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Abstract—This paper revisits the well-known family of sequen-
tial convex programming methods. We adopt the difference of
convex programming technique to relax a wide variety of non-
convex optimization problems into convex programs. We extend
this approach to a sequential convex programming algorithm
that can generate a convergent sequence of feasible points whose
objective values monotonically improve. As an improvement upon
the existing sequential methods, we prove that under certain
assumptions, the proposed algorithm reaches feasibility within a
finite number of rounds, as opposed to asymptotic feasibility. The
effectiveness of the proposed approach is corroborated through
experiments on the problem of robust linear regression.

I. INTRODUCTION

This paper is concerned with the class of difference of convex
programming (DCP) optimization problems of the form

minimize
x∈Rn

u0(x)− v0(x) (1a)

subject to uk(x)− vk(x) ≤ 0 k ∈ {1, . . . ,m} (1b)

where uk, vk : Rn → R are convex functions, for every
k ∈ {0, 1, . . . ,m}. The formulation (1a) – (1b) covers a
wide variety of computationally challenging problems with
applications in control [1], [2], [3], machine learning and
statistics [4], [5], [6], [7], [8], [9], among other areas [10].
The popularity of DCP is due to the fact that a broad class
of functions can be decomposed into difference of convex,
including function with continuous Hessian, as well as functions
with bounded Hessian [11], [12], [10].

Several sequential algorithms have been studied in the
literature for solving problems of the form (1a) – (1b) which
rely on local approximations at each step [13], [14], [15], [16],
[1], [2], [17], [18]. For instance, the paper [2] proposes an
exact penalty method with trust region that integrates constraint
violations into the objective. The papers [15], [16] generate a
sequence of convex problems by approximating the constraints
(1b) with the following convex inequalities:

uk(x)−vk(x̌)−∇vk(x̌)
>
(x− x̌) ≤ 0 k∈{1, . . . ,m}, (2)

where x̌ ∈ Rn is a guess for the solution. Due to convexity of
the functions {vk}k∈M, the constraints (2) result in an inner-
approximation of the feasible set, which can be empty if x̌ is
not feasible for the problem (1a) – (1b). Hence, this method
may result in an infeasible approximation. To circumvent this
issue, the papers [19], [20], [21] improve this approach by
penalizing the violation of the approximate inequalities (2),
instead of imposing them as hard constraints.

In this paper, we relax DCP problems of the form (1a) – (1b)
and incorporate a novel penalty term into the objective that
enforces feasibility. We introduce certain conditions under
which the penalized relaxation is guaranteed to produce
feasible points for the original problem (1a) – (1b). Moreover,

we extend this approach to an algorithm that generates a
convergent sequence of feasible points whose objective values
monotonically improve. While the exiting sequential methods
are proven to offer asymptotic feasibility, our method achieves
feasibility within a finite number of rounds, under the standard
assumption that the initial point is sufficiently close to the
feasible set of (1a) – (1b). To demonstrate the potential of the
proposed approach, we perform experiments on the problems
of robust linear regression.

A. Notations

Throughout this paper, scalars, vectors, and matrices are
respectively shown by italic, bold lower-case and bold upper-
case letters. The symbols Rn, Rn+, Rm×n, Sn, and S+

n denote
the sets of n-dimensional real vectors, n-dimensional real
positive vectors, m × n real matrices, n × n real symmetric
matrices, and n× n symmetric positive semidefinite matrices,
respectively. For a given vector a and matrix A, the symbols
ai and Aij , respectively, indicate the ith element of a and
(i, j)th element of A. The symbol (.)> represents the transpose
operator. The notation A � 0 means that A is positive definite.
The notation ‖.‖p refers to either matrix norm or vector norm
depending on the context, ‖.‖F represents the Frobenius norm,
and |.| indicates the cardinality of a set or absolute value
depending on the context. ∇ and H represent the gradient and
Hessian operators, respectively.

II. PROBLEM FORMULATION AND THEORETICAL RESULTS

With no loss of generality, we consider the following
reformulation of (1a) - (1b):

minimize
x∈Rn

a∈Rm+1

u0(x)− a0 (3a)

subject to uk(x)− ak ≤ 0 k ∈M (3b)
ak = vk(x) k ∈ {0} ∪M (3c)

where M = {1, . . . ,m} represents the set of constraints.
Throughout the paper, we assume that this problem is feasible.

In order to solve problems of the form (3a) – (3c), we pro-
pose to relax the set of equality constrains (3c) to inequalities
and incorporate the following penalty term into the objective:

gx̌(x,a),
√
‖x− x̌‖22 + µ>[a−v(x̌)−V (x̌)(x− x̌)] (4)

where x̌ ∈ Rn is an initial guess for the solution, µ ∈ Rm+1
+

is constant, the function v : Rn → Rm+1 is defined as

v(x) , [v0(x), v1(x), v2(x), . . . , vm(x)]> (5)



2

and V : Rn → R(m+1)×n represents the Jacobian matrix of v.
Given x̌ ∈ Rn and µ ∈ Rm+ , the penalized convex relaxation
problem can be formulated as

minimize
x∈Rn

a∈Rm+1

u0(x)− a0 + η × gx̌(x,a)2 (6a)

subject to uk(x)− ak ≤ 0 k ∈M (6b)
ak ≥ vk(x) k ∈ {0} ∪M (6c)

where η > 0 is a constant regularization parameter that controls
the trade-off between the original objective function and the
penalty term. Unlike the original problem (3a) – (3c), the
penalized relaxation problem (6a) – (6c) is convex. We make
two basic assumptions throughout the paper that are the basis
of our theoretical results.

Assumption 1. There exist α, β ≥ 0 such that

|f(x1)− f(x2)| ≤ α‖x1 − x2‖22 + β‖x1 − x2‖2 (7a)
‖∇x(f(x1)− f(x2))‖2 ≤ β‖x1 − x2‖2 (7b)

for every pair x1,x2 ∈ Rn, where f(x) = u0(x) − v0(x)
denotes the objective function (1a).

Assumption 2. There exist δ, ε ≥ 0 such that

‖J(x1)− J(x2)‖2 ≤ δ‖x1 − x2‖2 (8a)
‖V (x1)− V (x2)‖2 ≤ ε‖x1 − x2‖2 (8b)

for every pair x1,x2 ∈ Rn, where J : Rn → Rm×n denotes
the Jacobian matrix of constraints (1b).

The following two definitions introduce the notions of
feasibility distance and singularity that will be used later to
state our theoretical results.

Definition 1. Let F ⊆ Rn denote the feasible set of problem
(1a) – (1b). For every x̌ ∈ Rn define

gmin
x̌ , min{gx̌(x,v(x)) |x ∈ F}. (9)

as the feasibility distance of x̌.

Definition 2. Define the singularity function s : Rn → R as

s(x) ,

{
σmin(J(x)) if J(x) is full row rank
0 otherwise

(10)

where σmin(.) is the smallest singular value operator.

The following theorem guarantees that if the initial guess x̌
is feasible for (3a) – (3c), then its feasibility is preserved by
solving the penalized convex relaxation problem (6a) – (6c).

Theorem 1. Let x̌ ∈ F be a feasible point for (3a) – (3c)
such that s(x̌) > 0. If η > max{β, µ−1

1 } and

η > α+
‖∇xf(x̌)‖2 + (3 + ε‖µ‖+ δµmin)β

µmins(x̌)
(11)

then every optimal solution (
∗
x,
∗
a) for the penalized relaxation

problem (6a) – (6c) satisfies (3c) and therefore ∗x ∈ F as well.
Moreover f(

∗
x) ≤ f(x̌).

Proof. See Section IV for the proof.

Algorithm 1 Sequential Penalized Relaxation

Input: x0 ∈ Rn, µ ∈ Rm+1
+ , and η > 0

1: k ← 0
2: repeat
3: k ← k + 1
4: xk ← use xk−1 as initial point and solve (6a) – (6c)
5: until stopping criteria is satisfied

Output: xk

There exist numerous optimization problems for which
finding a feasible point is a challenging task. Assuming no
feasible initial point is available, the next theorem investigates
the required conditions that ensure (6a) – (6c) gives a feasible
point for (3a) – (3c).

Theorem 2. Let x̌ ∈ Rn satisfy

s(x̌) > (3+δ+ε‖µ‖)(µmin)−1gmin
x̌ (12)

if η > max{β, µ−1
1 } and

η > α+
‖∇xf(x̌)‖2 + (3 + ε‖µ‖+ δµmin)(αgmin

x̌ + β)

µmins(x̌)− (3 + ε‖µ‖+ δµmin)gmin
x̌

(13)

then every optimal solution (
∗
x,
∗
a) for the penalized relaxation

problem (6a) – (6c) satisfies (3c) and therefore ∗
x ∈ F .

Proof. See Section IV for the proof.

Motivated by Theorems 1 and 2, a question arises as to
whether we can solve a sequence of convex relaxations (6a)
– (6c) to recover a high quality solution to (3a) – (3c). In
response to this question, we propose Algorithm (1) which
starts from an initial point and solves a sequence of penalized
relaxations. If feasibility is attained, we theoretically prove that
the algorithm can provide a convergent sequence of feasible
points whose objective values monotonically improve. Theorem
3 investigates conditions under which Algorithm 1 converges
to at least a locally optimal solution to (3a) – (3c).

Theorem 3. Let F̌ , {x ∈ F | f(x) ≤ c̃} denote an epigraph
of the problem (3a) – (3c) through which, the functions {uk}mk=0

and {vk}mk=0 are twice continuously differentiable, and also
s(x) ≥ s̃ > 0 and ‖∇xf(x̌)‖2 < d̃ for every x ∈ F̌ . If
η > max{β, µ−1

1 } and

η > α+
d̃+ (3 + ε‖µ‖+ δµmin)β

µmins̃
(14)

then the sequence generated by Algorithm 1 converges to a
local minimizer of the problem (3a) – (3c).

Proof. See Section IV for the proof.

III. APPLICATIONS

In this section, we experimentally evaluate the efficacy of
our approach, referred to as SCR, in solving an example of
the form (1a) – (1b).
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Fig. 1: Decomposition of non-convex regularization functions. The top row shows (left) SCAD, (middle) Capped `1-norm,
(right) Hard-ridge regularization functions and the bottom row shows the corresponding convex/concave decompositions.
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Fig. 2: Outlier identification result. Both SCR and Θ-IPOD
[5] use SCAD regularization function.

A. Nonconvex Penalized Regression

Let {yi}ni=1 be a set of samples randomly drawn from a
low-dimensional subspace which is spanned by the columns of
a matrix A∈Rn×q , and contaminated with unknown outlying
entries {γi}ni=1 and unknown noise values {ζi}ni=1. Given that,
we model observation the vector y , [y1, . . . , yn]> as

y = Az + γ + ζ, (15)

where z ∈ Rq is an unknown regression vector, γ =
[γ1, . . . , γn]> is a sparse outlier vector with arbitrary (possibly
large) entries, and vector ζ = [ζ1, . . . , ζn]> corresponds to noise
values sampled independently from a Gaussian distribution. The
linear model (15) is well-studied in the literature [22], [23], [5],
[24], where the main focus has been on estimating the model
parameters while limiting the influence of outliers. To develop
such regression model, consider the following optimization
problem

minimize
γ,ζ∈Rn,z∈Rq

‖ζ‖22 + η̄ l(γ) (16a)

subject to y = Az + γ + ζ, (16b)

where `2-norm enforces the noise components to be small,
function l : Rn→R, defined as l(γ) =

∑n
i=1 r(γi), imposes

sparsity on vector γ, r :R→R is a Hessian bounded element-
wise regularization function, and parameter η̄>0 sets a trade-
off between the objective function and the regularization term.
A natural choice for sparsity-promoting function l is the `0-
norm which simply counts the number of outliers. However,
this renders (16a) – (16b) computationally intractable [25]. To
circumvent this drawback, `0-norm is often substituted by its

convex surrogates (e.g. `1-norm). Despite the computational
advantages offered by these functions, they mostly exhibits
poor performance in the presence of multiple outliers [5]. To
promote the robustness, one can adopt nonconvex regularization
functions such as smoothly clipped absolute deviation (SCAD)
[26], Capped `1-norm, Hard-Ridge function, etc. Next, we
review some well-known nonconvex regularization functions
and their convex decompositions.

a) SCAD: is a nonconvex quadratic spline function
with application in outlier detection [5], [27], [28]. The
SCAD regularization function can be decomposed as
rvS(γ) = b|γ| − gvS(γ)− gvS(−γ), where functions rvS :
R→R and gvS : R→R are given by

rvS(γ),


b|γ| |γ| < b
|γ|2−2ab|γ|+b2

2(1−a)
b≤|γ|≤ab

(a+1)b2

2
|γ|>ab

,

gvS(γ) ,


−bγ γ ≤ b
γ2−2abγ+b2

2(a−1)
b<γ≤ab

−(a+1)b2

2
γ>ab

,

and parameters a > 2 and b determine the shape of the function.

b) Capped `1-norm: is a sparsity-inducing regularization
function which is widely used in various applications such as
outlier detection, dictionary learning [29], Multi-task sparse
feature learning [30], [31], [32], etc. This function is defined
as rvC(γ) = min(|γ|, b) where parameter b > 0 determines the
maximum loss generated by the Capped `1-norm. Observed
that this regularization function can be decomposed as rvC(γ)=
|γ|−max(|γ|−b, 0) where both functions |γ| and max(|γ|−b, 0)
are convex.

c) Hard-ridge: function [33], [5], [34] enforces sparsity
by hybridizing the hard-penalty [33] and `2-norm penalty. The
function is given by

rvH(γ),

{
− 1

2
γ2+b|γ| |γ|≤ b

1+a
a
2
γ2+ b2

2(1+a)
|γ|> b

1+a

.

The DC decomposition of the Hard-ridge function is
rvH(γ)=gvH(γ)−hvH(γ)−hvH(−γ), where convex func-
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tions gvH : R→R and hvH : R→R are defined as

gvH(γ),

{
b

1+a
|γ| |γ|≤ b

1+a
a
2
γ2+ b

1+a
|γ|− ab2

2(1+a)2
|γ|> b

1+a

,

hvH(γ),


− b

1+a
γ γ ≤ 0

1
2
γ2 − bγ 0≤γ≤ b

1+a
b2

2(1+a)2
− b2

1+a
γ≥ b

1+a

.

Figure 1 depicts the convex/concave decomposition of the
above-mentioned regularization functions. Observe that op-
timization problem (16a) – (16b) with either of the above
mentioned regularization functions, can be cast as a special
case of (1a) – (1b). We reuse the experimental design proposed
in [5] to verify the effectiveness of Algorithm 1 in solving
(16a) – (16b). We generate the observations according to linear
model (15) for n = 300 and m = 70; matrix A is set to
A = V S

1
2 where Vij

iid∼U(−15, 15) and Sij = ρ1i6=j with
ρ = 0.5; the nonzero outlying entries of vector γ are sampled
independently from U(−2τ,−τ)+U(τ, 2τ) with τ = 5, and
ζ iid∼N (0, I). We compare the outlier identification result of
SCR with that of the `1-norm penalized problem and Θ-IPOD
[5]. Both SCR and Θ-IPOD use SCAD regularization function.
Figure 2 plots the results across various number of outliers
averaged from 10 independent runs with random initialization.
It can be observed that the proposed approach with minimal
tuning performs on par or better than Θ-IPOD.

IV. PROOFS

This section presents the proofs for the theoretical results in
the paper. We first provide a number of prerequisite lemmas
and definitions. Consider the following auxiliary optimization
problem:

minimize
x∈Rn

u0(x)− v0(x) + η × gx̌(x,v(x))2 (17a)

subject to uk(x)− vk(x) ≤ 0 k ∈M (17b)

The subsequent lemma states that for appropriate choices of
η, the distance between the optimal solution of (17a) – (17b)
and the initial point x̌ can be bounded.

Lemma 1. If η > α, then the problem (17a) – (17b) has an
attainable optimal value and every optimal solution ∗

x satisfies,

0 ≤ gx̌(
∗
x,v(

∗
x))− gmin

x̌ ≤ αgmin
x̌ + β

η − α
(18)

where gmin
x̌ is defined by the equation (9).

Proof. According to Assumption 1, the objective function (17a)
is bounded. Hence, attainability of the optimal solution is
an immediate consequence of the fact that F is closed and
nonempty.

The left side equality is followed by the definition of gmin
x̌ .

To prove the upper bound, let x̄ ∈ Rn be an arbitrary member
of {x ∈ F | gx̌(x,v(x)) = gmin

x̌ }. Since ∗x is a solution to the
problem (17a) – (17b) and x̄ is feasible, one can write:

(η − α)gx̌(
∗
x,v(

∗
x))2 − βgx̌(

∗
x,v(

∗
x))

≤−u0(x̌)+v0(x̌)+u0(
∗
x)− v0(

∗
x)+ηgx̌(

∗
x,v(

∗
x))2 (19a)

≤−u0(x̌)+v0(x̌)+u0(x̄)− v0(x̄)+ηgx̌(x̄,v(x̄))2 (19b)

≤ (η + α)gx̌(x̄,v(x̄))2 + βgx̌(x̄,v(x̄)) (19c)

where (19a) and (19c) are concluded from (7a) and (19b) is
concluded from the optimality of ∗x. Hence:

⇒ (η − α)(gx̌(
∗
x,v(

∗
x))2 − gx̌(x̄,v(x̄))2)

≤ 2αgx̌(x̄,v(x̄))2 + βgx̌(
∗
x,v(

∗
x)) + βgx̌(x̄,v(x̄)) (20)

⇒ (η − α)(gx̌(
∗
x,v(

∗
x))− gx̌(x̄,v(x̄)))

≤ 2αgx̌(x̄,v(x̄))2

gx̌(
∗
x,v(

∗
x)) + gx̌(x̄,v(x̄))

+ β (21)

which concludes the upper bound.

The next lemma shows that if x̌ is nonsingular and η is
sufficiently large, then ∗

x is nonsingular as well.

Lemma 2. Every optimal solution ∗
x to the problem (17a) –

(17b) satisfies:

s(
∗
x) ≥ s(x̌)− δ‖ ∗x− x̌‖2 (22)

Proof. The proof follows directly from the definition of s:

s(
∗
x) = min{‖J(

∗
x)>ν‖2 | ‖ν‖2 = 1}

≥ min{‖J(x̌)>ν‖2 − ‖[J(x̌)−J(
∗
x)]>ν‖2 | ‖ν‖2 =1}

≥ min{‖J(x̌)>ν‖2 | ‖ν‖2 = 1} − ‖J(x̌)− J(
∗
x)‖2

≥ s(x̌)− δ‖ ∗x− x̌‖2. (23)

As a consequence, if ‖ ∗x− x̌‖2 is small, and x̌ is nonsingular,
then ∗

x is nonsingular as well.

Lemma 3. Let x̌ ∈ Rn satisfy (12). If η > max{β} and (13)
is satisfied, then for every optimal solution ∗

x of the problem
(17a) – (17b), there exists a vector of Lagrange multipliers
∗
λ ∈ Rm associated with the constraint (17b), which satisfies:

‖η−1
∗
λ‖2 < µmin. (24)

Proof. Let ∗x denote an optimal point of the auxiliary problem
(17a) – (17b). According to the assumption (12) and Lemma
2, we have:

s(
∗
x) ≥ s(x̌)− δ‖ ∗x− x̌‖2

≥ s(x̌)− δ
(
gmin
x̌ +

αgmin
x̌ + β

η − α

)
> 0. (25)

Hence, ∗x is nonsingular and satisfies the linear independence
constraint qualification condition. Therefore, there exists a
vector of Lagrange multipliers

∗
λ ∈ Rm that satisfies the

following stationarity condition:

∇xf(
∗
x)+2η(

∗
x− x̌)+η(V(

∗
x)−V(x̌))>µ+J(

∗
x)>

∗
λ=0 (26)

Now one can upper bound ‖η−1
∗
λ‖2 as follows:

‖η−1
∗
λ‖2≤

‖η−1∇xf(
∗
x)+2(

∗
x−x̌)+(V (

∗
x)−V (x̌))>µ‖2

s(
∗
x)

≤ η−1‖∇xf(x̌)‖2 + (η−1β + 2 + ε‖µ‖)‖ ∗x− x̌‖2
s(
∗
x)

≤ η−1‖∇xf(x̌)‖2 + (η−1β + 2 + ε‖µ‖)‖ ∗x− x̌‖2
s(x̌)− δ‖ ∗x− x̌‖2

≤ η−1‖∇xf(x̌)‖2 + (η−1β + 2 + ε‖µ‖)gx̌(
∗
x,v(

∗
x))

s(x̌)− δgx̌(
∗
x,v(

∗
x))

≤ (η − α)−1‖∇xf(x̌)‖2 + (3 + ε‖µ‖)gx̌(
∗
x,v(

∗
x))

s(x̌)− δgx̌(
∗
x,v(

∗
x))
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where the second and third inequalities are concluded from
(8b) and Lemma 2, respectively. Now, according to Lemma 1
and the assumption (13) we have ‖η−1

∗
λ‖2 < µmin.

Proof of Theorem 2. Let ∗x denote an optimal point of the
auxiliary problem (17a) – (17b). According to Lemma 3, there
exists a vector of Lagrange multipliers

∗
λ ∈ Rm that satisfies

(24). Now, the following serves as a primal and dual solution
for the problem (6a) – (6c):

x =
∗
x a = v(

∗
x) (28a)

λ =
∗
λ ν = [1,

∗
λ>]> − ηµ < 0 (28b)

where ν represents the vector of Lagrange multipliers associ-
ated with (6c). Since ν < 0, the relaxation is lossless, which
completes the proof.

Proof of Theorem 1. The first part is an immediate conse-
quence of Theorem 2 and the fact that gmin

x̌ = 0 for every
x̌ ∈ F . Now, according to optimality of ∗x and feasibility of
x̌, we have:

f(
∗
x) + η × gx̌(

∗
x,v(

∗
x))2 ≤ f(x̌) (29)

which concludes that f(
∗
x) ≤ f(x̌).

Lemma 4. Define hη : F → F as a mapping that associates
an initial point x̌ of the problem (17a) – (17b) to its primal
solutions. Consider an arbitrary x̌ ∈ F that satisfies (12)
and assume that the functions {uk}mk=0 and {vk}mk=0 are twice
continuously differentiable at every optimal point of the problem
(17a) – (17b). If η > max{β, µ−1

1 } and (13) is satisfied then
hη is a continuous function at a vicinity of x̌.

Proof. Let ∗x ∈ F denote an optimal solution for the problem
(17a) – (17b). According to Lemma 3 there exists a vector of
Lagrange multipliers

∗
λ ∈ Rm that satisfies the following KKT

conditions:

∇xf(
∗
x) + 2η

∗
x+ ηV(

∗
x)>µ+ JB(

∗
x)>

∗
λB = η(2x̌+ V(x̌)>µ)

uk(x)− vk(x) = 0 k ∈ B

where B ⊆ M denotes the set of binding constraints for ∗x.
The Jacobian matrix of the above equations is[
Hf
x(
∗
x)+2ηI+η

∑m
k=0 µk+1H

vk
x (
∗
x)+

∑
k∈B λkH

fk
x (
∗
x) JB(

∗
x)>

JB(
∗
x) 0

]
which is nonsingular due to nonsingularity of JB(

∗
x) and the

inequality (24). Therefore, hη is a differentiable function.

Proof of Theorem 3. Let {xk}∞k=0 denote the sequence gen-
erated by Algorithm 1, where x0 = x̌. Since x0 ∈ F̌ , then
according to Theorem 1 and the assumption (14), every member
of {xk}∞k=0 belongs to F̌ as well and the sequence {f(xk)}∞k=0

is non-increasing and therefore convergent. On the other hand,
for every nonnegative integer k, due to optimality of xk and
feasibility of xk−1, we have

f(xk) + η × gxk−1(xk,v(xk))2 ≤ f(xk−1) (30)

which implies that the sequence {gxk−1(xk,v(xk))}∞k=1 con-
verges to zero. Hence, the sequence {‖xk − xk−1‖2}∞k=1

converges to zero and therefore, due to closeness of F̌ , the
sequence {xk}∞k=0 is convergent to

x∞ , lim
k→∞

xk ∈ F̌ . (31)

According to Lemma 4, we have hη(x∞) = x∞ and since
s(x∞) > 0, there exists a vector of Lagrange multipliers
λ∞ ∈ Rm associated with the constraint (17b), which satisfies
the following stationarity condition:

∇xf(x∞) + 2η(x∞ − x∞)+

η(V(x∞)− V(x∞))>µ+ J(x∞)>λ∞ = 0 (32)

Hence, we have

∇xf(x∞) + J(x∞)>λ∞ = 0 (33)

which is the stationarity condition for the problem (17a) – (17b).
As a result, the pair (x∞,λ∞) is primal and dual optimal for
the problem (17a) – (17b) and the proof is complete.

V. CONCLUSION

This paper presented a sequential convex programming ap-
proach which leverages the difference of convex programming
(DCP) technique to convexify a wide range of nonconvex
optimization problems. We theoretically proved that under
certain assumptions, solving a sequence of the convex programs
provides a convergent sequence of points which are feasible
for the original problem. The proposed method improves upon
the existing sequential methods by reaching feasibility within
a finite number of steps rather than asymptotic feasibility. We
conducted experiments on a machine learning application to
demonstrate the effectiveness of our approach.
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