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Scalable Unit Commitment with AC Power Flow via Semidefinite Programming Relaxation
Ramtin Madani,Alper Atamtürk,Ali Davoudi

• The current practice for solving this short-term planning problem considers an approximate model for describing the
flow of electricity across the grid, instead of an accurate physical model, whose integration is estimated to save billions
of dollars per year, by enhancing the efficiency and reliability of operation [15]. The primary obstacle towards the real-
ization of this direction is the computational complexity incurred by the accurate model. In this paper, a computational
method is developed that is compatible with the accurate model for power grids and offers considerable improvements,
in terms of scalability.

• The presence of binary variables are tackled via a family of linear valid inequalities and 3×3 semidefinite programming
constraints. This allows us to handle unit commitment problems with nearly 100,000 binary variables.

• The nonlinearity of power flow equations is handled using a family of 3 × 3 semidefinite programming inequalities,
enabling the recovery of fully feasible points in networks with over 13,000 buses.
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ABSTRACT
Determining the most economic strategies for supply and transmission of electricity is a daunting
computational challenge. The amount of effort to optimize the schedule of generating units and route
of power, can grow exponentially with the number of decision variables. Practical approaches to
this problem involve legacy approximations and ad-hoc heuristics that may undermine the efficiency
and reliability of power system operations, that are ever growing in scale and complexity. Therefore,
developing powerful optimization methods for detailed power system scheduling is critical to the
realization of smart grids and has received significant attention recently. In this paper, we propose
a computational method, which is capable of solving large-scale power system scheduling problems
with thousands of generating units, while accurately incorporating the nonlinear equations that govern
the flow of electricity on the grid. We design a polynomial-time solvable third-order semidefinite
programming (TSDP) relaxation, with the aim of finding a near globally optimal solution for the unit
commitment problem with AC power flow constraints. The proposed method is demonstrated on
large-scale benchmark instances from real-world European grid data, for which provably optimal or
near-optimal solutions are obtained.

1. Introduction
Efficient and reliable supply of electricity to meet the de-

mand for varying time horizons is the major goal of power
grid operations. Grid operations are currently planned with
legacy frameworks that are far from producing near-optimal
solutions at the scale and detail required by the next-generation
grids. In the past decade, various potential approaches have
been identified for enhancements in grid operation through
more accurate models for the flow of power, control of net-
work topology, and taking uncertainties of demand and re-
newable generation into consideration. The realization of
the aforementioned directions is expected to offer consid-
erable improvements in the efficiency and reliability of the
power grids [15]. However, due to the ever-growing size and
scope of grids, the scalability of algorithms for solving de-
tailed and accuratemodels remains as the primary bottleneck
[62, 22, 32].

Building an optimal day-ahead plan for the operation of
a large-scale grid is a daunting challenge, in part, due to the
presence of thousands of generating units, whose on/off sta-
tus need to be determined. Algorithms for finding the most
economic plan with binary on/off decisions give rise to mas-
sive search trees. Another challenge is posed by the nonlin-
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earity of the physical laws describing the flow of electricity.
This paper presents a highly scalable computational

method that is capable of solving day-ahead power system
scheduling problems of realistic size, that are built upon ac-
curate physical models. More specifically, the proposed
method accomplishes the integrated optimization of two fun-
damental problems, faced by system operators and utilities
on a daily basis:

1. Unit Commitment (UC): The problem of scheduling
generating units throughout a planning horizon, based
on demand forecasts and technological constraints.

2. Optimal Power Flow (OPF): The problem of deter-
mining an operating point for the network that delivers
power from suppliers to consumers as economically as
possible, subject to physical constraints.

Advanced algorithms for UC and OPF can contribute to the
efficiency and transparency of power markets by improving
operational decisions and pricing mechanisms [52, 37]. Fig-
ure 1, exemplifies the optimal unit commitment plan for op-
erating a notional power grid for the day-ahead, based on the
available forecast of the demand and renewable generation.
A cheap/slow unit provides the base generation for the entire
planning horizon, while an expensive/fast generating unit is
committed during the peak hours to avoid the violation of
transmission limits.

The contributions of this paper are twofold. First the
unit commitment problem is convexified via a family of lin-
ear and third-order semidefinite programming (TSDP) con-
straints. This convex relaxation achieves near-globally op-
timal solutions for UC problems with nearly 100, 000 bi-
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Figure 1: Day-ahead scheduling of a notional power system, with three vertices and two generating units. (A) The optimal
operational strategy based on the available forecast of the demand and wind generation. The shaded period represents peak
hours. (B) O�-peak con�guration of the network, during which the expensive generator is not committed. (C) Peak con�guration,
during which the expensive generator contributes to accommodate transmission limits.

nary variables. Second, a family of TSDP constraints are
introduced to relax the power flow equations. The com-
bination results in a tractable method for solving coupled
UC-OPF optimization problems. As opposed to a general-
purpose convex relaxation approach, our method is carefully
adapted to the power grid scheduling problem. As a result,
the proposed approach offers unprecedented scalability and
improves upon the existing literature, in terms of the prac-
tical feasibility and efficiency of solutions, by allowing the
joint optimization of commitment and power flow decisions
based on an accurate nonlinear model for power grids. The
utilization of the accurate nonlinear model, as opposed to its
linear approximations, results in a more efficient and trans-
parent market design, as well as improvements in the relia-
bility of power system operations [15, 62].
1.1. Semidefinite Programming Relaxation

Since a wide range of physical phenomena and dynami-
cal systems can be modeled by polynomial functions, poly-
nomial optimization has received significant research inter-
est. Studying polynomial optimization by convex hull char-
acterization of algebraic varieties through hierarchies of
semidefinite programs (SDPs) has been a successful
approach [47, 48]. Performance guarantees and extensions
of SDP hierarchies have since been investigated by several
papers [49, 33, 68, 11], as well as their applications in var-
ious areas such as, quantum information theory [71, 60],
compressed sensing [39, 16], graph theory [9, 1], statistics
[19], operation of infrastructure networks [50, 24], and other
branches of optimization theory [66]. The primary challenge
for the application of SDP hierarchies beyond small-scale in-
stances is the rapid growth of dimension, which necessitates
a detailed study of sparsity and structural patterns to boost
the efficiency [59, 45, 44, 10, 61].
1.2. Review of Unit Commitment

Economic scheduling of power generation units has been
extensively investigated since the early 1960s, to handle pre-
dictable demand variations throughout the day-ahead. Ex-

tensions of the problem have later been studied to capture
practical limits of network and security requirements, among
other considerations. The reader is referred to [3] for a de-
tailed survey of the conventional formulations and compu-
tational methods for unit commitment.

Recent policy andmodeling proposals for electricitymar-
ket operation and unit commitment include stochastic and
robust optimization frameworks, under load and renewable
generation uncertainty [13, 12, 67, 73, 53, 76, 70]. Addition-
ally, incorporating other operational decisions into a com-
prehensive UC problem has been envisioned with a goal of
co-optimizing multiple aspects of day-ahead planning, such
as the optimal power flow [7, 18, 52], network topology con-
trol [36], demand response [72], air quality control [42], as
well as scheduling of deferrable loads [69].

From a computational perspective, unit commitment al-
gorithms rely on bounds from polynomial-time solvable re-
laxations for pruning search trees and certifying closeness to
global optimality. Such relaxations can be generated through
partial characterization of the convex hull of the feasible so-
lutions [63, 51, 25, 31]. Additionally, in the presence of non-
linear price functions, conic inequalities can be adopted to
strengthen the convex relaxations [2, 29, 7, 38]. Recently, a
strong convex relaxation is proposed in [28] through a com-
bination of reformulation-linearization and semidefinite pro-
gramming techniques, which works very well on small in-
stances of the unit commitment problem. Distributed meth-
ods are investigated in [41] and [65] with the aim of leverag-
ing high-performance computing platforms for solving large-
scale unit commitment problems. Nevertheless, the improve-
ments in run-time are reported to diminish with more than
15 parallel workers [64]. In terms of scalability, the pro-
posed approach here significantly improves upon the above-
referenced computational methods in the number of gener-
ating units as well as network size; notwithstanding, that our
numerical experiments are conducted on a workstation with
a single CPU.
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1.3. Review of Optimal Power Flow
The optimal power flow problem is concerned with the

determination of power flows and injections across the grid,
for the optimal transmission and distribution of electricity.
An accurate formulation of power flow in a transmission line
includes nonconvex nonlinear equations, that substantively
increase the computational complexity of the optimization
problem. Consequently, the development of a framework for
the joint optimization of UC and OPF has remained an open
problem with significant economic impact as highlighted in
[8].

To this end, one of themost promising directions is based
on the semidefinite programming relaxation of the power
flow equations [50]. This approach to OPF has since been
widely investigated and improved upon, through geometric
analysis of feasible regions [74, 46, 23, 20, 21], and un-
der certain graph-theoretic assumptions [55, 30]. Various
studies have leveraged the sparsity of power networks for re-
ducing the computational burden of solving semidefinite re-
laxations and developing distributed frameworks [58, 4, 14,
54, 35, 75]. More recently, other approaches such as Ho-
motopy continuation [57], for finding all solutions to power
flow equations, and dynamic programming, in the presence
of discrete variables [27] have been studied. Additionally,
several extensions of OPF have been recently studied under
more general settings, to address considerations such as the
security of operation [54], robustness [26], energy storage
[56], uncertainty of generation [5]. The reader is refereed to
[17] for a detailed survey on OPF.

2. Power System Scheduling
The power system scheduling problem seeks to find the

most economic operation plan for a set of generating units
throughout a time horizon to meet the demand for electricity,
subject to technological constraints. Let  = {1, 2,… , G}
denote the set of generating units, whose schedule and the
amount of contribution to the grid are to be determined. In
order to formulate the problem as a static optimization, it is
common practice to divide the planning horizon into a set of
discrete time intervals  = {1, 2,… , T }, e.g., hourly time
slots for day-ahead scheduling.

Let xg,t ∈ {0, 1} be a binary variable indicating the de-
cision of whether or not the generating unit g ∈  is com-
mitted for production in the time slot t ∈  . If xg,t = 1, the
unit is active and expected to produce power within its ca-
pacity limitations, otherwise, no power is produced by g in
this time slot. Additionally, let cg,t be the production cost ofunit g, during the interval t. There are two types of power ex-
changes between generating units and loads in a power sys-
tem: i) active power, and ii) reactive power. Active power is
the actual product that is traded to meet the demand, whereas
the reactive power is a technical term, which represents the
oscillation exchanges between generators and loads that help
maintaining voltages. Let pg,t and qg,t, respectively, to be
the amount of active power and reactive powers produced
by unit g ∈ , in time interval t ∈  . The overall power

injection by generating unit g ∈  can be expressed as the
complex number pg,t + iqg,t, which is referred to as complex
power, where “i” accounts for the imaginary unit.

A distinctive feature of our approach is the ability to
jointly optimize unit commitment and power flow for an ac-
curate model of the grid. In this paper, the constraints of
this large-scale optimization problem are divided into two
classes:

1. Unit constraints that model the capacity and techno-
logical limitations of generating units, and

2. Network constraints that model laws of physics gov-
erning the flow of power electricity across the grid,
such as conservation of energy, as well as the trans-
mission capacity limitations and demand requirements,
throughout the planning horizon.

Using the notation introduced above, we formulate power
system scheduling as the following optimization problem:

minimize
x,p,q,c∈ℝG×T

G
∑

g=1

T
∑

t=1
cg,t (1a)

subject to (x⊤g,∙,p
⊤
g,∙,q

⊤
g,∙, c

⊤
g,∙) ∈ g ∀g ∈ , (1b)

(p∙,t,q∙,t) ∈ t ∀t ∈  , (1c)
with respect to decision variables x ≜ [xg,t], c ≜ [cg,t], p ≜
[pg,t] and q ≜ [qg,t]. Optimization problem [1a]–[1c] mini-
mizes the overall cost of producing power subject to unit and
network constraints [1b] and [1c], respectively. For every
generating unit g ∈ , the quadruplet (x⊤g,∙,p⊤g,∙,q⊤g,∙, c⊤g,∙) ∈
ℝT×4 characterizes the scheduling decision, throughout the
planning horizon, while for every time slot t ∈  , the pair
(p∙,t,q∙,t) ∈ ℝG×2 accounts for the generation profile. The
price functions and technological limitations of generating
units are described by the sets 1,2,… ,G ⊂ ℝT×4,
while the demand information and network data across the
time slots are given by1,2,… ,T ⊂ ℝG×2.

The binary unit commitment decisions and nonlinearity
of network equations are the primary sources of computa-
tional complexity for solving the problem [1a]–[1c]. As a
result, there has been a huge body of research devoted to
finding convex relaxations for power system scheduling and
its related problems, by means of tools and techniques from
the area of mathematical programming. In the following,
we first describe the families of sets {g}g∈ and {t}t∈ ,given by the unit commitment and network constraints of
power system scheduling. We then introduce convex sur-
rogates for them which lead to a class of computationally
tractable and, yet, accurate relaxations of problem [1a]–[1c].
2.1. Unit Constraints

Following is a definition for the family {g}g∈, whichis based on a number of practical limitation for the operation
of generating units.
Definition 1. For every generating unit g ∈ , defineg to
be the set of all quadruplets (x⊤g,∙,p

⊤
g,∙,q

⊤
g,∙, c

⊤
g,∙) ∈ ℝT×4 that

satisfies constraints [2], [3], [4], [5], and [6], for all t ∈  .
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Note that, non-positive indices refer to given initial values.
In the reminder of this section, we detail each of the above-
mentioned constraints.
Production Costs: The cost of operating a unit g ∈ 
within different time intervals is a quadratic function of the
active power produced by the unit. In addition, there is a
fixed cost g associated with every interval during which thegenerator is committed (i.e., xg,t = 1), as well as a startup
cost ↑g and a shutdown cost ↓g that are enforced on time
slots at which the unit g changes status. Therefore, the price
of operating unit g at time t can be described through the
nonlinear equation [3], where �g and �g are nonnegative co-efficients.
Generation Capacity: If a generating unit g ∈  is com-
mitted at time t ∈  , the amount of active power pg,t andreactive power qg,t produced in that time slot must lie within
capacity limitations of the unit. In other words, if xg,t = 1,
then we have pg,t ∈ [

̄
pg , p̄g] and qg,t ∈ [

̄
qg , q̄g], where

̄
pg ,

p̄g ,
̄
qg and q̄g are the given lower and upper bounds for unit

g.
Constraints [4a]–[4b], ensure that the amount of power

produced by unit g is zero if xg,t = 0, and within capacity
limits, if xg,t = 1.
Minimum Up & Down Time Limits: Technical consid-
erations often prohibit frequent changes in the status of gen-
erating units. Once a unit starts producing power, there is
a minimum time before it can be turned off, and once the
unit is turned off, it cannot be immediately activated, again.
Denote bym↑

g andm↓
g the minimum time for which the gener-

ating unit g ∈  is required to remain active and deactivate,
respectively. The minimum up and down limits for unit g
are enforced through constraints [5a]–[5b].
Ramp Rate Limits: The rate of change in the amount of
power produced by a generating unit is often constrained,
depending on the type of the generator. Denote by rg the
maximum variation of active power generation, that is al-
lowed by unit g ∈ , between two adjacent time intervals
in which the unit is committed. Similarly, define sg as the
maximum amount of active power that can be generated by
unit g immediately after startup or prior to shutdown. Ramp
rate limits of unit g ∈  are expressed through constraints
[6a] and [6b]. Observe that if either xg,t−1 = 0 or xg,t = 0,
the constraints in [6a] and [6b] reduce to |pg,t| ≤ sg . Alter-natively, if xg,t−1 = xg,t = 1, the above constraints imply
that |pg,t − pg,t−1| ≤ rg .
2.2. Network Constraints

In this part, we focus on network considerations in power
system scheduling. The transmission of electricity from sup-
pliers to consumers is carried out through an interconnected
network whose topology throughout each time interval t ∈
 can be modeled as a directed graph t = ( , t), with 
and t as the set of vertices and edges, respectively. In powersystem terminology, vertices are referred to as “buses”, and

Table 1

Unit and network constraints in power system scheduling.

Unit Constraints:

xg,t ∈ {0, 1} (2)

cg,t = �gp
2
g,t + �gpg,t+

gxg,t + ↑g (1 − xg,t−1)xg,t + 
↓
gxg,t−1(1 − xg,t), (3)

̄
pgxg,t ≤ pg,t ≤ p̄gxg,t (4a)

̄
qgxg,t ≤ qg,t ≤ q̄gxg,t. (4b)

xg,t ≥ xg,� − xg,�−1, ∀� ∈ {t − m↑
g + 1,… , t}, (5a)

1 − xg,t ≥ xg,�−1 − xg,� , ∀� ∈ {t − m↓
g + 1,… , t}. (5b)

pg,t − pg,t−1 ≤ rgxg,t−1 + sg(1 − xg,t−1), (6a)
pg,t−1 − pg,t ≤ rgxg,t + sg(1 − xg,t), (6b)

AC Network Constraints:

dt + diag{v∙,tv∗∙,tY
∗
t } = C⊤(p∙,t + iq∙,t) (7a)

|diag{C⃗tv∙,tv∗∙,tY⃗
∗
t }| ≤ fmax;t (7b)

|diag{ ⃗Ctv∙,tv∗∙,t ⃗Y∗
t }| ≤ fmax;t (7c)

vmin ≤ |v∙,t| ≤ vmax (7d)
DC Network Constraints:

q∙,t = 0 (8a)
real{dt} + Bt�∙,t = C⊤p∙,t (8b)

|B⃗t�∙,t| ≤ fmax;t (8c)

edges are called “lines” or “branches” of the network. Each
generating unit is associated with (located at) one of the
buses. Define the unit incidence matrix C ∈ {0, 1}G× to
be a binary matrix whose entry (g, k) is equal to one, if and
only if the generating unit g belongs to bus k. Additionally,
define the pair of matrices C⃗t, ⃗Ct ∈ {0, 1}t× as the initial
and final incidence matrices, respectively. The entry (k, l) of
C⃗t is equal to one, if and only if line l starts at bus k, while
the entry (k, l) of ⃗Ct equals one, if and only if line l ends at
bus k.

The steady state voltages across the network are sinu-
soidal functions with a global frequency. As a result, the
voltage function at each bus can be characterized by its am-
plitude and phase difference from a reference bus. There-
fore, for each k ∈  and t ∈  , a complex number vk;tis defined, whose magnitude |vk;t| and angle ∠vk;t, respec-tively, account for the amplitude and phase of the voltage
at the bus k, in time interval t. Define v ≜ [vk;t] ∈ ℂ×

and � ≜ [∠vk;t] ∈ ℝ× , to be the matrices encapsulating
complex voltage and phase angle values, respectively.

The two widely used models for power networks are dis-
cussed next. The first one is the accurate Alternating Current
(AC) model, which incorporates the nonlinear power flow
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ë1, ë2,… , ë9
}

denote the standard basis vectors for ℝ15, ℝ12, and

ℝ9, respectively.
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Figure 2: (A) A four bus power system from [77] with two
loads and four generators. (B) Feasible region of voltage an-
gles, in which demand and technological constraints of AC
formulation are satis�ed.

equations. The next one is the Direct Current (DC) model,
which is a simplified version of the ACmodel and can be de-
scribed by linear equalities. The use of nonlinear AC power
flow equations introduces substantial complexity into power
system optimization problems. However, various physical
phenomena, such as network losses and reactive power flows
are captured by the AC model, while ignored by the DC
model. As a result, it is desirable to adopt the AC model, in
order to determine better operation strategies. Figure 2 illus-
trates a highly non-convex feasible region of voltage angles,
enforced by the demand and technological constraints, in a
simple four bus network that is described exactly by the AC
model. One of the primary benefits of the proposed method
in this paper, is the possibility of adopting the AC model in
large-scale power system scheduling problems.
2.2.1. Alternating Current Power Flow Model

In the AC model, characteristics of the network in a time
interval t ∈  , can be described by a triplet of admittance
matrices Y⃗t, ⃗Yt ∈ ℂt× and Yt ∈ ℂ× , that govern the
flow of power throughout the network. Next, we define the
family {AC

t }t∈ and give a brief description for each con-
straint.

Definition 2. For every time interval t ∈  , letAC
t be the

set of pairs (p∙,t,q∙,t) ∈ ℝT×2, for which there exists a vec-
tor of complex voltages v∙,t ∈ ℂ satisfying the constraints
[7a]–[7d].
AC Power Balance Equation: Constraint [7a] is referred
to as the power balance equationwhich accounts for the con-
servation of energy at all buses of the network. The vector
dt ∈ ℂ denotes the demand forecast at each bus, in in-
terval t, whose real and imaginary parts account for active
and reactive power demands, respectively. Observe that the
overall complex power produced by generating units located
at each bus k ∈  is given by the k-th entry ofC⊤(p∙t+iq∙t).Finally, the k-th entry of the vector diag{v∙,tv∗∙,tY∗

t } is equalto the amount of complex power exchange between bus k
and the rest of the network. The voltages across the network
are adjusted in such a way that the overall complex power
produced at each bus equals the sum of power consumptions
and power exchanges of that bus, at all times. This require-
ment is enforces by constraint [7a].
AC Thermal Limits: Due to thermal losses, the flow en-
tering a line may differ from the flow leaving the line at the
other end. For each time interval t ∈  , complex power
flows entering the lines of the network through their starting
and ending buses are given by vectors diag{C⃗tv∙,tv∗∙,tY⃗∗

t } and
diag{ ⃗Ctv∙,tv∗∙,t ⃗Y∗

t }, respectively. Constraints [7b] and [7c]
restrict the flow of power, within the thermal limit of the
lines fmax;t ∈ ℝt , for each t ∈  .
Voltage Magnitude Limits: In order for power system
components to operate properly, the voltage magnitude at
each bus needs to remain within a prespecified range, given
by vectors vmin, vmax ∈ ℝ . Voltage magnitude limits are
enforced through the constraint [7d].

The nonlinear AC network constraints [7a]–[7d] pose a
significant challenge for solving power system optimization
problems based on a full model. As a result, typically a sim-
plified version of the AC model is considered in practice
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which is explained next.
2.2.2. Direct Current Power Flow Model

The DC model can be formulated by ignoring the reac-
tive powers, voltage magnitude deviations from their nom-
inal values, and network losses. Under this model, the net-
work is described by means of sustenance matrices B⃗t ∈
ℝt× and Bt ∈ ℝ× . Moreover, the flow of active power
across the network in each time interval t ∈  is expressed
with respect to the vector of voltage angles �∙,t ∈ ℝ .
Definition 3. For every time interval t ∈  , letDC

t be the
set of pairs (p∙,t,q∙,t) ∈ ℝT×2, for which there exists a vec-
tor of voltage phase values �∙,t ∈ ℝ satisfying constraints
[8a]–[8c].
Constraint [8b] is a simplified alternative for power balance
equation [7a], in which the vector Bt�∙,t ∈ ℝ contains ap-
proximate values for active power exchanges between each
vertex and the rest of the network. Additionally, thermal lim-
its are enforced through the constraint [8c], in which B⃗t�∙,t ∈
ℝt is the vector of approximate values for active power flow
of lines. Notice that, since the network losses are ignored un-
der the DC model, power flows entering both directions are
considered equal and it suffices to enforce one inequality for
each line.

3. Convex Relaxation
In order to tackle a general power system scheduling prob-

lem of the form [1a]–[1c], we develop third-order semidefi-
nite programming (TSDP) relaxations for the families of sets
{g}g∈ and {t}t∈ , which lead to a computationally-
tractable algorithm. The proposed approach involves intro-
ducing additional variables, each as a proxy for a quadratic
monomial. We design a class of inequalities, to strengthen-
ing the relation between each proxy variable and the mono-
mial it represents.

In this work, we propose a convex relaxation of the power
system scheduling problem [1a]–[1c], which is built by sub-
stituting the unit andAC network feasible sets with their con-
vex surrogates { TSDP

g }g∈ and { TSDP
t }t∈ , respectively:

minimize
x,p,q,c∈ℝG×T

G
∑

g=1

T
∑

t=1
cg,t (10a)

subject to (x⊤g,∙,p
⊤
g,∙,q

⊤
g,∙, c

⊤
g,∙) ∈  TSDP

g ∀g ∈ , (10b)
(p∙,t,q∙,t) ∈  TSDP

t ∀t ∈  , (10c)
Due to convexity of the sets { TSDP

g }g∈ and { TSDP
t }t∈ ,the problem [10a]–[10c] can be solved in polynomial time.

Moreover, since g ⊆  TSDP
g and AC

t ⊆  TSDP
t , for

every g ∈  and t ∈  , respectively, the optimal cost of
problem [10a]–[10c] is a lower bound to the optimal cost
of problem [1a]–[1c]. If an optimal solution to the problem
[10a]–[10c] satisfies the original constraints [1b] and [1c],

then the relaxation is exact and a provably global optimal so-
lution to problem [1a]–[1c] is obtained. Otherwise, a round-
ing procedure is adopted to transform the optimal solution of
[10a]–[10c] to a feasible and near optimal solution of [1a]–
[1c].
3.1. Relaxation of Unit Constraints

Each unit feasible setg is a semialgebraic set, with con-
straints [2] and [3] as the sources of nonconvexity. In this
work, we create a family of convex surrogates { TSDP

g }g∈,by enforcing a collection of linear and conic inequalities. To
this end, define auxiliary variables u, y, z, o ∈ ℝG×T , whose
components account for monomials xg,t−1xg,t, pg,t−1xg,t,
xg,t−1pg,t and p2g,t, respectively. In other words, if the relax-
ation is exact, the equations

ug,t = xg,t−1xg,t, yg,t = pg,t−1xg,t, (11a)
zg,t = xg,t−1pg,t, og,t = p2g,t, (11b)

hold true at optimality. To capture the binary requirement
for commitment decisions, the following convex inequali-
ties, that are referred to as “McCormick constraints”, are en-
forced:
max{0, xg,t−1 + xg,t − 1} ≤ ug,t ≤ min{xg,t−1, xg,t}. (12)

Now, constraint [3] can be cast in the following linear form,
with respect to the auxiliary variables:
cg,t = �gog,t + �gpg,t+

gxg,t + ↑g (xg,t − ug,t) + 
↓
g (xg,t−1 − ug,t). (13)

Finally, we relax the nonconvex equations [11a]–[11b] with
the following conic constraints:

⎡

⎢

⎢

⎣

xg,t ug,t yg,t
ug,t xg,t−1 pg,t−1
yg,t pg,t−1 og,t−1

⎤

⎥

⎥

⎦

⪰ 0, (14a)

⎡

⎢

⎢

⎣

xg,t−1 ug,t zg,t
ug,t xg,t pg,t
zg,t pg,t og,t

⎤

⎥

⎥

⎦

⪰ 0, (14b)

as well as a number of linear inequalities that are stated next.
Definition 4. For each g ∈ , define  TSDP

g ⊂ ℝT×4 to be
the set of all quadruplets (x⊤g,∙,p

⊤
g,∙,q

⊤
g,∙, c

⊤
g,∙), for which there

exists (u⊤g,∙, y
⊤
g,∙, z

⊤
g,∙, o

⊤
g,∙) ∈ ℝT×4, such that for every t ∈  ,

the following constraints hold true:

i) The linear inequalities [4], [5], [6],
ii) The conic and linear constraints [12], [13], [14a], [14b]

and [9a],
iii) The linear inequalities [9b], if m↓

g > 1,

iv) The linear inequalities [9c], if m↑
g > 1,

where the matrices K ∈ ℝ24×15, K↓ ∈ ℝ4×12, and K↑ ∈
ℝ4×9 are given by [9d], [9e] and [9f], respectively.
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Notice that for each g ∈ , the relaxed feasible set  TSDP
gis defined, by means of conic and linear inequalities that are

convex. The validity of these inequalities is proven in the
appendix.

The definition of  TSDP
g involves 2 × T third-order

semidefinite constraints that can be enforced efficiently. Ad-
ditionally, the overall number of inequalities grows linearly
with respect to T , which is an improvement upon existing
methods. On the other hand, the ramp and minimum up &
down constraints are incorporated into the valid inequalities,
the present convex relaxation offers more accurate bounds,
in the case of severe load variations.
3.2. Relaxation of Network Constraints

A state of the art method, given in [54], for convex relax-
ation of AC power flow equations incorporates an auxiliary
matrix variable Wt ∈ ℍn, for each t ∈  , accounting for
v∙,tv∗∙,t. Using the matrix Wt ∈ ℍn, the AC network con-
straints [7a]–[7d] can be convexified as follows:

dt + diag{Wt Y∗
t } = C⊤(p∙t + iq∙t) (15a)

|diag{C⃗t Wt Y⃗∗
t }| ≤ fmax;t (15b)

|diag{ ⃗Ct Wt
⃗Y∗
t }| ≤ fmax;t (15c)

vmin ≤ |diag{Wt}| ≤ vmax (15d)
In formulation [15a]–[15d], the structure of matrixWt, i.e.,

Wt = v∙,tv∗∙,t (16)
is ignored, to make the model polynomially solvable. To
remedy the absence of the non-convex equation [16], the re-
laxation can be strengthened through a combination of conic
constraints, with the aim of enforcing the relation between
Wt and v∙,t, implicitly.

Observe that an arbitrary matrix Wt ∈ ℍn can be fac-
tored to v∙,tv∗∙,t, if and only if, it is rank-one and positive
semidefinite:

rank{Wt} = 1 ∧ Wt ⪰ 0. (17)
Although a rank constraint on Wt cannot be enforced effi-
ciently, employing the convex constraint Wt ⪰ 0 leads to
the semidefinite programming (SDP) relaxation of AC net-
work constraints. For larger-scale systems, a graph-theoretic
analysis divides the set of buses into several overlapping sub-
sets 1,2,… ,A ⊆  , such that the relaxation could be
represented with smaller conic constraints:

Wt[k,k] ⪰ 0, ∀k ∈ {1, 2,… , A}, (18)
where for every  ⊆ {1,… , n}, the notationWt[ ,] rep-
resents the ||× || principal submatrix ofWt, whose rowsand columns are chosen from . Choosing1,2,… ,A,based on the bags of an arbitrary tree decomposition of the
network, leads to an equivalent but more efficient SDP relax-
ation [54]. A weaker, but far more tractable approach is the
second-order cone programming (SOCP) relaxation which
uses conic constraints of the following form:

[

Wk1,k1 Wk1,k2
Wk2,k1 Wk2,k2

]

⪰ 0, ∀(k1, k2) ∈ t (19)

Algorithm 1 Recovering a Feasible Solution
Require: The optimal unit commitment solution xopt ∈ ℝG×T to

problem [10a]–[10c]:
for g = 1… , G do

for t = 1 − max{m↑
g , m

↓
g},… , 0 do

Set xfeasg,t according to the initial state of unit g.
for g = 1… , G do

for t = 1… , T do
a↑←max{xfeasg,� − xfeasg,�−1 | ∀�∈{t − m↑

g + 1,… , t − 1}}

a↓←max{xfeasg,�−1 − x
feas
g,� | ∀�∈{t − m↓

g + 1,… , t − 1}}

if a↑ = a↓ = 1 then
Declare failure.

else
if a↑ = 1 then

xfeasg,t ← 1

if a↓ = 1 then
xfeasg,t ← 0

if a↑ = a↓ = 0 then
xfeasg,t ← round{xoptg,t + 0.25}

return xfeas

To achieve a better balance between the strength of the
convex relaxation and scalability, in this paper, we use a
third-order semidefinite programming (TSDP) relaxation
which is described as follows:
Definition 5. For each t ∈  , let  TSDP

t ⊂ ℝG×2 be the
set of pairs (p⊤g,∙,q

⊤
g,∙), for which there exists a Hermitian

matrixWt ∈ ℍn, that satisfies constraints [15a]–[15d] and
the following third-order semidefinite constraints

⎡

⎢

⎢

⎣

Wk1,k1 Wk1,k2 Wk1,k3
Wk2,k1 Wk2,k2 Wk2,k3
Wk3,k1 Wk3,k2 Wk3,k3

⎤

⎥

⎥

⎦

⪰ 0, (20)

for every (k1, k2, k3) ∈
⋃A
k=1k × k × k, where 1,

2, …, A ⊆  , are the bags associated with an arbitrary
tree decomposition of the network t, for which |k| ≥ 3,
∀k ∈ {1,…A}.

3.3. Recovering a Feasible Solution
This section details the procedure for recovering a feasi-

ble solution to the scheduling from the optimal solution of
the relaxed problem [10a]–[10c] and data generation.

Let (xopt ,popt ,qopt , copt) be an optimal solution to the re-
laxed problem [10a]–[10c]. If all entries of xopt turn out to
be integer, and there exists a matrix v ∈ ℂ× that satisfies
constraints [7a]–[7d], then (xopt ,popt ,qopt , copt) is a globally
optimal solution to problem [1a]–[1c]. However, the relax-
ation is often inexact, and solutions to the relaxed problem
[10a]–[10c] are not necessarily feasible for problem [1a]–
[1c]. In such cases, a recovery process is needed to transform
(xopt ,popt ,qopt , copt) to a feasible and near-optimal solution
for problem [1a]–[1c].
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As demonstrated by Table 2, on average, only a small
portion of the binary variables remain fractional after solv-
ing the proposed TSDP relaxation problem. In all of our ex-
periments, a feasible candidate for x is obtained, through the
Algorithm 1, which simply rounds each entry of xopt subject
to minimum up and down time constraints [5b] and [5a].

Another challenge is finding a feasible voltage profile
v = [v∙,1|v∙,2|… |v∙,T ] ∈ ℂ× , based on a solution to the
relaxed problem [10a]–[10c]. If the rank constraints [17]
are not satisfied at optimality, then the relaxation of net-
work equations is not exact and it is not possible to factorize
the resulting matricesWopt

1 ,Wopt
2 ,… ,Wopt

T , in the form of
equation [16]. A “recovery algorithm” is introduced in [54],
for finding an approximate vector of voltages v̂∙,t based on
Wopt

t , which minimizes the overall mismatch (i.e., violation
of network equations). In order to obtain voltage profiles
with no mismatch, we feed the outcome of the recovery al-
gorithm from [54] as the initial point to Newton-Raphson’s
local search algorithm. This procedure is described next:

1. Find a feasible matrix of commitment decisions xfeas
via Algorithm 1.

2. For every t = 1… , T :
i) Obtain an approximate voltage profile v̂∙,t from
Wopt

t based on the recovery algorithm in [54].
ii) Start with popt∙,t , qopt∙,t and v̂∙,t, as the initial point to

search locally for a triplet of vectors pfeas∙,t ∈ ℝG,
qfeas∙,t ∈ ℝG and vfeas∙,t ∈ ℂ , that minimizes the
objective function ∑G

g=1 �gp
2
g,t + �gpg,t, subjectto the constraints [7a]–[7d] and

̄
qgx

feas
g,t ≤ qg,t ≤ q̄gx

feas
g,t (21a)

̄
pgx

feas
g,t ≤ pg,t ≤ p̄gx

feas
g,t (21b)

pg,t ≥ pfeasg,t−1 − rgx
feas
g,t − sg(1 − xfeasg,t ) (21c)

pg,t ≤ pfeasg,t−1 + rgx
feas
g,t−1 + sg(1 − x

feas
g,t−1). (21d)

iii) Derive the feasible cost values cfeasg,t , according
to the equation [3].

3. Report (xfeas,pfeas,qfeas) as the output schedule/ dis-
patch and v as the corresponding voltage profile. The
following quantity serves as an upperbound for rela-
tive distance from global optimality:

Gap ≤ 100 ×

∑T
t=1

∑G
g=1 (c

feas
g,t − coptg,t )

∑T
t=1

∑G
g=1 c

feas
g,t

(22)

We have used the procedure described above for the exper-
iments presented in Table 2, and in all cases, a feasible so-
lution could be found within the violation tolerance of the
constraint (10−5 per-unit).

4. Experimental Results
This section gives a brief summary of the experiments

with the proposed third-order semidefinite programming

(TSDP) approach on large-scale instances of day-ahead
scheduling. The goal is to determine the least-cost dispatch,
that is, the on/off status and the amount of power produced
by the generating units throughout the day ahead for meeting
the load (demand) subject to the network transmission and
technological constraints. We consider real-world bench-
mark grids based on IEEE and European data with up to
13, 659 buses (vertices) and 4, 077 generating units. The
planning horizon is divided into 24 hourly intervals. For the
largest benchmark, the model includes almost 100,000 bi-
nary decision variables. Table 2 presents the average results
for tenMonte Carlo demand simulations for each benchmark
network. The computations are performed on a workstation
with a single CPU. The details of data generation and exper-
iments are discussed later in this section.
4.1. Linear DC Model

We first consider the approximate linear DC model,
which is typically used by the electric power industry to for-
mulate transmission of power in day-ahead scheduling prob-
lems. For all experiments, the proposed TSDP relaxation
yields integer values for more than 99.5% of binary vari-
ables. Moreover, the objective values of the recovered (feasi-
ble) scheduling decisions are provablywithin 0.22% of global
optimality for all benchmarks. The average performance of
the TSDP relaxation, based on the DC model, is reported in
columns three, four and five of Table 2. Even for the largest
benchmark, near-optimal solutions are obtained within a few
minutes.

For comparison, the results with the commercial mixed-
integer solver CPLEX, which is widely used by the system
operators, are provided in columns six and seven. Although
small-scale problems, based on IEEE data, are solved fast
by CPLEX, no feasible solution is found after three hours of
computation for the largest three benchmarks.
4.2. Nonlinear AC Model

If an accurate nonlinear AC model for the flow of elec-
tricity is adopted, CPLEX, Gurobi and other commonly used
off-the-shelf optimizers cannot be employed due to the pres-
ence of non-convex power constraints. For the largest bench-
mark system in Table 2, the aforementioned nonlinear model
results in a mixed-integer nonlinear optimization problem
with 97, 848 binary variables, as well as 983, 448 non-convex
quadratic constraints. For all experiments based on this net-
work, our algorithm has been able to find solutions (with
maximum power mismatch within 10−5 per-unit) that are on
average within 2.73% from global optimality. Moreover, for
small- to medium-sized cases, all solutions are obtained in
less than 40 minutes and within 1.24% gap from global op-
timality.
4.3. Data Generation

The network data for IEEE and European systems is ob-
tained from theMATPOWER package [77, 40]. Hourly load
changes for the day-ahead at all buses are considered pro-
portional to the numbers reported in [43]. In each experi-
ment, the cost coefficients �g , �g , g , ↓g and ↑g are chosen
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Table 2

The performance of the TSDP relaxation algorithm for 24-hour horizon scheduling of
benchmark systems with hourly epochs using the linear DC and nonlinear AC models.

Linear DC Model Nonlinear AC Model

Test Case Number Ratio of TSDP TSDP TSDP CPLEX CPLEX Ratio of TSDP TSDP TSDP
of Units Inexact Binaries Gap Time Gap Time Inexact Binaries Gap Time

IEEE 118 54 0 ∕ 1, 296 0% 3s 0% 28s 0 ∕ 1, 296 0.01% 11s
IEEE 300 69 0 ∕ 1, 656 0% 3s 0% 67s 0 ∕ 1, 656 0.34% 41s

PEGASE 1354 193 28.4 ∕ 4, 632 0.09% 18s 8.57% 10, 800s† 26.0 ∕ 4, 632 1.24% 486s
PEGASE 2869 392 24.5 ∕ 9, 408 0.01% 35s − 10, 800s† 33.8 ∕ 9, 408 0.42% 2, 175s
PEGASE 9241 1, 153 75.4 ∕ 27, 672 0.05% 137s − 10, 800s† 226.5 ∕ 27, 672 2.73% 56, 351s
PEGASE 13659 4, 077 29.5 ∕ 97, 848 0.22% 266s − 10, 800s† 995.3 ∕ 97, 848 1.21% 116, 064s
† Solver is terminated after 3 hours.

uniformly between zero and 1 $∕(MW.h)2, 10 $∕(MW.h),
100 $, 30 $ and 50 $, respectively. The ramp limits of each
generating unit are set to rg = sg = max{p̄g∕4,

̄
pg}. For

each generating unit, the minimum up and down limits m↑
g

and m↓
g are randomly selected in such a way that m↑

g − 1 and
m↓
g−1 have Poisson distributionwith parameter 4. The initial

status of generators at time period t = 0 is found by solving
a single period economic dispatch problem corresponding to
the demand at time t = 1. For each generating unit g ∈ , it
is assumed that the initial status has been maintained exactly
since time period t = −t(0)g , where t(0)g has Poisson distribu-
tion with parameter 4. For simplicity, all of the generating
units with negative capacity are removed. All simulations
are run in MATLAB using a workstation with an Intel 3.0
GHz, 12-core CPU, and 256 GB RAM. The CVX package
version 3.0 [34] and MOSEK version 8.0 [6] are used for
solving semidefinite programming problems. The data set as
well as the log files of the optimization runs are available for
download at: http://ieor.berkeley.edu/∼atamturk/data/tsdp.

5. Conclusions
In this paper, we study the problem of optimizing grids

operation throughout a planning horizon, based on the avail-
able resources for supply and transmission of electricity.
This fundamental problem is heavily investigated for decades
and need to be solved on a daily basis by independent system
operators and utility companies. The challenge is twofold:
first, determining a massive number of highly correlated bi-
nary decisions that account for commitment of generators;
secondly, finding the most economic transmission strategy
in accordance with laws of physics and technological limi-
tations.

We propose a third-order semidefinite programming
(TSDP) approach that is equipped with an accurate physical
model for the flow of electricity and offers massive scalabil-
ity in the number of generating units and grid size. While
co-optimization of supply and transmission under the full
physical model has long been put forward as a direction to
boost the efficiency and reliability of operation, scalability
has been the main bottleneck to-date. Significant improve-

ment over the state-of-the-art methods is validated on day-
ahead grid scheduling problems, on the largest publicly avail-
able real-world data.
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A. Appendix
A proof of validity for conic and linear inequalities [14]

and [9] is provided in this section.
Proposition 1. Inequalities [14a], [14b] and [9a] are valid
for every pair of vectors (x,p) ∈ ℝG×T that satisfy con-
straints [2], [4a], [6a], [6b], [5a] and [5b]. Additionally, if
m↓
g ≥ 2, then constraint [9b] and if m↑

g ≥ 2, then constraint
[9c] is valid.

Proof: For every (g, t) ∈ {1,… , G}×{1,… , T }, define the
vector of monomials:

�g,t ≜ [xg,t−1, xg,t, pg,t−1, pg,t,

̄
ℎg,t−1, ℎ̄g,t−1, ̄

ℎg,t, ℎ̄g,t, ̄
ag,t, āg,t,

xg,t−1 ̄
ℎg,t−1, xg,t−1ℎ̄g,t−1, xg,t−1 ̄

ℎg,t,

xg,t−1ℎ̄g,t, xg,t−1̄
ag,t, xg,t−1āg,t,

xg,t ̄
ℎg,t−1, xg,tℎ̄g,t−1, xg,t ̄

ℎg,t,

xg,tℎ̄g,t, xg,t̄
ag,t, xg,tāg,t]⊤, (23)

where

̄
ℎg,t ≜

√

pg,t −
̄
pgxg,t , ℎ̄g,t ≜

√

p̄gxg,t − pg,t , (24a)

̄
ag,t ≜

√

sg + (rg − sg)xg,t−1 + pg,t−1 − pg,t , (24b)
āg,t ≜

√

sg + (rg − sg)xg,t − pg,t−1 + pg,t . (24c)
Define �g,t as the 22×22 symmetric matrix formed by mul-
tiplying �g,t by its transpose:

�g,t ≜ �g,t�⊤g,t. (25)
Observe that �g,t is positive semidefinite, and as a conse-
quence, every principle submatrix of�g,t is positive semidef-
inite, as well. Considering submatrices
�g,t[{2, 1, 3}, {2, 1, 3}] and �g,t[{1, 2, 4}, {1, 2, 4}],concludes the conic constraints [14a] and [14b], respectively.
Moreover, the constraint [9a] encapsulates 24 linear inequal-
ities, and it is straightforward to verify that inequalities k,
k + 6, k + 12 and k + 18 can be concluded from
�g,t[{k + 4, k + 10, k + 16}, {k + 4, k + 10, k + 16}] ⪰ 0,

for each k = 1, 2,… , 6. This completes the proof of [9a].
In order to prove the validity constraint [9b], suppose that

m↓
g ≥ 2, and consider the following vector of monomials:
�↓
g,t ≜ [w↓

g,t, xg,t−1w
↓
g,t, ̄

ℎg,t−1w
↓
g,t, ℎ̄g,t−1w

↓
g,t]

⊤, (26)
where

w↓
g,t ≜

√

1 − xg,t−2 + xg,t−1 − xg,t . (27)
Observe that all four inequalities encapsulated in [9b] can be
concluded from the conic inequality �↓

g,t(�
↓
g,t)

⊤ ⪰ 0.
If m↑

g ≥ 2, the validity of the constraint [9c] can be sim-
ilarly proven by defining

w↑
g,t ≜

√

xg,t−2 − xg,t−1 + xg,t , (28)
and forming the vector of monomials

�↑
g,t ≜ [w↑

g,t, xg,t−1w
↑
g,t, ̄

ℎg,t−1w
↑
g,t, ℎ̄g,t−1w

↑
g,t]

⊤. (29)
Finally, the four inequalities from [9c] can be inferred from
the conic inequality �↑

g,t(�
↑
g,t)

⊤ ⪰ 0. ■
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