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Abstract—This paper investigates the application of convex
optimization in training neural networks (NNs). Our main
contribution is a convex relaxation tailored for NNs that can
serve as an alternative to the existing relaxations from the area of
nonlinear optimization. We prove that by incorporating a family
of regularization terms the proposed relaxation is guaranteed to
be exact, using which the training task can be cast as a sequence
of convex problems. This approach improves upon the common-
practice gradient-based methods by enabling the incorporation of
hard constraints. Lastly, the potential of the proposed approach
is corroborated on the problem of imbalanced classification.

I. INTRODUCTION

Neural networks (NNs) have been demonstrated to have
special abilities in extracting sophisticated information from
raw data. This renders them as suitable tools for a wide
variety of applications in artificial intelligence and machine
learning including classification [1]], [2] and depth estimation
[3]], [4] among many. Despite the widespread use of NNs, a
complete understanding of their success is still lacking and
theoretical studies are mainly limited to the networks with
special architectures [5], [6].

The primary challenge in training NNs arises from the
non-convexity of the training problems. Gradient-based ap-
proaches such as stochastic gradient descent, conjugate gradi-
ent, and Limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) are among the most popular numerical methods for
training NN [7]-[9]]. These approaches rely descent directions
obtained via recursively calculation of gradient with respect
to network parameter. There is considerable theoretical and
empirical evidence indicating the effectiveness of the gradient-
based methods in converging to global optimality (or sat-
isfactory local optimality), under various assumptions [10],
[11]. However, for general network architectures, gradient-
based methods often suffer from several problems such as
the vanishing/exploding gradient phenomena. Moreover, they
cannot incorporate hard constraints which have been proven
to be advantageous in many applications [12]], [13].

In the light of empirical success of NNs, a question arises as
to whether more sophisticated optimization techniques can be
leveraged to train these networks. In response to this question,
we investigate a well-studied technique in nonlinear optimiza-
tion literature, namely convex relaxation, which reduces non-
convex problems into convex surrogate. Among various relax-
ation approaches, semidefinite programming (SDP) [|14] stand
out for offering high-quality solutions. However, its applica-
bility is limited to moderate size problems since they increase
the problem size quadratically and require computationally
expensive conic inequalities. Moreover, in the presence of
constraints, the optimal solutions of these relaxations are not
necessarily feasible for the original non-convex problem.

A. Contributions

In this work, we aim to establish a bridge between the
areas of artificial neural networks and convex optimization
by developing a powerful and flexible training approach. To
serve this purpose, we first transform the training problem into
an equivalent constrained optimization. Then, we convexify
this constrained optimization by means of a novel convex
quadratic relaxation and the well-known difference of con-
vex programming technique. To ensure that the convexified
problem provides a feasible point to the training problem, a
novel regularization term is incorporated into the objective of
the relaxed problems.

On the theoretical front, we derive certain conditions under
which the regularized relaxation is guaranteed to provide feasi-
ble points for the training problem. Moreover, we theoretically
prove that, if certain assumptions are met, solving a sequence
of the regularized problem results in a sequence of feasible
points whose objective values monotonically improve. The
proposed approach, called Convex-NN, offers various theoret-
ical and practical advantages: it jointly estimates the network
parameters, admits additional convex constraints, and provides
a flexible framework for further study and exploration. The
potential of the proposed approach is corroborated on the
problem of imbalanced classification.

B. Notation

Throughout this paper, symbols R”, R**™ and S,, denote
the set of real n-dimensional vectors, real nxm matrices, and
nxn real symmetric matrices, respectively. For a given matrix
a, the notations a;; and a;, respectively refer to the (3, j)th
element and the " row of a. In addition, given matrices a
and b of the same size, symbols aob and (a, b) stand for their
Hadamard product and inner product. Notation ||.||, refers to
either the matrix norm or the vector norm depending on the
context, ||.||z shows the Frobenius norm, and |.| indicates the
absolute value. Symbols tr{.} and (.)", respectively, denote
the trace operator and transpose operator. The notation Z,
represents the index set {1,...,n}. Notations 1,, and I,, refer
to n X 1 column vector of all ones and identity matrix of size
n X n.

II. PROBLEM FORMULATION

Consider an L layer neural network with the I*" layer
consisting of n; nodes, involving linear transformation with
weights w' € R™-1*™ and biases b'cR™, for every | € T
The network can be formulated as a function:

fw,b) 2w (L w?h (w'e' +b'1],)+b%1], ) +bR1),,
where &' € R™*™ accounts for the input matrix, b =
{b'} ez, and w={w'};c7, represent all of the bias vectors



and all of the weight matrices, respectively, and for every
| € I, the function h! : R — R represents the element-wise
activation of the I*" layer. Following the common-practice and
with no loss of generality, we assume that h” is the identity
function [15]], [[16].

Consider an input matrix ! € R™>™ and an output
matrix y € R™*™ representing m feature data and their
corresponding labels, respectively. Training the neural network
is tantamount to learning the coefficients w and b such that
the misfit between the predicted output and the true labels
is minimized in terms of a desired loss function. Using the
{5-norm loss function, this problem can be formulated as:

mininl}ize | f(w,b) —y|l3. (1)

Due to nonlinearity of the nested function f the training
problem (T is non-convex and computationally challenging
[10], [17], [18]. Despite the efficiency of common-practice
local search algorithms for solving the problem (IJ), they suffer
from several issues such as “vanishing gradient”, wherein the
gradient elements corresponding to the weights in early layers
diminish, resulting in slow convergence [15], [[19], [20].

In order to remedy these issues and to enable the potential
of imposing hard constraints, in this paper, we employ convex
relaxation for training neural networks. To this end, we break
the functional dependencies of f, by defining auxiliary vari-
ables z = {z! e R"*™}, .7 and a = {a' e R"*"} ez, |,
accounting for the output of linear transformations and ac-
tivation functions of layers, respectively. Using the auxiliary
variables, the problem (I)) can be reformulated as:

minli’mize HZL - y”i (2a)

L R 14T
subjectto 2z =wax +b1,, leZy, (2b)
' = nl(2h), leTp 1, (2¢)

Notice that the problem (2a) — (2c) offers a more interpretable
formulation of (1) in which bilinear terms {w'z'};cz, and
nonlinear activation functions {hl}leIL,l are the sources of
nonconvexity. In this work, we transform (2a)—(2c) into a
class of computationally tractable convex programs by means
of a novel parabolic relaxation and the classical difference of
convex programming technique. The following section offers
brief survey of the relevant literature.

III. RELATED WORK

There has been a recent surge of interest in developing
convex formulations of neural network and its variant [21]]—
[24]. [21]] showed that training a neural network can be seen
as a convex optimization problem involving an infinite number
of parameters. [22] developed a convex formulation of multi-
layer learning using normalized kernels. [23] cast the problem
of training a convolutional neural network as a low-rank
minimization problem which is further relaxed to obtain a
convex formulation.

From a different viewpoint, an alternative line of research
has considered replacing training problem with a con-
strained non-convex problem of form - or its variants
[15], [20]]. [20] proposed the method of auxiliary coordinates

(MAC) which introduces auxiliary variables as a proxy of the
network activations and then incorporate a quadratic penalty
term into the objective function to approximately impose the
non-convex relation between them. Closely related to MAC,
[15] proposed to solve problem (2a)—(2c) using a highly
parallelizable approach based on the alternating direction
method of multipliers. The proposed approach alternatively
solves a sequence of minimization sub-steps that each enjoys
a closed-form solution. However, their proposed approach is
not necessary compatible with additional hard constraints.

IV. CONVEXIFIED NEURAL NETWORKS

This section describes our proposed approach, called con-
vexified neural network (Convex-NN). We first introduce a
computationally tractable convex relaxation for the problem
—(2c). Then, we present a regularization method to ensure
that the solution of the relaxed problem satisfies the constraints
of the original problem (I)). Finally, we devise a sequential
approach to obtain near optimal feasible points.

A. Convex Relaxation

Problem (2a)—(2c) is nonconvex and possibly intractable.
The first source of non-convexity arises from the presence of
bilinear products w'a'. In order to tackle the non-convexity,
we propose a novel convex relaxation which transforms the
constraints (2Zb) to a set of convex quadratic inequalities. For
every [ €Ty, let W!cR™>*™ and X! € R™*™ account for
the quadratic terms w'(w')" and (z')" ! respectively. The
constraint (2b) can be equivalently reformulated as:

! l 14T l
ey T [yl o
for every [ €Zy,. The literature of optimization theory suggests
the relaxation of (3) into the following linear matrix inequality:
l 1 14T l
PR e B et ORI AT
This technique is regarded as the semidefinite programming
relaxation of constraint (3). However, despite its strength the
main drawback of this approach is the curse of dimensionality
caused by the introduction of the m x m matrix X'.

As a result, in this work, we adopt an alternative parabolic
relaxation approach. To obtain a computationally tractable
surrogates for the problem (2a) — (2c), we relax the constraint
into the following convex quadratic inequalities:

Wi+ Xj;+2 (2= b)) > [lwh +2ll°,  ijeZn,Tn  (52)
Wi+ Xj;—2 (2= b)) > |lwh; — L)%, ij€Tn,Tn  (5b)
Wh > ||lwk,|?, i€T,, (5¢)
X5 > [l %, €T (5d)

Notice that the off-diagonal elements of W' and X' do not
appear in the relaxed inequities (5a)—(5d). Hence, for every
layer [ €7},
« a single auxiliary variable W},
node 1 €7Z,,, and
e a single auxiliary variable le-j is introduced per data
point j€Z,,.

is introduced for every
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Fig. 1: Convex-decomposition of Sigmoid activation function.
Sigmoid function can be cast as difference of convex functions

g1+ g2 and —gs.

As a result, the problem size grows linearly with respect to
the data points. This is the primary strength of the proposed
relaxation compared to the common-practice methods such as
the semidefinite programming relaxations [25].

Definition 1. For every [€Zy, define Q' to be the set of all
quadruplets (w', x!, W' X that satisfy @)—

The second source of non-convexity is induced by the non-
linearity of the activation functions {h'} 1€z, _,» for which we
employ the difference of convex (DC) programming method.

Proposition 1. Any energy function with bounded Hessian can
be decomposed as a difference of convex functions [26]].

Proposition |1| states that every activation function h! with
bounded second derivative can be decomposed as h!(z!) =
p'(2)—q'(2') where p':R — R and ¢':R — R are convex
functions. To illustrate, as shown in Figure[I] the widely-used

Sigmoid activation function hge(2) = H% can be written as

the difference of the convex functions pgig(2) = h(z)— z _%
and gsig(2) =h(—2)—1, where
1
h(z)2e e 250
241 2>0

Similarly, the Softplus activation hg(z) = +log(14€™)
[27]], which is a smoothed version of the ReLU activation,
can be decomposed as psoft(2) — gsoft (2) Where pgogi(z) =
Llog(14€7) and gsoft (2) =0.

Given the decompositions h!(z!) = p!(z!) —¢'(2!). We can
cast the constraint into the following equations:

Wt pltl

2
where for every [ € Z,,_,, the auxiliary variable ul e R™M>m gc-
counts for p'(2!) + ¢'(2!). Next, we relax the above equations
to the following convex inequalities:

I+1 I+1 I+1 I+1
u+x —x 1,1
3 5 >4q(z),

in order to convexify the problem (Za)—(2c).

Definition 2. For every 1€Ty_1, define U to be the set of
all triplets (2', ', u') that satisfy the inequalities

=4' (2", VieI, 1, (6)

u

> pl(2) A VieZr_1. (7)

In practice, the aforementioned convex relaxations are not
necessarily exact, which means that the optimal weights and

biases obtained by imposing the relaxed constraints (3a) — (5d)
and may not be feasible for the original non-convex prob-
lem (2a) — (2c). Next, we address this issue by incorporating a
regularization term into the objective function.

B. Regularization

In order to enforce the equality constraints (2b)— ([2c), we
introduce a regularization technique that promotes feasible and
meaningful solutions. To this end, consider arbitrary weight
and bias coefficients w = {w'} and b = {b'} as the initial
point.

Definition 3. Define the functions z* as

Z'(w,b) £ w'h' (. R (wPh (w'et + ') +b%) .. ) + b,

accounting for the outputs of linear transformations of each
layer.

We employ regularization terms of the form

Tﬂhi(luvbvmaztyzv“fv)() £

7 patr{ W' — 2w (@")" +w' (w')" }+
S M;tr{xl_zh(zl(w,b)) &+ h(Z (w, B))Th(zl(w,f)))}-ﬁ-
leTy,
u!lt? m”l 1 Ly 1ol FNT
S (g T, — 1 (,8)) (22 (1, B) } +
qufa:lH lyv. 1 l l
lgjugtr{flm, d'(2 (@, 5)) (="~ (@,5))} ®)

! l l
where {y} > O}icz,, {1, > 0}iez, , and {p, > 0}ier, |
are positive constants.

The regularized relaxation problem can be formulated as:

rqnuir;iglizz ||szy||iﬂ+77 X Ty p(w,b,xu,z, W, X) (9a)
subject to ('wl z WZXZ) e, leTy,, (9b)
(zl T, u ) eu’, €Ty, (9¢)

where the constant parameter 17 > 0 controls the emphasis on
the regularization term. Observe that the problem (9a) — (Oc) is
convex and can be solved effectively using standard solvers.

The following theorem provides a sufficient conditions to
guarantee that the proposed regularized relaxation produces
feasible points for the original nonconvex problem (2a) — 2c).
In other words, the relaxation of non-convex constraints (2b)) —

to (OB) — (Oc) is lossless if 7 is sufficiently large.

Theorem 1. If 77 zs sufficiently large, then every optimal so-

lution (w, b z, WX) of the convex problem —

satisfies the nonconvex constraints 2b) and (2c). Moreover,
(w b) < g(w b)



Proof. To prove the theorem, consider the auxiliary problem

migimize 2" — y||; + 0 X res(w,bxuz,W,X) (10a)
vk
. w2l [w ][ w' ]
subject to M= l€Z (10b
) (zl_bll"TFn)T x! (a:l)T (mz)T z (10b)

I+1 +1
wotel 1eT, 1 (10¢)

l€Tr 1 (10d)

It can be easily verified that the problems (I0a)—(I0d) and
(T) are equivalent if 7 = 0. Denote the Lagrange multipliers

associated with the constraints (10b)), (10c), and (10d) by

A AL
Al = [ v )J)J ESniym,  ALER™X™ - ALER™*™ (11)
By augmenting the constraints —(T0d) into the objective,
one can verify that for every [ €7y, we have

Ay =nulI, Ny =null. (12)

The other Lagrange multipliers for an arbitrary minimizer
(w, b, &, % , W, A) can be derived recursively as follows:

ML= 3E_y (13a)
)\ _ Uﬂp 4 27wz+1[ l+17hl+1(zl+1(’d),i)))}
+ 2> ) TALH (13b)
)\é _ Wq 2nul+1[ l+1_hl+1(zl+1(w’6))}
_ 2(,&]l+1)TAlz+l (130)
AL =271 Ay 05! (2Y) — i (2 (w, b))
+ 271 AL o gl(2h) - nufqu(zl('w, b))] (13d)
Due to optimality of (w l*) u, T, 2, WX), we have
|2 —yllf+n x raa(io, b, &, 2 W X) <
125 —ylF+n % reoz(0,b,a,& 2, W, X) = 2"~y
(14)
Hence,
0< lim 7 AL [p< lim ' 2E—yle=0  (15)
71— 00 n—00
Assume by induction that
lim ||~ AL[|p= 0 (16)
71— 00

for an [ € Zp,\ {1}. Then according to (13b) - (13d) and (T4),

we have:
lim (|7~ AY = b |le= 0, (17a)
N—00
lim ||n~ 1)\l - uq||p— (17b)
7’]4)00
lim |lp~ ' ALY |p= 0. (17¢)
nN—00

Therefore, if n is sufficiently large, then the matrix 1*\5 is

Algorithm 1 Sequential Regularized Relaxation.

Input: initialize (wo, by), k = 0 and a fixed n > 0
1: repeat i
2: Obtain (w, b, u 53 WX ) by solving the convex
problem (92 . with 1) X7y, b, regularization.
3 (Wit 1, br1) ( )
4: k< k+1
5: until stopping criteria is met.
Output: (wy, by)

T
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® = Proportion
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Fig. 2: Comparison of Convex-NN with hard constraint to the
existing tricks for the imbalance classification problem.

diagonally dominant for every [ € Z;, and

ALt > 0 A1 > 0 (18)

for every I € Zr,_1. As a result, the relaxatlon of (T0b)— -
into (5a) — (5d) and (3a)—(5d) and (7)) is lossless.

C. Sequential Regularized Relaxation

In light of Theorem [I] we propose Algorithm [I] to infer
feasible and near-optimal points for the non-convex problem
- by solving the regularized relaxation problem (9a) —
(Oc) sequentially. The algorithm is terminated when the im-
provement of the objective value, between two consecutive
round, is less than a positive value € (e.g. ¢ = 1077).

V. EXPERIMENTS

This section demonstrates the potential of sequential convex
relaxation in imposing hard constraints on training problems.
There has been a recent surge of interest in imposing task-
specific constraints on the output of neural networks for
improving the quality of predictions [12]], [13]], [28]]. Such
constraints are often incorporated as penalty terms into the
loss function. Despite the simplicity and empirical success, this
strategy suffers from two major drawbacks. Firstly, adjusting
relative weights between the loss function and penalty terms
can be extremely challenging. Secondly, there is no guarantee
that the resulting solution satisfies the hard constraints. Re-
cently, 28] has demonstrated that replacing the soft constraints
by the hard ones improves the behavioral performance of neu-
ral networks and can effectively address the aforementioned
drawbacks.

We consider the problem of imbalanced classification [29],
[30] in which the training samples are distributed highly un-
balanced in different classes. The traditional classifiers exhibit



poor performance in solving this problem as they tend to
misclassify the minority class instances as the majority. In
what follows, we present experimental results that compare
the performance of Convex-NN against two commonly used
tricks for the problem of imbalanced classification. Notice that,
it is not the intention of this work to compete with the existing
algorithms that specifically target the imbalanced classification
problem, but rather to show the potential and applicability
of Convex-NN on real-world problems. We use the Yeast
dataset from the UCI machine learning repository [31] and
subsample classes 2 and 3 to create an imbalanced binary
classification problem. We train a simple neural network
architecture with two fully-connected hidden layers of 6 nodes
each, and Sigmoid activation function. Constraints of the form

ZHZfZ —yilly < £y,

i€C;

19)

are imposed to reduce the effect of unbalanced training sam-
ples, where z*Li denotes the it" column of the matrix 2~ and
index set C; C I, refers to the training samples belonging to
the jth class. Intuitively, the constraint ensures that the
misfit between predicted outputs and the true labels for class
j does not exceed x. We impose the constraint (I9) on both
majority and minority classes with x; = 0.5|C;|. This enables
Convex-NN to automatically assign the relative weights and
avoid generating a biased classifier.

Following [30], we compare our results with conventional
techniques for the imbalanced classification problem: 1) Pro-
portion method weights the training samples of each class in
proportion to the inverse of the class size; 2) Random approach
weights the samples based on a rectified Gaussian distribution.
We run these methods on the same network architecture and
employ the Adam optimizer [8] with 5, = 0.9, B2 = 0.999,
and learning rate 0.005 to train the network. Note that these
parameters are well-tuned to obtain the best performance
of the Adam optimizer. The results of this experiment are
demonstrated in Figure [2]as the value of test classification error
across various imbalance ratios. The scores in Figure [2] are
obtained by averaging 10 independent runs with random splits
and random starting points, where the weights are initialized
using He’s initializer and the bias parameters are all set to zero.
Observe that imposing hard constraints using Convex-NN has
resulted in better test accuracy.

VI. CONCLUSION

In this paper, we presented a novel convexification approach,
called Convex-NN, which reduces the problem of training
neural networks into solving a sequence of convex programs.
We theoretically proved that under certain assumptions, the
proposed approach results in a sequence of feasible points
whose objective values monotonically improve. Convex-NN
improves upon the common-practice gradient-based methods
by jointly estimating the network parameters and admitting
additional convex constraints. Numerical results corroborated
the potential of the proposed approach on the problem of
imbalanced classification.
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