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Abstract— This paper develops convex relaxation meth-
ods to solve optimization problems with piecewise lin-
ear objective function and a bilinear matrix inequality
(BMI) constraint. As an alternative to the state-of-the-art
semidefinite programming (SDP) and second-order cone
programming (SOCP) relaxations, we propose a compu-
tationally efficient parabolic relaxation, which only relies on
convex quadratic constraints to transform BMI problems
into polynomial-time solvable surrogates. To ensure the
recovery of feasible and near-optimal points, we adopt
initial points for constructing penalty terms, which can be
incorporated into the objective function of either SDP or
parabolic relaxations. We prove that the penalized relax-
ations are guaranteed to provide feasible points for the
original BMI problem, if the initial point lies within an ana-
lytical bound from the feasible set. Then, we generalize the
penalized relaxations to a sequential scheme which starts
from an arbitrary initial point (not necessarily feasible)
and solves a sequence of relaxations to find feasible and
near-optimal points. We theoretically prove that if certain
assumptions hold, the proposed scheme is guaranteed to
generate a convergent sequence of points whose objective
values monotonically improve. Moreover, we evaluate the
effectiveness of the sequential scheme on the problems of
H2 andH∞ optimal controller design. Numerical results on
benchmark instances from COMPleib demonstrate that the
proposed approach achieves comparable performance to
the existing methods.

Index Terms— Computational methods, LMIs, Optimiza-
tion, Optimization algorithms, Optimal control

I. INTRODUCTION

OPTIMIZATION problems with matrix inequality con-
straints are widely used in different areas of control [3]–

[5]. As a special case, the class of problems involving linear
matrix inequality (LMI) constraints are efficiently solvable
up to any desired accuracy via interior-point based methods
[6]–[9]. Despite a variety of control applications in robust
control [10]–[13], controller design [14]–[20], affine fuzzy
system design [21], [22], stability of fractional-order systems
[23], optimization problems with bilinear matrix inequality
(BMI) are generally computationally prohibitive and NP-hard
in general [24], [25]. Great efforts have been devoted on solv-
ing special classes of these problems [26]–[28] and multiple
solvers such as, LMIRank [29], PENLAB [30], PENBMI [31]
are developed for solving BMIs of moderate size. However, an

Parts of this paper have appeared in the conference papers [1] and
[2]. Compared with the conference version, the new additions to this
paper are detailed proofs and major theoretical results that guarantee
the convergence of the proposed algorithm.

efficient algorithm with theoretical guarantees is still lacking
[32].

In [33], [34], alternating minimization (AM)-based algo-
rithms are proposed which divide variables into two blocks
that are then alternately optimized until convergence. Although
AM-based methods enjoy simple implementation and perform
satisfactorily in many cases, they are not guaranteed to con-
verge to a feasible point. Another approach for solving a BMI
optimization problem is convex relaxation which reduces the
problem into a convex surrogate whose solution approximates
the solution of the original BMI problem. Solving the resulting
problem in a sequential manner can further improve the quality
of solutions [12], [35]–[39]. In [36], [40], BMI problems
are cast as sequences of semidefinite programming (SDP)
relaxations. In [41] a difference-of-convex (DC) decomposi-
tion framework is employed to construct a sequence of SDP
relaxations, whose solutions are guaranteed to converge to a
(sub)-optimal point of the original BMI. In [37], [38], [42]
rank-constrained formulations with nuclear norm penalties and
bound-tightening methods are used to tackle BMI optimization
problems.

In [13], [43]–[45], branch-and-bound (BB) techniques are
investigated, which involve the use of additional inequalities
and variables to cast a BMI optimization problem as sequence
of LMIs whose solutions converge to a globally optimal point.
BB methods are generally computationally prohibitive and
their applicability is restricted to moderate-sized problems.
A novel global method has been recently presented in [46]
which first transforms a given BMI optimization into an
unconstrained problem with a fewer number of variables and
then employs a hybrid multi-objective optimization technique
to solve the resulting problem.

The class of BMI optimization problems can be seen as
a special case of polynomial optimization problems (POPs).
Therefore, off-the-shelf methods for solving POPs are applica-
ble to BMI optimization problems as well [47], [48]. The most
notable example is Lasserre’s hierarchy of LMI relaxations
[49], based on which several software packages have been
developed [50]–[52].

The success of sequential frameworks and penalized SDP
in solving quadratically constrained quadratic programs is
demonstrated in [53]. In [54], it is shown that penalized SDP is
able to find the roots of overdetermined systems of polynomial
equations. Moreover, the incorporation of penalty terms into
the objective of SDP relaxations are proven to be effective for
solving non-convex optimization problems in power systems
[55]–[58]. These papers show that penalizing certain physical
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quantities in power network optimization problems such as
reactive power loss or thermal loss facilitates the recovery of
feasible points from convex relaxations. In [37], a sequential
framework is introduced for solving BMIs without theoretical
guarantees.

A. Contributions
In this work, a novel and general convex relaxation frame-

work, regarded as parabolic relaxation, is introduced for solv-
ing the class of problems with piecewise linear objective func-
tion and a BMI constraint. The proposed relaxation relies on
convex quadratic constraints as opposed to the SDP relaxation
that can be computationally expensive.

Since the solutions of the relaxed problems may not be
feasible for the original BMI, we choose an initial point to
construct a penalty term which can be incorporated into the
objective function of the proposed relaxation. This penalty
term is compatible with either SDP or parabolic relaxation
and can direct them towards finding feasible and near-optimal
points of BMI problems. We theoretically prove that if an
initial point is feasible or if it lies within a certain analytical
bound from the feasible set of a BMI problem, the solution of
penalized relaxation is guaranteed to be feasible. We propose
a feasibility preserving sequential scheme for solving a BMI
problem, whose each round involves solving a penalized
convex relaxation. The proposed scheme can be initiated from
an arbitrary point which is not necessarily feasible for the
original BMI problem. In this sense, it is advantageous over
many existing algorithms as it requires no ad-hoc heuristics
and approximation techniques to recover a feasible initial
point. We assess the effectiveness of this sequential scheme
on H2 and H∞ static output-feedback controller design prob-
lems. For control plants from COMPleib [59], the proposed
scheme achieves comparable results on two centralized and
fully decentralized scenarios, in comparison to two existing
methods.

B. Notations
Throughout the paper, the scalars, vectors, and matrices are

respectively shown by italic letters, lower-case bold letters,
and upper-case bold letters. Symbols R, Rn, and Rn×m
respectively denote the sets of real scalars, real vectors of
size n, and real matrices of size n × m. The sets of real
n × n symmetric matrices and positive semidefinite matrices
are shown by Sn and S+

n , respectively. For given vector a
and matrix A, symbols ai and Aij respectively indicate the
ith element of a and (i, j)th element of A. Notations [a]i∈I
and [A]ij∈I respectively shows the sub-vector and sub-matrix
corresponding to the set of indices I. Notation A � 0
denotes A is positive-semidefinite (A � 0 indicates positive
definite) and A � 0 means A is negative-semidefinite (A ≺ 0
indicates negative definite). For two given matrices A and
B of the same size, symbol 〈A,B〉 = tr{A>B} shows
the inner product between the matrices where tr{.} and (.)>

respectively denote the trace and transpose operators. Notation
‖.‖p refers to either matrix norm or vector norm depending on
the context and |.| indicates either the absolute value operator

or the cardinality of a set depending on the context. Operator
diag(.) gets a vector and forms a diagonal matrix with its
input on the diagonal. For an arbitrary matrix A and sets of
indices I1 and I2, define A{I1, I2} as the submatrix of A
corresponding to the rows whose indices belong to I1, and
the columns whose indices belong to I2. For a symmetric
matrix B of size n, symbol B(:) indicates a vector of size(
n
2

)
consists of all unique elements of B. Symbols I , ei, and

0 denote the identity matrix, standard basis vector, and zero
matrix of appropriate dimensions, respectively. For integer n,
symbol In shows the set of all integer numbers from 1 to n.

The remainder of this work are organized as follows:
Section II states the non-convex BMI optimization problem to
be solved and discuss about its challenges. Then, we provide
different convex relaxations in Section III to find the solution
of problem. Further in Section IV, we propose a penalization
technique to recover feasible points for the original BMI
problem. Section V offers a sequential scheme to improve the
quality of feasible points. In Sections VI and VII, H2 and H∞
control design problems are cast as BMI programs and we use
the sequential method to find controllers of desired structures.
Finally, the last section offers a conclusion to the paper.

II. PROBLEM FORMULATION

This paper is concerned with the class of bilinear matrix
inequality (BMI) optimization problems of the form

minimize
Y ∈Rn×m

f(Y ) (1a)

subject to p(Y ,Y Y>) � 0, (1b)
〈Wi,Y 〉 = 0, i ∈ {1, . . . , l} (1c)

where f : Rn×m → R is a piecewise linear objective function:

f(Y ) , 〈C0,Y 〉+

o∑
i=1

|〈Ci,Y 〉 − ci| (2)

where {Ci ∈ Rn×m}i and {ci ∈ R}i are given, and p :
Rn×m × Sn → Sm is a matrix pencil defined as

p(Y ,X) , P +

n∑
i=1

m∑
j=1

YijQij +

n∑
i=1

n∑
j=1

XijRij , (3)

where P , {Qij}, and {R}ij are all given q×q real symmetric
matrices. With no loss of generality, we assume that Rij =
Rji for every (i, j) ∈ {1, . . . , n}2. Let F ⊆ Rn×m denote the
feasible set of the problem (1a) – (1c). Throughout the paper,
we assume that (1a) – (1c) is feasible with an attainable optimal
value.

The BMI problem (1a) – (1c) is of particular importance due
to its wide range of applications in optimal control design
[41], [46], [60]. For instance, consider the problem of finding
a sparse controller which is of great interest for computational
and practical purposes [61], [62]. For an appropriate choice of
the non-smooth function f , this problem can be conveniently
cast as a BMI optimization of form (1a) – (1c). Additionally,
the matrices {Wi ∈ Rn×m}i can be employed to impose
any linear structure on the elements of matrix Y . In many
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Fig. 1: Static output feedback controller. A small controller
plant with three inputs and three outputs. Depending on the
desired zero-nonzero pattern of the controller, it uses a subset
of observations {y1,y2,y3} to generate control commands
{u1,u2,u3}
.
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Fig. 2: Matrix variables containing the Lyapunov matrix P
and the controller gain K. The Lyapunov matrix is symmetric
and the controller can have different structures (a) arbitrary
(b) partially decentralized, and (c) fully decentralized.

control applications, the matrix variable Y encapsulates sub-
matrices with specific structures (e.g., symmetric, diagonal,
etc). Constraint (1c) allows us to take such structures into
consideration. Figures 1 and 2 demonstrate a structured control
design problem with three different zero/non-zero patterns.

Despite the advantages of the BMI formulation (1a) – (1c),
constraint (1b) renders the problem non-convex and computa-
tionally challenging. To circumvent this challenge, it is com-
mon practice to solve convex surrogates to find approximate
solutions. In order to formulate convex relaxations, we first
define an auxiliary matrix variable X ∈ Sn, accounting for
Y Y >, which leads to the so called lifted reformulation:

minimize
Y ∈Rn×m

X∈Sn

f(Y ) (4a)

subject to p(Y ,X) � 0, (4b)
〈Wi,Y 〉 = 0, i ∈ {1, . . . , l} (4c)

X = Y Y > (4d)

where (4c) is imposed to preserve the equivalence between
(1a) – (1c) and (4a) – (4d). Notice that the lifted problem is
cast in a higher dimensional space in which the entire non-
convexity is captured by the constraint (4d). In what follows,

we will replace (4d) with convex alternatives and revise the
objective function to find feasible and near-optimal points for
the original BMI problem (1a) – (1c).

III. CONVEX RELAXATION

This section aims at introducing a family of convex relax-
ations whose solutions approximate the solution of (1a) – (1c).
To this end, we relax (4d) to transform (4a) – (4d) into the
following convex problem

minimize
Y ∈Rn×m

X∈Sn

f(Y ) (5a)

subject to p(Y ,X) � 0, (5b)
〈Wi,Y 〉 = 0, i ∈ {1, . . . , l} (5c)
(Y ,X) ∈ C (5d)

where C ⊆ Rn×m×Sn is a convex set to be designed. For any
choice of C, the optimal cost of (5a) – (5d) can serve as a lower
bound for the global cost of the BMI problem (1a) – (1c). In
what follows, we first discuss the standard SDP relaxation and
then, introduce a novel parabolic relaxation, which transforms
the constraint (4d) into a set of convex quadratic inequalities.

To formulate an SDP relaxation of (4a) – (4d), we replace
C with CSDP

n,m which is defined as

CSDP
n,m = {(Y ,X) ∈ Rn×m × Sn |X − Y Y > � 0}. (6)

Although SDP relaxation is efficiently solvable in polynomial
time, its applicability is limited to moderate-sized problems.
Motivated by this, we introduce a computationally efficient
alternative to SDP relaxation, named parabolic relaxation,
which transforms the non-convex constraint (4d) to a set
of convex quadratic inequalities. To formulate the parabolic
relaxation, one can replace C with the following set:

CPRB
n,m =

{
(Y ,X) ∈ Rn×m × Sn |

Xii+Xjj+2Xij ≥ ‖(ei+ej)>Y ‖2, i, j∈{1, . . . , n},
Xii+Xjj−2Xij ≥ ‖(ei−ej)>Y ‖2, i, j∈{1, . . . , n}

}
. (7)

where {ei}ni=1 represents the standard basis for Rn.
Notice that the solution of the aforementioned relaxations

are not necessarily feasible for (1a) – (1c). In the following
section, we propose to revise the objective function (5a) to
direct convex relaxations towards finding feasible points for
the original non-convex problem (1a) – (1c).

IV. PENALIZED CONVEX RELAXATION

In this section, we incorporate a penalty term into the
objective function (5a) to formulate the following penalized
convex relaxation:

minimize
Y ∈Rn×m

X∈Sn

f(Y ) + η × tr{X − 2Y̌ >Y + Y̌ >Y̌ } (8a)

subject to p(Y ,X) � 0, (8b)
〈Wi,Y 〉 = 0, i ∈ {1, . . . , l} (8c)
(Y ,X) ∈ C (8d)

where C ∈ {CSDP
n,m, CPRB

n,m}, the point Y̌ ∈ Rn×m is an initial
guess (not necessarily feasible) for the optimal solution of
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(1a) – (1c), and η > 0 is a regularization parameter to control
the balance between the original objective function and the
penalty term.

Next, we use the well-known Mangasarian-Fromovitz con-
straint qualification (MFCQ) condition from [63], [64] in
order to characterize well-behaved feasible points of the BMI
problem (1a) – (1c).

Definition 1. A point Y ∈ Rn×m is said to satisfy the
Mangasarian-Fromovitz constraint qualification (MFCQ) con-
dition if there exists Z ∈ Rn×m such that

p(Y +Z, Y Y > +ZY > + Y Z>) ≺ 0, (9a)
〈Wi,Z〉 = 0, i ∈ {1, . . . , l}. (9b)

Moreover, define the singularity function s : Rn×m → R as

s(Y ) , max
Z,δ

{
λmin{(1− δ)P − p(δY +Z, δY Y>+ZY>+Y Z>)} |
〈Wi,Z〉 = 0 i ∈ {1, . . . , l}, δ2 + ‖Z‖2F ≤ 1

}
(10)

where λmin denotes the minimum eigenvalue operator.

Observe that given any Y ∈ Rn×m the value of s(Y ) can
be easily calculated by solving a convex optimization problem.
Additionally, s(Y ) > 0, if and only if Y satisfies the MFCQ
condition. The following definition introduces a few constant
values that help with the statement of our theoretical results.

Definition 2. Define α, β > 0 as two arbitrary constants that
satisfy:

‖ − P + p(Y ,X)‖F ≤ 2α‖Y ‖F + β‖X‖F (11)

for every Y ∈ Rn×m and X ∈ Sn×n. Additionally, define

κ ,
∥∥[‖Rij‖2

]
ij

∥∥
1

(12)

where
[
‖Rij‖2

]
ij

denotes the n× n symmetric matrix whose
i, j element is equal to ‖Rij‖2.

Given the above definitions, the next theorem investigates
conditions under which the penalized convex relaxation prob-
lem (8a) – (8d) with a feasible initial point Y̌ ∈ F leads to a
feasible point for the original BMI problem (1a) – (1c).

Theorem 1. Let Y̌ ∈ F be a feasible point for the problem
(1a) – (1c), which satisfies the MFCQ condition. If

η>

(∑o
i=0 ‖Ci‖2

)(
3κ+2(α+β+β‖Y̌ ‖F)+

√
βs(Y̌ )

)
s(Y̌ )

(13)

then the penalized convex relaxation (8a) – (8d) has a unique
optimal solution (

∗
Y ,

∗
X) which satisfies (4d) and additionally,

f(
∗
Y ) ≤ f(Y̌ ).

Proof. See Appendix for the proof.

According to Theorem 1, the penalized convex relaxation
(8a) – (8d) preserves the feasibility of an initial point. In the
next theorem, we show that even if the initial point is not
feasible for (1a) – (1c), but sufficiently close to its feasible set,
the penalized convex relaxation problem is still guaranteed to

Algorithm 1 Sequential Penalized Relaxation

Input: Y̌ ∈ Rn×m, a fixed parameter η > 0.
1: k ← 0
2: repeat
3: k ← k + 1
4: Y k ← solve the penalized relaxation (8a) – (8d).
5: Y̌ ← Y k

6: until stopping criteria is met
Output: Y k

provide a feasible point. The next definition gives a measure
of distance between an arbitrary point in Rn×m and F .

Definition 3 (Feasibility Distance). Define the feasibility dis-
tance function dF : Rn×m → R as:

dF (Y ) , min{‖Y − Ȳ ‖F

∣∣ Ȳ ∈ F}, (14)

where F denotes the feasible set of the problem (1a) – (1c).

Theorem 2. Consider an arbitrary point Y̌ ∈ Rn×m, that
satisfies

ď ,
s(Y̌ )

3κ+2(α+β+β‖Y̌ ‖F)+
√
βs(Y̌ )

− dF (Y̌ ) > 0. (15)

If

η > ď−1
o∑
i=0

‖Ci‖F, (16)

then the penalized convex relaxation (8a) – (8d) has a unique
optimal solution (

∗
Y ,

∗
X) which satisfies (4d).

Proof. See Appendix for the proof.

Remark 1. It should be noted that both (13) and (16) are of
theoretical importance only. They show that a sufficiently large
η can lead to a feasible solution. In practice, one can resort
to bisection in order to find an appropriate η. For instance, in
all of our experiment, in order to obtain a feasible point, we
have tested a few values of the form k1 × 10k2 for η, where
k1 ∈ {1, 2, 5} and k2 ∈ Z. Additionally, we acknowledged that
the calculation of dF (Y̌ ) is computationally hard in general,
which further limits the practicality of the bound (16).

V. SEQUENTIAL PENALIZED RELAXATION

Motivated by Theorems 1 and 2, this section presents
a sequential approach that solves a sequence of penalized
relaxations of the form (8a) – (8d) to infer high-quality feasible
points for the non-convex problem (1a) – (1c). The proposed
scheme starts from an arbitrary initial point Y̌ . Once a
feasible point for (1a) – (1c) is obtained, according to Theorem
1, the proposed scheme preserves feasibility and generates
a sequence of points whose objective values monotonically
improve. The details of this sequential approach are delineated
in Algorithm 1. The following theorem guarantees the conver-
gence of Algorithm 1 to at least a locally optimal solution.
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Fig. 3: The feasible set of the BMI problem (18a) – (18b): (a) the globally optimal solution yOPT, as well as the outputs of
SDP, parabolic, and SOCP relaxations ySDP, yPRB, and ySOCP. (b) The sequence generated by Algorithm (1), starting from
y̌ = [1, 1]> with η = 1.

Theorem 3. Let F̌ , {Y ∈ F | f(Y ) < f̃} denote an
epigraph of the problem (1a) – (1c) such that s(Y ) > s̃ > 0
and ‖Y ‖F < d̃ for every Y ∈ F̌ . If

η >

(∑o
i=0 ‖Ci‖2

)(
3κ+2(α+β+βỹ)+

√
βs̃
)

s̃
(17)

and Y̌ ∈ F̌ , then the sequence generated by Algorithm 1
converges to at least a local minimizer of the problem (1a) –
(1c).

In what follows, we give an example to provide insights
into the performance of Algorithm 1.

Example 1: Consider the following small-scale BMI in terms
of two scalar variables y1 and y2:

minimize
y∈R2

y1 (18a)

subject to
[

2y2
1−y2

2 +y2 −y1y2 +2y1

−y1y2 +2y1 y2
1 +y2

2−8

]
� 0. (18b)

Observe that (18a) – (18b) can be cast as an optimization prob-
lem of form (1a) – (1c) since it has a linear objective function
and a BMI constraint. The point ∗y = [−1.2302, 2.3975]

> is
the optimal solution of (18a) – (18b) with the corresponding
objective value −1.2302. In what follows, we leverage convex
relaxation techniques to recover feasible and near-optimal
points of (18a) – (18b). To this end, define auxiliary variable
X ∈ S2 to formulate the SDP relaxation as

minimize
y∈R2,X∈S2

y1 (19a)

subject to
[
2X11−X22 +y2 −X12 +2y1

−X12 +2y1 X11 +X22−8

]
� 0, (19b)

X − yy> � 0, (19c)

which has the optimal solution ∗
y = [−1.4280, 1.7156]

>

corresponding to the objective value −1.4280. Additionally,
we can derive the parabolic relaxation of (18a) – (18b) by

replacing (19c) with a set of quadratic constraints as

minimize
y∈R2,X∈S2

y1 (20a)

subject to
[
2X11−X22 +y2 −X12 +2y1

−X12 +2y1 X11 +X22−8

]
� 0, (20b)

X11 +X22 − 2X12 ≥ (y1 − y2)2, (20c)

X11 +X22 + 2X12 ≥ (y1 + y2)2, (20d)

X11 ≥ y2
1 , X22 ≥ y2

2 (20e)

which has the optimal solution ∗
y = [−1.5988, 0.3319]

>

corresponding to the objective value −1.5988. As illustrated in
Figure 3a, neither of these points belong to the feasible set of
the original problem (18a) – (18b). To direct the relaxations
towards feasible points, we adopt the initial guess y̌ =
[1.0000, 1.0000]

> and revise the objective functions (19a) and
(20a) as

y1 + η(tr{X} − 2y>y̌ + y̌>y̌). (21)

By doing so, we formulate the penalized SDP and penalized
parabolic relaxations which provide feasible points for appro-
priate choices of η. Moreover, for sufficiently large η, both
penalized relaxations provide feasible point for the original
problem. For η = 1, both penalized relaxations give point
∗
x = [0.3214, 1.1835]

> which is feasible for (18a) – (18b) as
well. Given that, we can employ Algorithm 1 to solve a
sequence of penalized relaxations and improve the quality of
points. Figure 3b illustrates the sequence of points generated
by Algorithm 1 for both penalized relaxations. Notice that
since a feasible point is recovered in the first round and η
is sufficiently large, the algorithm preserves feasibility and
monotonically improves the objective value until convergence
is achieved.

The next section seeks to formulate H2 and H∞ optimal
structured control synthesis problems in the form the optimiza-
tion problem (1a) – (1c).

VI. APPLICATIONS TO OPTIMAL CONTROL

This section investigates the application of Algorithm 1 in
solving structured controller design problems. Many studies
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have been extensively explored the design of structured con-
trollers for several systems, including spatially distributed sys-
tems [14], [65]–[68], localizable systems [69], power systems
[61], [70], [71], optimal static distributed systems [72], [73],
strongly connected systems [74], heterogeneous systems [75]
etc.

The problems of designing distributed state-feedback and
output-feedback controllers for linear time-invariant systems
have been of great interest in the literature [76]–[83]. Papers
[84]–[88] have considered special cases which make controller
design problems computationally tractable. Paper [89] intro-
duces a condition regarded as quadratic invariance, which
enables the transformation of optimal distributed controller
design problems to convex optimization. This condition is
further explored in other studies, including [90]–[97].

In what follows, we consider H2 and H∞ control design
problems for a linear time-invariant plant G of the following
form,

G :


ẋ =

z =

y =

A x + B1

C1 x + D11

C x + D21

w + B u

w + D12u

w

(22)

where x ∈ Rnx is the state vector, w ∈ Rnw is the system
input, u ∈ Rnu is the control command vector, z ∈ Rnz is
the output, and y ∈ Rny is the sensor measurement vector.
Matrices A, B1, B, C1, C, D11, D12, C, D21 are all fixed and
of appropriate dimensions. We show that finding structuredH2

and H∞ static output-feedback controllers for G can be cast
as BMI problems of form (1a) – (1c). Therefore, Algorithm 1
can be used to solve the resulting BMI problems and obtain
the desired controllers. Our work is related to the body of
literature on convex relaxation of optimal controller design
based on semidefinite programming in [20], [71], [98]–[101],
as well as sequential methods in [102]–[105].

We define the matrix function K : Rl → Rnu×ny as follows
to characterize structured controllers

K(h) ,
l∑
i=1

hiEi, (23)

where {Ei}li=1 ∈ {0, 1}nu×ny are binary matrices used to
represent pre-defined structures and h ∈ Rl indicates the non-
zero elements of the controller. Given that, an observation
vector y is applied to the controller K(h) as input, through
which the control command u = K(h)y is generated. To
formulate such control design problem, we first derive the
dynamic equations describing the closed-loop plant as:

Gcl :

{
ẋ=(A

z=(C1

+B K(h)C)

+D12K(h)C)

x+(B1 +B

x+(D11+D12

K(h)D21)w

K(h)D21)w
(24)

In what follows, we formulate H2 and H∞ optimal control
design problems of G and show how they can be cast as BMI
optimizations of form (1a) – (1c).

A. H2 Optimal Control
The primary goal of this problem is to find a controller gain

K(h) for the linear system G such that A+BK(h)C becomes
a Hurwitz matrix (i.e. all of its eigenvalues have negative

real part) and the H2 norm of the closed-loop system Gcl

is minimized. With no loss of generality, we assume D11 =0,
D21 = 0 and there exists a controller gain matrix K(h) that
stabilizes system G (or equivalently A+BK(h)C is Hurwitz).
Given that, the H2 norm of the closed-loop plant is given by,

‖Gcl‖H2
=tr

{(
C1+D12K(h)C)

)
P
(
C1+D12K(h)C)

)>}
, (25)

where P � 0 is the solution of the following Lyapunov
equation,(

A+BK(h)C
)
P+P

(
A+BK(h)C

)>
+B1B

>
1 = 0. (26)

It is well-known [106] that, the solution of the above equation
is not affected if it is relaxed to,(

A+BK(h)C
)
P+P

(
A+BK(h)C

)>
+B1B

>
1 � 0. (27)

Therefore, we can formulate the H2 controller design problem
for G as follows,

minimize
P∈Snx,W∈Snz

h∈Rl

〈W, I〉 (28a)

subject to fLMI(P,W) + fBMI(P,h) � 0, (28b)

where matrix functions fLMI :Snx×Snz→S2nx+nz , fBMI :Snx×
Rl→S2nx+nz are defined as,

fLMI(P,w) ,AP+PA>+B1B1
> 0 0

∗ −W C1P
∗ ∗ −P

 , (29a)

fBMI(P,h) ,BK(h)CP+(BK(h)CP)
>

0 0
∗ 0 D12K(h)CP
∗ ∗ 0

 , (29b)

and ∗ accounts for the symmetric elements of matrices.

Proposition 1. Assume that B1B
>
1 � 0, D11 = 0, and

D21 =0. Matrix K(
∗
h) is the optimalH2 static output-feedback

controller gain for plant G, if (
∗
P,

∗
W,

∗
h) is an optimal solution

of problem (28a) – (28b).

Proof. Observe that due to the BMI constraint (28b), matrix
∗
P is positive-definite and satisfies the Lyapunov inequality
(27), which certifies that K(

∗
h) is stabilizer. On the other

hand, we have
∗
W =

(
C1 +D12K(

∗
h)C

) ∗
P
(
C1 +D12K(

∗
h)C

)>
which implies that the closed-loop norm 〈

∗
W, I〉 = ‖Gcl‖H2

is minimized.

Notice that (29b) is a BMI constraint due to the presence of
the matrix product K(h)CP. Hence, we can cast (28a) – (28b)
as a BMI problem of form (1a) – (1c). To this end, it suffices
to stack all variables into a large vector y defined as,

y , [W(:)>,P(:)>,h>]> ∈ Rñ, (30)

where ñ=
(nx

2

)
+
(nz

2

)
+ l.
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B. H∞ Optimal Control
The H∞ control design problem for plant G seeks to find

a vector h such that the controller gain K(h) stabilizes the
system and the H∞ norm of the closed-loop system Gcl is
minimized. With no loss of generality, we assume D21 = 0,
γ > 0, and there is a stablizing controller K(h) for system G.
Then, ‖Gcl‖H∞< γ is satisfied if there exist a unique matrix
Y � 0 and controller K(h) satisfying the following algebraic
Riccati equation [59]:

Acl(h)Y + YAcl(h)> + γ-1Bcl(h)Bcl(h)>+

γ-1M(Y ,h,γ)
>
R(h, γ)-1M(Y ,h,γ) = 0,

(31)

where the matrix functions M : Snx×Rl×R→ Rnz×nx and
R :Rl×R→Snz are defined as,

R(h, γ) , I − γ-2Dcl(h)Dcl(h)>, (32a)

M(Y ,h,γ) , Ccl(h)Y + γ-1Dcl(h)Bcl(h)>. (32b)

The existence of such solution is guaranteed if there is Q �
Y � 0 and K(h) such that

Acl(h)Q + QAcl(h)> + γ-1Bcl(h)Bcl(h)>+

γ-1M(Q,h,γ)
>
R(h, γ)-1M(Q,h,γ) ≺ 0.

(33)

Therefore, we can use Schur complement to form the H∞
control design problem as,

minimize
Q∈Snx,γ∈R

h∈Rl

γ (34a)

subject to gLMI(Q, γ) + gBMI(Q,h) � 0, (34b)

where the matrix functions gLMI : Snx×R → S2nx+nw+nz and
gBMI :Snx×Rl→S2nx+nw+nz are defined as,

gLMI(Q, γ),
−Q 0 0 0

∗ AQ+QA> (C1Q)> B1

∗ ∗ −γI D11

∗ ∗ ∗ −γI

, (35a)

gBMI(Q,h),
0 0 0 0
∗ BK(h)CQ+(BK(h)CQ)> (D12K(h)CQ)> 0
∗ ∗ 0 0
∗ ∗ ∗ 0

. (35b)

Proposition 2. Assume that D11 6= 0 and B1B
>
1 � 0. If

(
∗
Q,

∗
h,
∗
γ) is an optimal solution for problem (34a) – (34b),

then K(
∗
h) is the optimal H∞ static output-feedback controller

gain for plant G.

Proof. From the BMI constraint (34b), it can be easily verified
that the assumption D11 6= 0 concludes ∗

γ > 0. Moreover,
matrix

∗
Q is positive-definite and satisfies the inequality (33),

which certifies that K(
∗
h) is stabilizer. On the other hand, ∗γ

(‖Gcl‖H∞<
∗
γ) is minimized through (34a) – (34b).

Observe that (35a) is a BMI constraints, due to the presence
of the matrix product QBK(h). Therefore, we can cast (28a) –
(28b) as a BMI optimization problem of form (1a) – (1c), in

terms of the vector

x̄ , [Q(:)>,h>, γ]> ∈ Rn̄ (36)

where n̄=
(nx

2

)
+l+1.

In the next section, we use Algorithm 1 to solve the problem
of optimal control design as well as some small-scale BMI
instances.

VII. NUMERICAL RESULTS

This section tests the effectiveness of Algorithm 1 through
extensive experiments on benchmark control plants from
COMPleib [59]. The test cases cover a variety of applications,
such as aircraft models (AC), academic test problems (NN),
and decentralized interconnected systems (DIS), etc. We inves-
tigate the H2 and H∞ optimal controller design problems for
plants that are inherently static output-feedback stabilizable.

We use the HIFOO [107], [108] and the PENBMI [31] pack-
ages as competing solvers. The HIFOO is a publicly available
MATLAB package which is based on a two-stage method
for solving fixed order H2 and H∞ output-feedback con-
troller design problems. The first stage relies on the standard
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, and the
second stage is based on random gradient sampling. The
PENBMI package is a commercial local optimization solver,
that is able to handle general BMI constrained problems with
quadratic objectives. In our experiments, all the solvers are
initialized with zero input. Other parameters used in HIFOO
and PENBMI are set to default values. All the experiments are
performed in MATLAB 2020a on a desktop computer with a
4-core 3.6GHz CPU and 32GB RAM. MOSEK v8.1 [109] is
used through CVX to solve the resulting convex programs.

The reminder of this section offers detailed discussion of our
experiments on centralized and fully decentralized controller
design problems.

A. Case Study I: Centralized Controller

In this scenario, we use Algorithm 1 to find unstructured
static output-feedback controllers that stabilize the control
plant G and minimizes the norm of the closed-loop system.
This controller is allowed to use the entire measurements
to generate the control decisions. Numerical results for H2

and H∞ controllers are reported in Table I and Table II,
respectively. In the tables, the first and the second columns
contain the model names and their corresponding open-loop
norms. These norms are computed based on the following
system:

Gol =

[
A B1

C1 D11

]
.

The subsequent sections in Tables I and II include the results of
our sequential approach equipped with SDP and parabolic as
well as the results of HIFOO and PENBMI. In the following,
we give a brief explanation of the numbers reported in the
tables:
• η denotes the choice of penalty parameter in (8a). This

parameter is chosen from the set {1 × 10i, 2 × 10i, 5 ×
10i}4

i=−2 in all experiments.
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TABLE I: Results of centralized H2 controller design for COMPleib models.

Name ‖Gol‖2
SDP Parabolic Competitors

η t kf objf kp objp η t kf objf kp objp HIFOO PENBMI

AC1 Inf 1e0 0.19 76 0.038 131 0.034 1e0 0.15 102 0.037 152 0.034 - 0.360
AC2 Inf 1e0 0.17 76 0.038 131 0.034 1e0 0.17 102 0.037 152 0.034 0.050 0.300
AC4 Inf 1e4 0.21 1 11.026 1 11.026 1e4 0.17 1 11.026 1 11.026 - 11.014
AC6 24.606 5e1 0.19 29 2.895 34 2.883 1e2 0.18 74 2.869 75 2.868 3.798 -
AC7 Inf 1e2 0.23 39 0.051 81 0.048 1e2 0.19 61 0.053 250 0.052 0.052 1.184
AC15 176.455 1e0 0.18 27 2.554 37 1.908 2e0 0.17 25 2.669 76 1.776 12.612 353.728
AC17 10.265 1e-1 0.17 23 1.592 32 1.560 1e4 0.18 6 2.246 6 2.246 12.298 1.534
NN2 Inf 1e0 0.16 3 1.206 10 1.189 1e0 0.16 11 1.189 18 1.189 1.565 1.189
NN4 5.563 1e1 0.17 8 2.062 33 1.928 5e1 0.16 10 2.159 47 1.964 1.875 1.832
NN8 5.922 - - - - - - 1e1 0.16 5 1.772 36 1.596 2.279 1.510

NN11 0.142 2e0 0.96 1 0.153 8 0.142 2e0 0.48 2 0.142 3 0.142 0.118 0.149
NN15 Inf 5e1 0.20 66 0.283 180 0.069 5e1 0.18 66 0.286 195 0.073 0.049 0.000
NN16 Inf 2e2 1.06 5 0.134 85 0.125 1e0 0.35 15 0.119 30 0.119 0.291 -
DIS1 5.149 5e0 0.23 3 1.761 156 0.996 1e0 0.18 214 0.820 214 0.820 2.660 -
DIS3 11.653 5e0 0.17 21 1.633 89 1.102 5e0 0.16 31 1.553 92 1.097 1.839 303.850
AGS 7.041 1e3 0.38 217 7.057 226 7.057 - - - - - - 6.995 6.973
PSM 3.847 2e-1 0.18 23 0.242 250 0.072 5e-1 0.15 10 0.496 250 0.091 1.503 0.004
BDT1 0.039 5e-1 0.27 74 0.016 250 0.005 1e0 0.20 206 0.013 250 0.009 0.010 0.006

TABLE II: Results of centralized H∞ controller design for COMPleib models.

Name ‖Gol‖∞
SDP Parabolic Competitors

η t kf objf kp objp η t kf objf kp objp HIFOO PENBMI

AC1 2.167 5e-1 0.19 14 0.000 250 0.000 5e-1 0.17 14 0.000 110 0.000 0.000 0.008
AC2 2.167 1e3 0.18 83 0.602 250 0.296 5e2 0.16 250 0.237 250 0.237 0.111 0.118
AC4 69.990 1e0 0.18 2 70.078 8 69.990 1e0 0.18 2 70.078 11 69.990 0.935 -
AC6 391.782 5e2 0.21 174 6.584 250 4.410 - - - - - - 4.113 4.113
AC7 0.042 1e0 0.22 20 0.000 110 0.000 1e0 0.19 21 0.000 173 0.000 0.064 -

AC15 2.4e3 5e2 0.20 165 39.945 250 20.250 - - - - - - 16.865 15.168
AC17 30.823 1e4 0.19 26 79.491 250 7.748 1e4 0.19 34 71.867 250 7.640 16.639 14.855
NN2 Inf 1e0 0.17 17 2.224 47 2.221 5e0 0.15 5 2.769 16 2.222 2.220 2.221
NN4 31.043 5e0 0.17 18 1.792 67 1.416 5e0 0.16 32 1.551 75 1.411 1.369 1.358
NN8 46.508 5e3 0.18 6 59.946 250 3.585 5e3 0.17 12 43.637 250 3.587 3.387 -
NN11 0.170 5e0 2.26 48 0.460 180 0.169 5e0 1.37 179 0.193 207 0.169 0.107 0.124
NN15 Inf 1e-2 0.19 109 0.278 250 0.130 1e-2 0.17 152 0.232 250 0.134 0.098 0.098
NN16 6.4e14 1e3 0.88 56 0.575 81 0.559 - - - - - - 1.012 -
DIS1 17.320 1e1 0.45 54 4.574 91 4.286 2e1 0.29 99 4.626 104 4.564 4.182 -
DIS3 32.069 1e1 0.30 73 2.613 116 1.302 2e2 0.19 37 5.876 215 1.350 1.341 1.275
AGS 8.182 2e3 0.35 144 8.872 188 8.192 1e4 0.27 209 10.765 250 9.486 8.173 8.173
PSM 4.232 5e0 0.17 20 1.185 41 0.921 1e1 0.16 25 1.231 52 0.921 0.920 0.920
BDT1 5.142 1e-2 0.84 77 0.565 250 0.311 5e-2 0.53 202 0.523 250 0.431 0.266 0.266

• t denotes the average running time to solve each round
of penalized convex relaxation in Algorithm 1.

• kf denotes the number of rounds required to obtain a
feasible point for the original BMI (i.e., the first round
whose resulting point satisfies C = Y Y >) and objf

represents the corresponding objective value (without the
penalty term) at round kf .

• kp and objp, respectively, denote the round number at
which the stopping criteria is met and the corresponding
objective value.

In all of the experiments, we terminate Algorithm 1 if the
percentage of objective value improvement between two con-
secutive rounds is less than 0.1 for H2 and 0.05 for H∞, or

if the number of rounds exceeds 250. In cases where B1B
>
1 is

not a positive definite matrix, we use matrix B1B
>
1 +10−5×I

as the alternative.
Given

∗
h as the optimal solution of either (28a) – (28b) or

(34a) – (34b), we call K(
∗
h) a stabilizing controller for the plant

G if the real part of all eigenvalues of A+BK(
∗
h)C are smaller

than 10−5.

B. Case Study II: Decentralized Controller
This case study is concerned with the design of decen-

tralized controllers. In this scenario, the controller only have
access to a subset of measurements to generate control com-
mands. In this experiment, we only consider the models in
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Fig. 4: Sensitivity of the penalized convex relaxations to
the choice of penalty parameter η (H2 centralized controller
design for “AC4” model).

which control commands u and sensor measurements y are
of the same dimensions.

We use Algorithm 1 to find H2 and H∞ static output-
feedback controllers with diagonal patterns. The results are
reported in Tables III and IV.

As the tables indicate, Algorithm 1 equipped with SDP
and parabolic relaxations provide promising performance in
both centralized and decentralized cases compared to both
PENBMI and HIFOO packages (smaller norm means better
performance).

C. Case Study III: Choice of Penalty Parameter η
This case investigates the sensitivity of different penalized

relaxations to the choice of regularization parameter η. To
this end, we solve H2-norm static output-feedback controller
problem for model ”AC4” for a wide range of η. Similar
to the Example 1, none of the penalized relaxations provide
feasible points for relatively small η (shown in Figure 4). As
η increases, the feasibility violation tr{X − xx>} abruptly
vanishes once η exceeds a certain threshold. As Figure 4
depicted, all penalized relaxations produce feasible points for
a wide range of η values, and within that range, the objective
cost is not very sensitive to the choice of η.

VIII. CONCLUSIONS

This work introduced convex relaxation techniques for
solving a class of optimization problems with piecewise lin-
ear objective function and bilinear matrix inequality (BMI)
constraints. We proposed a novel computationally efficient
convex relaxation, called parabolic relaxation, which relies on

convex quadratic constraints to transform BMI problems into
polynomial time solvable surrogates. To recover feasible points
for the BMI problems, we propose a penalization technique
which is applicable to common practice convex relaxations as
well. We theoretically proved that the penalized relaxations
are guaranteed to provide feasible points for the original BMI
problem. Moreover, to improve the quality of feasible points
for the BMI problems, we proposed a sequential scheme which
is guaranteed to converge under certain assumptions. The
performance of the sequential scheme is emprically tested on
H2 and H∞ control design problems for benchmark plants
from COMPleib [59]. The numerical results verified that the
method achieves promising performance in comparison with
the HIFOO and the PENBMI packages.
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APPENDIX

In this section, we provide detailed proofs for Theorems 1,
2, and 3. To this end, we first formulate the following auxiliary

non-convex optimization problem:

minimize
Y ∈Rn×m

t∈Ro

〈C0,Y 〉+ 1>t+ η‖Y − Y̌ ‖2F (37a)

subject to γ̄i : +〈Ci,Y 〉+ ci ≤ ti, i ∈ {1, . . . , o} (37b)

¯
γi : −〈Ci,Y 〉 − ci ≤ ti, i ∈ {1, . . . , o} (37c)

Λ : p(Y ,Y Y>) � 0, (37d)
νi : 〈Wi,Y 〉 = 0, i ∈ {1, . . . , l}. (37e)

where the quadruplet (γ̄,
¯
γ,Λ,ν) ∈ Ro×Ro×Sq×Rl contains

the dual variables associated with the constraints (37b), (37c),
(37d), and (37e), respectively. Observe that problem (37a) –
(37e) is equivalent to (1a) – (1c) if η = 0. This implies that
both problems have the same feasible set. In what follows,
we state a few lemmas that will be used later to prove the
theorems.

Lemma 1. Every optimal solution (
∗
Y ,

∗
t) of the problem (37a)

– (37e) satisfies:

0 ≤ ‖
∗
Y − Y̌ ‖F − dF (Y̌ ) ≤ η−1

o∑
i=0

‖Ci‖F (38)

where dF is defined in (14).

Proof. According to Definition 3, the distance between an
arbitrary point Y̌ and any point in F is greater than or equal
to dF (Y̌ ). This concludes the left side inequality in (38). To
prove the right side inequality, let Y be an arbitrary member of
{Y ∈ F | ‖Y − Y̌ |F = dF (Y̌ )}. Since

∗
Y is the minimizer of

the optimization problem (37a) – (37e) and due to feasibility
of Y , one can write:

f(
∗
Y ) + η‖

∗
Y − Y̌ ‖2F ≤ f(Ȳ ) + η‖Ȳ − Y̌ ‖2F. (39)

Hence,

η‖
∗
Y − Y̌ ‖2F − ‖

∗
Y − Y̌ ‖F

o∑
i=0

‖Ci‖F

≤ η‖
∗
Y − Y̌ ‖2F −

o∑
i=0

|〈Ci,
∗
Y − Y̌ 〉| (40a)

≤ −f(Y̌ ) + f(
∗
Y ) + η‖

∗
Y − Y̌ ‖2F (40b)

≤ −f(Y̌ ) + f(Ȳ ) + η‖Ȳ − Y̌ ‖2F (40c)

≤ η‖Ȳ − Y̌ ‖2F +

o∑
i=0

|〈Ci, Ȳ − Y̌ 〉| (40d)

≤ η‖Ȳ − Y̌ ‖2F + ‖Ȳ − Y̌ ‖F

o∑
i=0

‖Ci‖F (40e)

which concludes the right side of (38).

The next lemma guarantees that if the initial point Y̌
satisfies the MFCQ regularity condition, then under some
assumptions, the MFCQ condition is satisfied by every optimal
point of the problem (37a) – (37e) as well.

Lemma 2. Consider an arbitrary point Y̌ ∈ Rn×m. Every
optimal solution (

∗
Y ,

∗
t) of the problem (37a) – (37e) satisfies

s(
∗
Y )≥s(Y̌ )−2(α+β+β‖Y̌ ‖)‖

∗
Y−Y̌ ‖F − β‖

∗
Y−Y̌ ‖2F. (41)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

Proof. Based on the definition of s, there exist Ž ∈ Rn×m
such that δ̌2 + ‖Ž‖2F ≤ 1, 〈Wi, Ž〉 = 0 for every i ∈
{1, . . . , l}, and s(Y̌ ) is equal to

λmin{(1− δ̌)P−p(δ̌Y̌ + Ž, δ̌Y̌ Y̌ >+ŽY̌ >+Y̌ Ž>)}. (42)

On the other hand,

s(
∗
Y ) ≥

λmin{(1− δ̌)P−p(δ̌
∗
Y +Ž, δ̌

∗
Y
∗
Y>+Ž

∗
Y>+Y̌

∗
Z>)} ≥

λmin{(1− δ̌)P−p(δ̌Y̌ +Ž, δ̌Y̌ Y̌>+ŽY̌>+Y̌ Ž>)}−
λmax{−P + p(δ̌(

∗
Y − Y̌ ), δ̌(

∗
Y − Y̌ )(

∗
Y − Y̌ )>+

(δ̌Y̌ + Ž)(
∗
Y − Y̌ )> + (

∗
Y − Y̌ )(δ̌Y̌ + Ž)>)} ≥

s(Y̌ )−2(α|δ̌|+β‖δ̌Y̌ +Ž‖F)‖
∗
Y −Y̌ ‖F − β|δ̌|‖

∗
Y −Y̌ ‖2F ≥

s(Y̌ )−2(α+β+β‖Y̌ ‖F)‖
∗
Y −Y̌ ‖F− β‖

∗
Y −Y̌ ‖2F (43)

which concludes (41).

The next lemma guarantees the existence of Lagrange
multipliers corresponding to optimal solutions of the problem
(37a) – (37e).

Lemma 3. Let Y̌ ∈ Rn×m be an initial point that satisfies

ď ,
s(Y̌ )

3κ+2(α+β+β‖Y̌ ‖F) +
√
βs(Y̌ )

− dF (Y̌ ) > 0. (44)

If

η > ď−1
o∑
i=0

‖Ci‖F, (45)

then for every primal optimal pair (
∗
Y ,

∗
t) of (37a) – (37e),

there exists Lagrange multipliers (
∗

¯
γ,
∗
γ̄,
∗
Λ,

∗
ν) ∈ Ro × Ro ×

Sq×Rl that satisfy the following Karush–Kuhn–Tucker (KKT)
conditions

C0 + 2η(
∗
Y − Y̌ ) +

o∑
i=1

(
∗
γ̄i −

∗

¯
γ
i
)Ci

+ [〈Qij ,
∗
Λ〉]ij + 2[〈Rij ,

∗
Λ〉]ij

∗
Y +

l∑
i=1

νiWi = 0 (46a)

1− ∗
γ̄i −

∗

¯
γ
i

= 0, l ∈ {1, . . . , o} (46b)
∗
γ̄i(+〈Ci,Y 〉+ ci − ti) = 0, l ∈ {1, . . . , o} (46c)
∗

¯
γ
i
(−〈Ci,Y 〉 − ci − ti) = 0, l ∈ {1, . . . , o} (46d)

∗
Λp(

∗
Y ,

∗
Y
∗
Y>) = 0 (46e)

∗

¯
γ
i
≥ 0, l ∈ {1, . . . , o} (46f)

∗
γ̄i ≥ 0, l ∈ {1, . . . , o} (46g)
∗
Λ � 0, (46h)

and

tr{
∗
Λ}
η
≤ κ−1. (47)

Proof. Consider an arbitrary optimal point (
∗
Y ,

∗
t). According

to Lemma 1 and the assumptions (44) and (45), we have

‖
∗
Y − Y̌ ‖F ≤ dF (Y̌ ) + η−1

o∑
i=0

‖Ci‖F (48a)

< dF (Y̌ ) + ď (48b)

<
s(Y̌ )

3κ+ 2(α+β+β‖Y̌ ‖F) +
√
βs(Y̌ )

. (48c)

Hence, according to Lemma 2, s(
∗
Y ) > 0 and

∗
Y satisfies the

MFCQ condition and there exists (
∗

¯
γ,
∗
γ̄,
∗
Λ,

∗
ν) that satisfies the

KKT conditions (46a) – (46h). Now, in order to prove (47),
consider the inner product (46a) and

∗
Z:

〈C0,
∗
Z〉+ 2η〈

∗
Y − Y̌ ,

∗
Z〉+

o∑
i=1

(
∗
γ̄i −

∗

¯
γ
i
)〈Ci,

∗
Z〉+

〈[〈Qij ,
∗
Λ〉]ij + 2[〈Rij ,

∗
Λ〉]ij

∗
Y ,

∗
Z〉+

l∑
i=1

νi〈Wi,
∗
Z〉 = 0

On the other hand, based on the definition of s, we have:

s(
∗
Y )tr{

∗
Λ}

= λmin{−p(
∗
Y +

∗
Z,

∗
Y
∗
Y>+

∗
Z
∗
Y>+

∗
Y
∗
Z>)}tr{

∗
Λ} (49a)

≤ 〈−p(
∗
Y +

∗
Z,

∗
Y
∗
Y>+

∗
Z
∗
Y>+

∗
Y
∗
Z>),

∗
Λ〉 (49b)

= 〈P − p(
∗
Y ,

∗
Y
∗
Y>)− p(

∗
Z,

∗
Z
∗
Y>+

∗
Y
∗
Z>),

∗
Λ〉 (49c)

= 〈P − p(
∗
Z,

∗
Z
∗
Y>+

∗
Y
∗
Z>),

∗
Λ〉 (49d)

= −
〈
[〈Qij ,

∗
Λ〉]ij + 2[〈Rij ,

∗
Λ〉]ij

∗
Y ,

∗
Z
〉

(49e)

= 〈C0,
∗
Z〉+2η〈

∗
Y − Y̌ ,

∗
Z〉+

o∑
i=1

(
∗
γ̄i −

∗

¯
γ
i
)〈Ci,

∗
Z〉 (49f)

≤ 2η‖
∗
Y − Y̌ ‖F +

o∑
i=0

‖Ci‖F. (49g)

Hence,

tr{
∗
Λ}
η
≤

2‖
∗
Y−Y̌ ‖F + η−1

∑o
i=0 ‖Ci‖F

s(
∗
Y )

. (50)

which according to Lemma 2, concludes:

tr{
∗
Λ}
η
≤

2‖
∗
Y−Y̌ ‖F + η−1 ∑o

i=0 ‖Ci‖F
s(Y̌ )−2(α+β+β‖Y̌ ‖F)‖

∗
Y−Y̌ ‖F−β‖

∗
Y−Y̌ ‖2F

. (51)

Now, substituting ‖
∗
Y− Y̌ ‖F and η−1

∑o
i=0 ‖Ci‖F with the

upper bound from (48c), proves (47).

Next, the upper bound (47) will be used to show that the
problem (37a) – (37e) can be relaxed to (8a) – (8d) with no
effect on the solution.

Proof of Theorem 2. In order to prove the theorem, it suffices
to construct a strictly diagonally dominant Lagrange multiplier
associated with the constraint (8d) to certify that X = Y Y >.
Let (

∗
Y ,

∗
t) and (

∗

¯
γ,
∗
γ̄,
∗
Λ,

∗
ν) represent a pair of primal and

dual solutions for the problem (37a) – (37e) whose existence
is guaranteed by Lemma 3. We claim that the matrix

∗
Ω , I + η−1[〈Rij ,

∗
Λ〉]ij (52)
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is strictly diagonally-dominant and therefore serves as a La-
grange multiplier for (8d) which is an immediate consequence
of (47).

To prove the uniqueness of solution, assume by contradic-
tion that the penalized relaxation (8a) – (8d) has two distinct
solutions (

∗
Y1,

∗
X1) and (

∗
Y2,

∗
X2). Due to convexity of (8a) –

(8d), the point ((
∗
Y1 +

∗
Y2)/2, (

∗
X1 +

∗
X2)/2) is a solution as

well. Hence,
∗
X1 +

∗
X2

2
=

(
∗
Y1 +

∗
Y2)(

∗
Y1 +

∗
Y2)>

4
(53a)

⇒
∗
Y1

∗
Y >1 +

∗
Y2

∗
Y >2

2
=

(
∗
Y1 +

∗
Y2)(

∗
Y1 +

∗
Y2)>

4
(53b)

⇒ (
∗
Y1 −

∗
Y2)(

∗
Y1 −

∗
Y2)> = 0 (53c)

which contradicts the original assumption that (
∗
Y1,

∗
X1) and

(
∗
Y2,

∗
X2) are distinct.

Proof of Theorem 1. The exactness of relaxation is an imme-
diate consequence of Theorem 2 for dF (Y̌ ) = 0. Due to
optimality of

∗
Y and feasibility of

∗
Y , we have:

f(
∗
Y ) + η × ‖

∗
Y − Y̌ ‖2 ≤ f(Y̌ ) (54)

which proves f(
∗
Y ) ≤ f(Y̌ ).

Lemma 4. Consider a set Q ∈ F for which there exists
s̃, ỹ > 0 such that s(Y ) > s̃ and ‖Y ‖F < ỹ for every Y ∈ Q.
For every η that satisfies (17), define hQ,η : Q → F as the
function mapping any initial point Y̌ ∈ Q in the problem
(37a) – (37e) to its unique solution

∗
Y (whose existence

and uniqueness is guaranteed by Theorem 1). Then hQ,η is
continuous throughout Q.

Proof. According to Berge’s maximum theorem, hQ,η is upper
hemicontinuous. However, according to Theorem 1 it is a
function and therefore, it is continuous.

Proof of Theorem 3. Let {Y̌ k}∞k=0 represent the sequence
generated by Algorithm 1. Assume by induction that Y k ∈ F̌
and let (

∗
Y ,

∗
Y
∗
Y >) be the solution of the problem (8a) –

(8d) with Y̌ = Y k. According to Theorem 1, we have
f(
∗
Y ) ≤ f(Y k) and Y k+1 =

∗
Y ∈ F̌ . As a consequence, the

sequence {f(Y k)}∞k=0 is monotonically non-increasing and
convergent. On the other hand, due to optimality of Y k+1

and feasibility of Y k, we have:

‖Y k+1 − Y k‖2F ≤ η−1(f(Y k)− f(Y k+1)) (55)

which implies that the sequence {Y k}∞k=0 is convergent to a
point Y ∞ ∈ F̌ .

Define hF̌,η : F̌ → F̌ as the function mapping any initial
point Y̌ of the problem (8a) – (8d) to its unique solution.
According to Lemma 4, hF̌,η is continuous and therefore:

hF̌,η(Y ∞) = Y ∞. (56)

Now according to Lemma 3, there exists Lagrange multipliers
that along with Y ∞ satisfy (46a) – (46h). With the term
2η(

∗
Y − Y̌ ) vanishing from (46a), the equations (46a) – (46h)

boil down to the KKT conditions for the original BMI problem
(1a) – (1c). This implies that Y ∞ is a locally optimal solution
for the BMI problem (1a) – (1c).
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