. 1, given ṽj and s̃c
m,

the equality constraints imposed by the active power of the
VSC can be formulated as

p̄c
m + Re {ηs̃c

m} − ζ |ṽj |
2

= −σ |̃ıl|2 + %1 |̃ıl|+ %0, (8)
s̃c
m = ṽj(γṽj + αı̃l)

∗. (9)

The inequalities of the IC can be defined as

|̃ıl|2 ≤ ı̃max2

, (10)

|α|2 |ṽj |2 + |β|2 |̃ıl|2 + 2Re{κṽj ı̃l∗} ≤ c2mv̄i2, (11)

− (π − ∠α) ≤ ∠(ϕ |ṽj |2 + ρ(s̃c
m)∗) ≤ (π − ∠α), (12)
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where

α =
1

yczt + 1
, β =

ycztzf + zt + zf
yczt + 1

, γ =
−yc

yczt + 1

%2 is VSC on-state conduction loss coefficient,

%1 represent the switching losses coefficient, and

%0 is no-load loss of the VSC,

η =
α

α∗
, ζ =

αγ∗
α∗

, σ = Re{β} − %2, κ = 2αβ∗,

ϕ = α− βγ

α
, and ρ =

β

α
.

Proof. Few definitions are needed first:

Definition 1. the converter voltage, ṽl, and the current injected
into AC subgrid, ı̃j , can be defined in terms of ṽj and ı̃l using
passive elements zf , yc, and zf[

ṽl
ı̃j

]
,

1

yczt + 1

[
1 ycztzf + zt + zf
−yc 1

] [
ṽj
ı̃l

]
,

[
α β
γ α

] [
ṽj
ı̃l

]
.

(13)

The apparent power injected into the bus j by the IC is

s̃c
m = ṽj ı̃

∗
j = γ∗ |ṽj |2 + α∗ṽj ı̃

∗
l . (14)

This can be reformulated as

ṽj ı̃
∗
l =

1

α∗
(s̃c
m − γ∗ |ṽj |

2
). (15)

The apparent power supplied by the VSC at bus l is

s̃l = ṽl ı̃
∗
l = (αṽj + βı̃l)̃ı

∗
l = αṽji

∗
l + β |̃ıl|2 . (16)

Using (15),

s̃l =
α

α∗
(s̃c
m − γ∗ |ṽj |

2
) + β |̃ıl|2). (17)

Definition 2. The total conduction, switching, and no-load
losses of a VSC is a quadratic function of its current (̃ıl) [23]

ploss , %2 |̃ıl|2 + %1 |̃ıl|+ %0. (18)

From (4), (17), and (18), the IC power balance becomes

p̄i + Re{ α
α∗

(s̃c
m − γ∗ |ṽj |

2
) + β |̃ıl|2)} = %2 |̃ıl|2 + %1 |̃ıl|+ %0.

(19)

Define the following coefficients

η ,
α

α∗
=

(yczt + 1)∗

yczt + 1
, (20a)

ζ , Re

{
αγ∗

α∗

}
= Re

{
(ycztzf + zt + zf )∗

yczt + 1

}
, (20b)

σ , Re{β} − %2 = Re

{
(ycztzf + zt + zf )

yczt + 1

}
+ %2. (20c)

Then, (19) can be reformulated as

p̄i + Re {ηs̃c
m} − ζ |ṽj |

2
= −σ |̃ıl|2 + %1 |̃ıl|+ %0. (21)

To enforce the voltage relation (3) between AC and DC
subgrids, consider the square of magnitude of ṽl from (13)

|ṽl|2 = |αṽj + βı̃l|2

= (αṽj + βı̃l)(αṽj + βı̃l)
∗ (22)

= |αṽj |2 + |βı̃l|2 + ((αṽj)(β
∗ ı̃∗l ))

∗ + ((αṽj)(β
∗ ı̃∗l )).

As x∗ + x = 2Re{x}, and by defining κ , 2αβ∗, from (3)
and (22), the voltage relation is imposed by the following
inequality

|α|2 |ṽj |2 + |β|2 |̃ıl|2 + 2Re{κṽj ı̃∗l } ≤ c2mv̄2
i . (23)

Definition 3. To obtain the voltage phase-angle constraints,
the current flowing from bus l to bus j, ı̃l, is defined in terms
of α, β, ṽl, and ṽj as

ı̃l =
yczt + 1

ycztzf + zt + zf
ṽl −

1

ycztzf + zt + zf
ṽj

= β−1ṽl − α−1ṽj .

(24)

Using this, the apparent power flow from bus l to bus j is

s̃lj = ṽl ı̃
∗
l = ṽl(β

−1ṽl − α−1ṽj)
∗. (25)

From Fig. 1, it is evident that s̃l = s̃lj . The active power flow
from bus l to bus j becomes

p̃l = p̃lj =
|ṽl|2

|β|
cos(∠β)− |ṽl| |ṽj |

|α|
cos(θlj + ∠α). (26)

Differentiating this power flow with respect to θlj ,

dp̃l
dθlj

∣∣∣∣
θlj=θmax

=
|ṽl| |ṽj |
|α|

sin(θlj + ∠α) = 0, (27)

gives

θmax = π − ∠α. (28)

To enforce this angle limit as a constraint, consider

ṽlṽ
∗
j = (αṽj + βı̃l)ṽ

∗
j = α |ṽj |2 + βı̃lṽ

∗
j . (29)

From (15),

ṽlṽ
∗
j = α |ṽj |2 +

β

α
(s̃∗j − γ |ṽj |

2
). (30)

Defining ϕ , α− βγ
α and ρ , β

α , from (6), (28) and (30), one
has the voltage phase-angle limits as

−(π − ∠α) ≤ ∠(ϕ |ṽj |2 + ρs̃∗j ) ≤ (π − ∠α). (31)

This completes the proof of proposition 1.

Using (8)-(12), it is convenient to integrate an IC model
into OPF models of the AC and DC subgrids.

Lastly IC limits are imposed via the constraints (1r) – (1t),
where k � 1 is user selected constant.

D. AC/DC Optimal Power Flow

The basic OPF of AC/DC microgrid is formulated as (1).

Definition 4. Functions f̃(p̃g) and f̄(p̄g), in the objective
function (1a), are defined as

f̃(p̃g) , (p̃g)>[ã2]p̃g + ã>1 p̃
g + ã>0 1

ñg , (32a)

f̄(p̄g) , (p̄g)>[ā2]p̄g + ā>1 p̄
g + ā>0 1

n̄g . (32b)

ã2, ã1, and ã0 are quadratic cost coefficients for AC genera-
tors. ā2, ā1, and ā0 are their DC counterparts.

The constraints corresponding to the active power balance
between AC and DC subgrids of all ICs are enforced using
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(1n). Here, b ∈ {0, 1} is a binary vector representing the IC
breaker status. The other equality constraints (1m) ensures
the apparent power balance of the converter internally. The
constraint (1o) limits the current flowing through the VSC
within its thermal current limit, ı̃max. The AC terminal voltage
of the VSC is limited by the DC voltage across the converter
using (1q).

Remark 1. If the breaker status is b = 0, constraints (1m),
(1n), and (1r)-(1t) restrict s̃c, p̄c and ı̃c to zero, and the
resulting formulation will be the AC and DC standalone OPF
problems with their generation cost as objective functions.

IV. LIFTING, RELAXATION, AND PENALIZATION

A. Lifting

The OPF problem in (1) is non-convex and NP-hard due
to the non-linear constraints (1b)-(1q) with non-linear com-
ponents such as ṽṽ∗, v̄v̄>, |ṽ|2, |v̄|2, ṽı̃∗, and |̃ı|2. Except
for ṽı̃∗, all other terms can be linearized by lifting them to
a higher dimension. The OPF in (1) is reformulated with the
lifted variables in (2) and the following additional constraints

W̃ = ṽṽ∗, W̄ = v̄v̄>,
√
õ = |̃ı| . (33)

W̃ ∈ Hñ, W̄ ∈ Sn̄, and õ ∈ Rñc×1 are lifted auxiliary
variables. The non-convex nature of (1) is absorbed in (IV-A).
Constraints (2m) and (2q) are still non-convex due to ṽı̃∗ term.
To make the lifted problem (2) computationally tractable, all
these non-convex constraints should be relaxed.

B. Parabolic Relaxation

A computationally-efficient parabolic relaxation method
[20] is used to avoid the conic constraints. It converts the
original non-convex problem into a convex QCQP problem,
making it realizable by available optimization packages. The
parabolic relaxation of (IV-A) is

|ṽj+ ṽk|2 ≤ W̃jj+W̃kk+(W̃kj+W̃jk) ∀(j, k) ∈ L̃ (34a)

|ṽj−ṽk|2 ≤ W̃jj+W̃kk−(W̃kj+W̃jk) ∀(j, k) ∈ L̃ (34b)

|ṽj+iṽk|2 ≤ W̃ jj+W̃ kk−i(W̃ kj−W̃ jk) ∀(j, k) ∈ L̃ (34c)

|ṽj−iṽk|2 ≤ W̃ jj+W̃ kk+i(W̃ kj−W̃ jk) ∀(j, k) ∈ L̃ (34d)

|ṽi|2 ≤ W̃ ii ∀i ∈ Ñ , (34e)

and for the DC part we have:

|v̄j+v̄k|2 ≤ W̄jj+W̄kk+(W̄kj+W̄jk) ∀(j, k) ∈ L̄ (35a)

|v̄j−v̄k|2 ≤ W̄jj+W̄kk−(W̄kj+W̄jk) ∀(j, k) ∈ L̄ (35b)

|v̄i|2 ≤ W̄ii ∀i ∈ N̄ . (35c)

To relax the non-convex expression (2m), it is formulated as

ṽj ı̃l
∗ = (α∗l )

−1(s̃c
m − W̃jjγ

∗
l ) ∀m ∈ C, j ∈ Ñc. (36)

Then, the parabolic relaxation of (36) becomes

bm |ṽj + ı̃l|2 ≤ bm(W̃jj + õll + Re{α−1
l ((s̃c

m)∗ − W̃jjγl)}) (37a)

bm |ṽj − ı̃l|2 ≤ bm(W̃jj + õll − Re{α−1
l ((s̃c

m)∗ − W̃jjγl)}) (37b)

bm |ṽj + ĩıl|2 ≤ bm(W̃jj + õll − Im{α−1
l ((s̃c

m)∗ − W̃jjγl)}) (37c)

bm |ṽj − ĩıl|2 ≤ bm(W̃jj + õll + Im{α−1
l ((s̃c

m)∗ − W̃jjγl)}) (37d)

bm |̃ıl|2 ≤ bmõll. (37e)

The active power constraint of IC, (2n), is relaxed as

b%1 |̃ı| ≤ b(p̄c + Re {[η]s̃c} − [ζ]diag{C̃W̃ C̃
>}

+[σ]õ− %0) ≤ b%1
√
õ. (38)

To make (2q) convex, substitute (36) in (11)

|αl|2 W̃jj + |βl|2 oll + Re{κl(α∗l )−1(s̃c
m − γ∗l W̃jj)}

≤ c2mW̄ii ∀l ∈ C, j ∈ Ñc, i ∈ N̄c.
(39)

C. Sequential Penalization

The relaxed convex OPF problem given by (2a)-(2l), (2p),
and (34)-(39) might not guarantee a feasible solution to
the original problem in (1). Therefore, the lifted objec-
tive function is appended with a linear penalty function
gµ̃,µ̄,y0

(W̃ , W̄ , õ, ṽ, v̄, ı̃) at a given initial condition y0 =
(ṽ0, v̄0, ı̃0) and with penalty gains µ̃, µ̄.

Definition 5. The linear penalty function is defined as

gµ̃,µ̄,y0
(W̃ , W̄ , õ, ṽ,v̄, ı̃) ,

µ̃ tr{W̃ − ṽ∗ṽ0 − ṽ∗0ṽ + ṽ∗0ṽ0}+
µ̄ tr{W̄ − 2v̄>v̄0 + v̄>0 v̄0}+
µ̃(õ>1nc − ı̃∗ı̃0 − ı̃∗0 ı̃+ ı̃∗0 ı̃0). (40)

The AC/DC OPF problem is solved iteratively by updating
the initial conditions in each iteration using the solution from
the previous iteration until the stopping criteria is reached.

V. HARDWARE-IN-THE-LOOP VALIDATION

A. HIL Setup

The IEEE 14-bus system was modified to form an AC/DC
microgrid as shown in Fig. 2. The lines and buses with the blue
color represent the DC subgrid, and those with the black color
represent the AC subgrid. DC lines are modified to be resistive.
DC generators are DC sources interfaced with the distribution
network using DC-DC converters (buses filled in red) with
an output voltage of 1kV . The AC generators are a mixture
of conventional diesel generators (filled with black and red)
and VSCs (filled with red) with the output voltage of 480V
transformed to 7.2kV before connecting to the distribution
line. Table I lists the AC and DC generational limits and cost
coefficients. The DC subgrid is connected to the AC subgrid
using two ICs through a LC filter (zf = 0.01 + 0.3958i, yc =
−0.0188i) and 400V/7.2kV step-up isolating transformers
(zt = 0.0424i). The nominal operating voltages are considered
as base values. The base powers for AC and DC subgrids are
1MVA and 1MW , respectively. This microgrid has variable-
impedance AC loads at buses 2, 3, 5, 9 and variable resistive
DC loads at buses 1, 7. The complete DC system, along with
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both ICs, are emulated in one Typhoon HIL604 unit, and the
AC system is emulated in the second unit. All the AC and DC
sources employ droop control schemes (P-f and Q-V droops
in the AC subgrid, and the P-V droop in the DC subgrid),
which are realized using two dSPACE MLBx control boxes.
A personal computer (PC) with a 8-core, 3.5GHz Xeon pro-
cessor, and 64GB RAM provides the OPF solution using the
MATLAB/CPLEX optimization tool. Ethernet communication
between Typhoon HIL - PC - dSPACE control boxes shares
the load and setpoint information, as shown in Fig. 3.
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Fig. 2. The AC/DC microgrid system with AC and DC subgrids and the ICs.

Fig. 3. HIL implementation of the AC/DC microgrid test system indicating
the functionality of individual units and information flow.

B. Performance with and without OPF under Load Variation

Loads are varied at every 10s intervals as shown in Fig.
4(a),(d),(e) and 5(a),(d),(e). These variations are random and

Fig. 4. Operation with droop control under varying load: (a) DC load
variation, (b) DC generation, (c) DC system voltage, (d) AC system active load
variation, (e) AC system reactive load variation, (f) AC system active power
generation, (g) AC system reactive power generation, (h) AC system voltage,
(i) IC active power flow, (j) IC reactive power flow, (k) total generation cost.
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Fig. 5. Optimal operation with varying load: (a) DC load variation, (b) DC
generation, (c) DC system voltage, (d) AC system active load variation, (e)
AC system reactive load variation, (f) AC system active power generation, (g)
AC system reactive power generation, (h) AC system voltage, (i) IC active
power flow, (j) IC reactive power flow, and (k) total generation cost.

Fig. 6. Optimal operation with IC switching: (a) DC load variation, (b) DC
generation, (c) DC system voltage, (d) AC system active load variation, (e)
AC system reactive load variation, (f) AC system active power generation, (g)
AC system reactive power generation, (h) AC system voltage, (i) IC active
power flow, (j) IC reactive power flow, and (k) total generation cost.



8

TABLE I
GENERATORS COST COEFFICIENTS AND LIMITS

AC Generators
Bus ã2 ã1 ã0 p̃min p̃max q̃min q̃max

1 0.04303 20 0 0 2.2 -0.20 0.40
2 0.25000 22 0 0 0.5 -0.30 0.20
3 0.05000 24 0 0 0.5 0.00 0.30
6 0.05000 24 0 0 0.5 -0.06 0.24
8 0.02000 23 0 0 2.2 -0.20 0.40

DC Generators
Bus ā2 ā1 ā0 p̄min p̄max

1 0.10000 23 0 0 1.0
2 0.08000 23 0 0 1.0

follow a poisson distribution nature. Any load variation was
proportionally distributed among all the sources per their
droop coefficients. It can be seen that AC and DC voltages
were held within their limits [0.94 p.u, 1.06 p.u] without
(i.e., with droop alone) and with OPF, as shown in Fig. 4(h),
(c) and 5(h), (c), respectively. With OPF, the DC generator
with larger cost coefficients has reduced its generation (Fig.
5(b)) in comparison to the same scenario without OPF (Fig.
4(b)). Similarly, the active power generation from the AC
generator at bus 2 is always held at zero (Fig. 5(f)) as it is
the most costly generator. The overall generation cost with
OPF is less than that without the OPF, as shown in Fig.
5(k). The average time taken to run the relaxed OPF, without
penalization, was 0.346s. Sequential penalization with penalty
gains, µ̃ = µ̄ = 1000, took an average time of 7.34s.

C. OPF with IC Switching

This scenario evaluates the proposed IC modeling in the
OPF of the AC/DC microgrid and its standalone AC and
DC subgrids. Load variations are same as in the previous
scenario. The optimization was continual without violating
any constraints as depicted in Fig. 6. Until t = t1, both the
ICs were connected and the AC/DC microgrid operated at the
optimized references provided by the OPF program running
in parallel. At t = t1, the IC1 was disconnected from the AC
subgrid, (b1 = 0); This reduced the active and reactive powers
of IC1 to zero, i.e., s̃c1 = 0, as seen in Fig. 6 (i),(j), thereby,
p̄c1 = 0 due to (38). The optimization solver read system data
along with the IC1 status, and provided optimized references
for DC generators, AC generators, and IC2 as depicted in Fig.
6(b), (f), (g), (i) and (j). At t = t2, the IC2 was disconnected to
separate AC and DC subgrids. Even in this standalone mode,
the proposed optimization framework was able to individually
solve the OPF problem for the AC and DC subgrids without
modifying the problem formulation. At t = t3, both the
ICs were reconnected and formed the AC/DC microgrid. The
optimzation solver read the system load along with the IC
status, b = 1, and provided the feasible solution. Throughout
this study, the AC and DC voltages are held within the limits,
as shown in Fig. 6(c) and (h).

VI. CONCLUSION

An OPF method is elaborated for AC/DC microgrids. The
detailed modeling of the IC, that bridges AC and DC subgrids,
was integrated into the OPF formulation. Constraints on the
voltage angle and magnitude satisfy the power balance and

voltage relation across the AC and DC sides, and respect the
active and reactive power limits of the IC. The resulting OPF
problem offers individual optimal operating points for AC and
DC subgrids. The hybrid OPF problem was relaxed using a
computationally-efficient parabolic relaxation technique that
transforms the original non-convex OPF to a convex QCQP
problem. The relaxed problem was then solved using a se-
quential penalization technique to obtain a feasible solution.
The proposed OPF paradigm is validated on a modified IEEE
14-bus testbed emulated in the HIL environment with varying
loads and IC switching status.
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