
1

Enhanced Modeling of Contingency Response in
Security-constrained Optimal Power Flow

Tuncay Altun, Ramtin Madani, Alper Atamtürk, Ross Baldick, and Ali Davoudi,

Abstract—This paper provides an enhanced modeling of the
contingency response that collectively reflects high-fidelity phys-
ical and operational characteristics of power grids. Integrating
active and reactive power contingency responses into the security-
constrained optimal power flow (SCOPF) problem is challeng-
ing, due to the nonsmoothness and nonconvexity of feasible
sets in consequence of piece-wise curves representing generator
characteristics. We introduce a continuously-differentiable model
using functions that closely resemble PV/PQ switching and the
generator contingency response. These models enforce physical
and operational limits by optimally allocating active power
imbalances among available generators and deciding the bus
type to switch from the PV type to the PQ type. The efficacy of
this method is numerically validated on the IEEE 30-bus, 300-
bus, and 118-bus systems with 12, 10, and 100 contingencies,
respectively.

Index Terms—Contingency response, PV/PQ switching,
security-constrained optimal power flow.

I. INTRODUCTION

POWER flow analysis underpins many static and dynamic
applications, including stability analysis, optimal power

flow, contingency analysis, etc. Accurate power flow solutions
ensure the generation-demand balance under all circumstances.
However, since transmission losses cannot be identified a pri-
ori, the total power needed to supply a known demand remains
unpredictable [1]. The common practice is to assume that there
exist at least one slack bus, where active power generation can
be readjusted to compensate for imbalances [2], [3]. Power
flow models that are based on multiple slack buses alleviate
the burden of a pre-specified single slack bus by dispatching
the imbalance among participating sources [4]. This approach
better mimics the operation of power systems provided that
participation factors of generators are accurately determined.
These participation factors can be appointed based on machine
inertia [5], governor droop characteristics [6], [7], frequency
control [8], and economic dispatch [9]–[11]. Another major
aspect of post-contingency analysis is the determination of
reactive power dispatch and voltage magnitudes [12]. When
the reactive power limit of a generator is reached, it cannot
maintain predefined voltage settings, and the bus type should
inevitably switch from PV bus to PQ bus [13]. The active and
reactive power limits are handled via controller design [14],

This work was supported by the National Science Foundation and De-
partment of Energy under awards ECCS-1809454 and DE-AR0001086, re-
spectively. Tuncay Altun, Ramtin Madani, and Ali Davoudi are with the
University of Texas at Arlington. Alper Atamtürk is with University of
California, Berkeley. Ross Baldick is with the University of Texas at Austin (e-
mail: tuncay.altun@uta.edu; ramtin.madani@uta.edu; atamturk@berkeley.edu,
baldick@mail.utexas.edu, davoudi@uta.edu).

[15] by sacrificing the optimal operation. Moreover, possible
component outage, i.e. generator or line, are rarely studied in
the literature [16].

Security-constrained optimal power flow (SCOPF) formu-
lations focus on the optimization of a robust power dispatch
with respect to the outage of arbitrary sets of generators or
lines [3], [17]. Corrective models of SCOPF allow limited
adjustment of operating points in response to contingencies,
i.e., redispatch, in post-contingency scenarios [18]. In this
case, to account for a realistic post-contingency behavior of
generators, additional constraints have to be incorporated into
corrective models of SCOPF formulation [19]. These addi-
tional constraints are based on nonsmooth, i.e., discontinuous,
curves of real and reactive power responses to avoid prevent
both active and reactive power violations [20]. However,
nonsmooth models prevent the use of power flow algorithms
due to non-differentiability [21]. This problem, and its possible
adverse consequences, such as an increased iteration count and
convergence to an unstable region, have been discussed in [20].

Alternative differentiable power flow models using hyper-
bolic and sigmoid functions [19], patching functions with
complementary homotopy methods [21], and discrete and con-
tinuous auxiliary variables, are discussed in [13]. In this paper,
we introduce several continuously-differentiable models that
respect high-fidelity physical models of generators considering
an extensive list of contingency scenarios. These models pre-
vent physical and operational violations by means of optimally
allocating active power imbalances among available generators
and deciding the bus type, i.e., PV/PQ switching, respectively.
While the employed local search solver fail to converge using
continuous complementarity condition from [13], the proposed
model enable the recovery of fully feasible solutions in all of
the simulated cases.

The rest of this paper has the following organization.
Section II discusses the preliminary materials. Section III
elaborates the enhanced modeling of the generator response
including representation of a distributed slack bus as well
as active and reactive power contingency response models
for a generator. Section IV introduces several continuously-
differentiable models that account for active and reactive
power contingency responses in the SCOPF formulation. In
Section V, the proposed enhanced modeling of generator
response in SCOPF solution is verified through a numerical
benchmark system. Section VI concludes the paper.
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Figure 1. Contingency scenario examples for a portion of the power grid.
The base case refers to the scenario 0, i.e., no contingency. The red labels
highlight the failure of a generator and a transmission line. In Scenario 1,
generator 1 fails while generator 2 readjusts its output according to weight
α1,2. Scenario 2 illustrates a transmission line failure, while generators 1 and
2 contribute to the power re-dispatch ∆2.

II. NOTATIONS AND POWER GRID TERMINOLOGIES

A. Notations

Bold lowercase and uppercase letters (e.g., a, A) represent
vectors and matrices, respectively. 1 and 0 refer to vectors
with all elements as 1 and 0, respectively. The sets of complex
and real numbers are shown with C and R, respectively. Hn
and Sn represent the hermitian and symmetric matrices of size
n×n, respectively. imag{·} and real{·} define the imaginary
and real parts of a complex matrix or number, respectively.
Superscripts (·)> and (·)∗ stand for the transpose and conjugate
transpose operator, respectively. | · | represents the cardinality
of a set or the absolute/magnitude value of a vector/scalar.
diag{·} forms a vector using diagonal entries of a given
matrix. [·] composes a diagonal matrix from a given vector.

B. Power Grid Terminologies

Figure 1 shows a snapshot of a power grid, where any single
bus can accommodate an arbitrary number of generators and
loads. The set of contingency scenarios is referred to as C, with
each positive member accounting for the outage of, at least,
one network component, e.g., a generator or a transmission
line. Herein, the base case scenario, i.e., normal operation
with no contingency, is shown by 0 ∈ C. For the rest of the
scenarios, c ∈ C, grid terminologies are detailed as:
• Buses and Lines: The transmission grid is structured

using a directed graph H = (N ,L), where the sets of
buses and lines are denoted by N and L, respectively.
Let ~Lc, ~Lc ∈ {0, 1}|L|×|N| be the pairs for the from
and to line-incidence matrices in a contingency case,

respectively. ~Lc,li = 1 and ~Lc,li = 1 for every l ∈ L, iff
the transmission line l starts at bus i, and vice versa, re-
spectively. Matrices Yc ∈ C|N |×|N|, ~Yc, ~Y c ∈ C|L|×|N|
respectively denote the bus-admittance, and the from and
to line-admittance matrices (See [22] for the definition
of admittance matrices). Let smax

c ∈ (C ∪ {∞})|L| be
the vector of apparent power flow limits on transmission
lines. Define v0, vc ∈ C|N | as the vectors of complex
nodal voltages in the base and contingency cases, re-
spectively. Define vmax,vmin ∈ C|N | as the vectors of
the maximum and minimum voltage magnitudes, respec-
tively.

• Generators/Loads: Let G be the set of generators and
Gc ∈ {0, 1}|G|×|N| as the generator incidence matrix
in a contingency case; (g, i) element is 1 iff generator
g ∈ G is located at the bus i ∈ N and not outed in
the event of contingency c. Cc ∈ {0, 1}|G|×|G| denotes
a diagonal incidence matrix whose (g, g) element is 1,
iff the generator g ∈ G is in service in the event of con-
tingency c. sdemc ∈ C represents the vectors of apparent
power demand. Let sgen0 ∈ C|G|, and pgen0 , qgen0 ∈ R|G|,
respectively, represent the vectors of apparent, active, and
reactive power generations in the base case, while for
every c ∈ C sgenc ∈ C|G|, and pgenc , qgenc ∈ R|G| represent
the corresponding post-contingency power generation
vectors. Define pmax

c , qmax
c ∈ R|G| and pmin

c , qmin
c ∈ R|G|

as the vectors of the maximum and minimum active and
reactive power generations, respectively.

III. ENHANCED MODELING OF A GENERATOR RESPONSE

To capture the nonlinear characteristics of a power system,
such as PV/PQ switching and generator contingency response,
and to streamline these policies, we define the following set.

Definition 1. For θ ∈ [0, π/4), define Fθ ⊆ R2 as

Fθ ,
{
(x, y) ∈ R2 | − 1 ≤ x ≤ 1

∧ min{max {0, y − tan(θ)x},max{0, 1− x}} = 0

∧ min{max {0, tan(θ)x− y},max{0, 1 + x}} = 0
}
, (1)

where θ denotes the slope for the segment within the interval
[−1, 1]. Herein, each pair (x, y) represents the coordinates on
a piecewise-smooth curve. In the following section, we will
provide a smooth version of Fθ in order to facilitate local
search. This is illustrated in Figure 2.

A. Generator Active Power Contingency Response

For now, assume that there is no limit imposed on post-
contingency active power injections, i.e.,

pmax
c,g = −pmin

c,g =∞ ∀c ∈ C \ 0, g ∈ G. (2)

Given assumption (2), the active power imbalance due to
changes in network configuration, transmission losses, or load
profile is distributed among operational generators as

pgenc,g = pgen0,g + αc,g∆c, (3)

where
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Figure 2. The characteristics of (a) (x, y) ∈ Fθ and (b) (x, y) ∈ Fsmooth
θ

for different slope values, θ = 0, θ = π/8, θ = π/6, θ = π/4.

• pgenc,g is the post-contingency active power produced by
g ∈ G;

• pgen0,g is the base case active power of generator g;
• ∆c represents the amount of post contingency redispatch;
• αc,g denotes the weight of contribution to this redispatch

by generator g.
If a generator is operational but not selected to contribute to
redispatch, it maintains its active power generation from the
base case, i.e.,

αc,g = 0 ⇒ pgenc,g = pgen0,g . (4)

In the presence of post-contingency generator active power
limits (i.e., when the assumption (2) does not hold), a generator
that contributes to a given contingency can readjust its active
power generation to the extent that its capacity limits permit.
This behavior can be formulated using logical functions, and
Min-Max operators. For every c ∈ C and g ∈ G, the logical
functions representation of generator active power contingency
response, using disjunction of linear constraints, is as follows:

pgenc,g = pmax
c,g , if pmax

c,g < pgen0,g + αc,g∆c, (5a)

pgenc,g = pmin
c,g , if pmin

c,g > pgen0,g + αc,g∆c, (5b)

pgenc,g = pgen0,g + αc,g∆c, otherwise. (5c)

Another way of formulating (5) is by introducing two binary
variables xP

+

c,g , x
P−

c,g ∈ {0, 1} for every c ∈ C and g ∈ G, to
indicate the mode of operation. Then, the three conditions in
(5) can be stated as

pgen0,g +αc,g∆c−pgenc,g ≤Mc,g(1−xP
+

c,g ) ∀c ∈ C, g ∈ G, (6a)

pgenc,g −p
gen
0,g −αc,g∆c ≤Mc,g(1−xP

−

c,g ) ∀c ∈ C, g ∈ G, (6b)

pmax
c,g − pgenc,g ≤ (pmax

c,g − pmin
c,g )xP

+

c,g ∀c ∈ C, g ∈ G, (6c)

pgenc,g − pmin
c,g ≤ (pmax

c,g − pmin
c,g )xP

−

c,g ∀c ∈ C, g ∈ G, (6d)

where the “big-M” multipliers, Mc,g , are chosen sufficiently
large to ensure that (6) is equivalent to (5). Observe that
according to (6a) and (6b)

xP
+

c,g = xP
−

c,g = 1 ⇒ pmin
c,g ≤ pgenc,g = pgen0,g + αc,g∆c ≤ pmax

c,g

xP
+

c,g = 1, xP
−

c,g = 0 ⇒ pmax
c,g = pgenc,g ≤ p

gen
0,g + αc,g∆c

xP
+

c,g = 0, xP
−

c,g = 1 ⇒ pgen0,g + αc,g∆c ≤ pgenc,g = pmin
c,g

xP
+

c,g = xP
−

c,g = 0 ⇒ pmin
c,g = pgenc,g = pmax

c,g .
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Figure 3. Generator active power response relation between pre- and post-
contingency: (a) Actual characteristics: x = pgenc,g , y = pgen0,g + αc,g∆c, (b)

Normalization of the actual characteristics: x̂ =
2pgenc,g−p

max
c,g +pmin

c,g

pmax
c,g +pmin

c,g
, ŷ =

2(p
gen
0,g+αc,g∆c)−pmax

c,g +pmin
c,g

pmax
c,g +pmin

c,g
.

Additionally, generator active power contingency response
can be expressed using Min and Max operators as

pgenc =max{pmin
c ,min{Cc(pgen0 +αc∆c),p

max
c }} ∀c∈C, (7)

which can be equivalently formulated based on the defined
set (1), for every c ∈ C and g ∈ G, as(2pgenc,g −pmax

c,g +pmin
c,g

pmax
c,g + pmin

c,g

,
2(pgen0,g +αc,g∆c)− pmax

c,g +pmin
c,g

pmax
c,g + pmin

c,g

)
∈Fπ

4
. (8)

Equations (5) - (8) are all equivalent and imply a piecewise-
smooth model as shown in Figure 3 (a).

B. Generator Reactive Power Contingency Response

Ideally, the generators that contribute to a given contingency
redispatch may need to readjust their post-contingency reactive
power production in order to retain the base case voltage
magnitude,

|vc| = |v0|. (9)

However, in the presence of tight reactive power limits,
maintaining pre-contingency voltage magnitudes might not be
possible. Therein,
• the bus voltage magnitude can drop below its base-case

level if all generator reactive power upper limits of the
bus are binding;

• the bus voltage magnitude is allowed to rise above its
base-case level if all generator reactive power lower limits
of the bus are binding.

This requirement can be formulated as follows:

qmin
c,g ≤qgenc,g ≤qmax

c,g , |vc,i|= |v0,i| ∀c∈C, g∈G, i∈N , (10a)

qgenc,g = qmax
c,g , |vc,i|< |v0,i| ∀c∈C, g∈G, i∈N , (10b)

qgenc,g = qmin
c,g , |vc,i|> |v0,i| ∀c∈C, g∈G, i∈N . (10c)

Alternatively, we can reformulate (10) with respect to aux-
iliary binary variables:

|v0,i|−|vc,i| ≤ (vmax
i −vmin

i )(1−xQ
+

c,g ) ∀c∈C, g∈G, (11a)

|vc,i|−|v0,i| ≤ (vmax
i −vmin

i )(1−xQ
−

c,g ) ∀c∈C, g∈G, (11b)

qmax
c,g −qgenc,g ≤ (qmax

c,g −qmin
c,g )xQ

+

c,g ∀c∈C, g∈G, (11c)
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qgenc,g −qmin
c,g ≤ (qmax

c,g −qmin
c,g )xQ

−

c,g ∀c∈C, g∈G. (11d)

where i ∈ N is the bus where g is located and xQ
+

c,g , x
Q−

c,g ∈
{0, 1} denote the introduced binary variables. Observe that

xQ
+

c,g = xQ
−

c,g = 1 ⇒ |vc,i| = |v0,i| ∧ qmin
c,g ≤ qgenc,g ≤ qmax

c,g ,

xQ
+

c,g = 0, xQ
−

c,g = 1 ⇒ |vc,i| ≤ |v0,i| ∧ qgenc,g = qmax
c,g ,

xQ
+

c,g = 1, xQ
−

c,g = 0 ⇒ |vc,i| ≥ |v0,i| ∧ qgenc,g = qmin
c,g ,

xQ
+

c,g = xQ
−

c,g = 0 ⇒ qmin
c,g = qgenc,g = qmax

c,g .

In addition to the representation in (10) and (11), for every
c ∈ C, generator reactive power contingency response can be
expressed using Min and Max operators as follows:

min
{
max{0,Gc(|v0|−|vc|)},max{0, qmax

c −qgenc }
}
=

min
{
max{0,Gc(|vc|−|v0|)},max{0, qgenc −qmin

c }
}
=0. (12)

Equation (10) can be equivalently formulated based on the
defined set (1) for every c ∈ C, g ∈ G and i ∈ N as(2qgenc,g − qmax

c,g − qmin
c,g

qmax
c,g − qmin

c,g

, |v0,i| − |vc,i|
)
∈ F0. (13)

The formulations, (10) – (13), refer to the PV/PQ switching
as demonstrated in Figure 4 (a). Herein, PV bus means that
the bus voltage magnitude and the generation level of active
power are fixed whereas its voltage phase angle and reactive
power generation are varying. When it hits the reactive power
capacity limits to sustain the value of voltage magnitude in
the base case, the bus type needs to become PQ. This bus
type means that the power generations, e.g., real and reactive,
are constant, whereas the voltage magnitude and phase angle
are varying. Similar to the characteristic of active power,
reactive power contingency response implies a piecewise-
smooth model.

qmin

qmax
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1
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^

Figure 4. Generator reactive power response relation between pre- and post-
contingency: (a) Actual characteristics: x = qgenc,g , y = |v0,i| − |vc,i|, (b)

Normalization of the actual characteristics: x̂ =
2qgenc,g −q

max
c,g −q

min
c,g

qmax
c,g −qmin

c,g
, ŷ =

|v0,i| − |vc,i|.

IV. SECURITY-CONSTRAINED OPTIMAL POWER FLOW

This section elaborates the active and reactive power con-
tingency response models. Herein, devised objective function
minimizes the generational cost in the base case and secures
the grid to contingency scenarios.

A. Non-differentiable Contingency Response in SCOPF For-
mulation

SCOPF with respect to the outage of an arbitrary set of
generators and lines can be formulated as

minimize h(pgen
0 ) (14a)

subject to

sdemc + diag{vcv∗c Y ∗c } = G>c (pgen
c + iqgenc ) ∀c ∈ C (14b)

|diag{~Lc vcv∗c ~Y ∗c }| ≤ smax
c ∀c ∈ C (14c)

|diag{ ~Lc vcv
∗
c

~Y ∗c }| ≤ smax
c ∀c ∈ C (14d)

pmin
c ≤ pgen

c ≤ pmax
c ∀c ∈ C (14e)

qmin
c ≤ qgenc ≤ qmax

c ∀c ∈ C (14f)

vmin ≤ |vc| ≤ vmax ∀c ∈ C (14g)

(2pgen
c −pmax

c +pmin
c

pmax
c +pmin

c

,
2Cc(p

gen
0 +αc∆c)−pmax

c +pmin
c

pmax
c + pmin

c

)
∈ Fπ

4
∀c ∈ C (14h)(2qgenc −qmax

c −qmin
c

qmax
c − qmin

c

,Gc(|v0|−|vc|)
)
∈ F0 ∀c ∈ C (14i)

variables pgen
0 ,pgen

c , qgenc ,αc ∈ R|G|; v0,vc ∈ C|N|; ∆c ∈ R

where (14a) represents the cost of producing power in the
base case. (14b) fulfills the apparent power balances in the
network, whereas (14c)–(14d) enforce the apparent power
flow limits over transmission lines. (14e)–(14f) represent the
generation boundaries for active and reactive power. The
inequality (14g) limits the nodal voltage magnitude. Equation
(14h) represents coupling constraints on generators that relate
pre- and post-contingency active power dispatch, while (14i)
stands for the coupling constraints that relate pre- and post-
contingency reactive power dispatch with respect to generator
capacity limits. It should be noted that (14h) and (14i) are the
normalized versions of (5) and (10), respectively.

Constraints (14h) and (14i) are major sources of complexity
which is due to non-smoothness of the curves F0 and Fπ

4
.

The main reason behind their normalizations is to conveniently
substitute these curves with a smooth sigmoid surrogate. In
the remainder of this section, we employ different families
of continuously-differentiable models as alternatives for (14h)
and (14i).

B. Continuously-differentiable Contingency Response

The set defined in (1) represents a non-differentiable curve.
To facilitate the task of local search algorithms, we define a
family of continuously-differentiable curves that closely re-
semble generator contingency responses. Such surrogates can
be constructed using any of the following sigmoid functions:

a1(x) ,
log(1 + x)− log(1− x)

2
(15a)

a2(x) ,
2

π
tan

(πx
2

)
(15b)

a3(x) ,
x√

1− x2
(15c)
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Figure 5. Sigmoid functions given in (15a)-(15e) are normalized at the origin.

a4(x) ,
2√
π
ierf(x) (15d)

a5(x) ,
x

1− |x|
(15e)

that are commonly-used in other areas. These sigmoids are
illustrated in Figure 5.

Definition 2. Assume that a : R → (−1, 1) is an arbitrary
odd, continuously differentiable, and monotonically increasing
function that satisfies

lim
x→1

a(x) =∞. (16)

Let θ ∈ [0, π2 ), h > 0, and k be a non-negative integer. Define
the family of curves

F smooth
θ, a, h, k ,

{(a(y)− y
h

y2k+tan(θ)y, y
)
∈R2 | y∈R

}
, (17)

as continuously-differentiable surrogates for Fθ.

Constants h and k offer a trade-off between the resemblance
with Fθ and smoothness. This is demonstrated by Figures 6,
7, 8 and 9. Constants θ and k denote the angle of curve and
the approximation order at the origin. Figures 10 and 11 illus-
trate the resemblance between generator’s actual contingency
response and candidate curve that are obtained using (15).

Given an appropriate sigmoid and tuning parameters, one
can substitute constraints (14h) and (14i) with the followings:(2pgenc,g −pmax

c,g +pmin
c,g

pmax
c,g + pmin

c,g

,
2(pgen0,g +αc,g∆c)−pmax

c,g +pmin
c,g

pmax
c,g + pmin

c,g

)
∈F smooth

π
2
,a,h,k

(18a)(2qgenc,g − qmax
c,g − qmin

c,g

qmax
c,g − qmin

c,g

, |v0,i| − |vc,i|
)
∈ F smooth

0, a, h, k. (18b)

The candidate curves given in (15) include inverse hyper-
bolic tangent (15a), inverse arctangent (15b), inverse alge-
braic (15c), inverse error (15d), and inverse absolute-value
functions. In the following section, we examine the merits of

the proposed surrogate functions on the performance of local
search algorithms for SCOPF.

V. CASE STUDIES

Numerical studies on the IEEE 30-bus, 118-bus, and 300-
bus systems demonstrate the efficacy of the continuously-
differentiable SCOPF model. The main purpose is to minimize
pre-contingency power generation cost while securing the
post-contingency operation. The secure operation prevents
physical and operational violations by means of optimally,
allocating active power imbalances among available generators
and deciding the type of bus, i.e., PV/PQ switching, respec-
tively. To this end, we consider several numerical experiments
on the IEEE benchmark under an extensive list of contingency
scenarios, each representing the outage of randomly chosen
components, e.g., generator or line. Herein, it is ensured
that randomly-chosen lines do not lead to an islanding in
the grid. These studies are examined on a PC with 16-core,
Xeon processor, and 256 GB RAM using Artelys Knitro
v12.2.2. The allowable feasibility violation is set to 10−6 for
the obtained solution of given scenarios in Table I and VI.
The h and k values used in the simulations are given and
demonstrated by Figures 10 and 11. For all of the case studies,
we also simulated the continuous complementarity model from
[13], which failed to converge to a feasible point.

A. IEEE 30-bus System with 12 Contingencies

The IEEE benchmark considered has 30 buses connected
with 41 transmission lines, 6 generators, and 20 loads. In this
benchmark, bus 1 is assigned as the slack bus; buses 2, 13,
22, 23, 27 are PV buses, and the rest are PQ buses. Consider
this IEEE 30-bus system under 12 contingency scenarios as
described in Table I. To maintain system reliability under
certain contingencies, the benchmark data is changed by
reducing the load demand in half. Hence, the solution to
the OPF problem with no contingency results in a minimum
generation cost of 2847.8. Considering contingency cases in
Table I using (15a) increases the cost during normal conditions
by 11.24% to 3167.9. Tables II-IV represent active power,
reactive power, and voltage variations of the power grid
in response to given contingencies. The proposed method
distributes network’s active power imbalance complying with
(5), which is due to the outage of a network component, among
available generators given in Table II. It can be observed from
Table II that the outage of a transmission line, scenarios 7-
12, does not cause a considerable power redispatch. Table III
and IV represent the reactive power and voltage relations in
the case of a network component outage. It is expected that
the PV buses maintain their base case voltage levels during
contingencies as much as their capacity limits permit. The
highlighted values in bold in Table IV for the scenarios 1-
6, refer to the PV/PQ switching due to a generator outage.
It should be noted that the outage of a transmission line, for
the scenarios 7-12, does not usually require PV/PQ switching
except for the bus 1 as reported in Table IV.

Table V compares the performance of sigmoid functions,
(15a)-(15e), in terms of the objective value and required time
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Figure 6. The characteristics of (x, y) ∈ Fsmooth
π/4

for different h values with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d) (15d), (e) (15e).
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Figure 7. The characteristics of (x, y) ∈ Fsmooth
0 for different h values with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d) (15d), (e) (15e).
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Figure 8. The characteristics of (x, y) ∈ Fsmooth
π/4

for different k values with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d) (15d), (e) (15e).
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Figure 9. The characteristics of (x, y) ∈ Fsmooth
0 for different k values with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d) (15d), (e) (15e).
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Figure 10. The characteristics of (x, y) ∈ Fsmooth
π/4

for the k and h values used in simulations with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d)
(15d), (e) (15e).
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Figure 11. The characteristics of (x, y) ∈ Fsmooth
0 for the k and h values used in simulations with the candidate curves: (a) (15a), (b) (15b), (c) (15c), (d)

(15d), (e) (15e).

to solve a given problem. It can be inferred that (15a) and
(15d) offer the best approximations in terms of objective
values while others, (15b), (15c), (15e) successfully recover
the feasible solution considering the generator response in the
case of a randomly-outed component.

Table I
LIST OF CONTINGENCIES FOR IEEE 30-BUS SYSTEM

Contingency Generator Line
Number Number Number

1 5 -
2 6 -
3 1 -
4 4 -
5 3 -
6 2 -
7 - 2
8 - 25
9 - 20

10 - 35
11 - 9
12 - 1

B. IEEE 300-bus System with 10 Contingencies

Herein, we consider the IEEE 300-bus system with 10
randomly selected contingencies as indicated in Table VI. We
used the inverse hyperbolic tangent function (15a) with k = 1
and h = 50. The resulting model converged within 25 minutes.
The OPF solution with no contingency results in the cost of
719725.11, and adding contingencies increases the cost by
%0.23 to 721396.85.

C. IEEE 118-bus System with 100 Contingencies

In this case study, the IEEE 118-bus system is considered
with 100 uniformly chosen contingencies. Similar to the
previous case study, the inverse hyperbolic tangent function
(15a) is used with k = 1 and h = 50. The resulting model
converged within 18 hours. The solution of the OPF problem
with no contingency results in the cost of 129660.70, and the
addition of contingencies leads to a %0.99 increment in cost
to 130946.79.

VI. CONCLUSION

This paper tackles the SCOPF problem that considers
the piecewise-discontinuous model of generator active and

reactive power contingency responses by means of several
continuously-differentiable models. The proposed approach
provides state and decision variables to ensure continuity of
power grid operation even under contingencies. The problem
is expressed as a nonlinear programming formulation and
involves piecewise-smooth models due to the characteristics
of the active and reactive power contingency. We replace
these non-differentiable curves with several continuously-
differentiable surrogates that are tractable and can be solved
with various numerical solvers. The proposed models are nu-
merically verified on several IEEE benchmarks under various
contingencies.
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