
Unit Commitment with AC Transmission Constraints
via Sequential Cone Programming Relaxation

Fariba Zohrizadeh, Mohsen Kheirandishfard, Adnan Nasir, and Ramtin Madani

Abstract—This paper proposes a sequential convex relaxation
method for obtaining feasible and near-globally optimal solutions
for unit commitment (UC) with AC transmission constraints.
First, we develop a conic relaxation for AC unit commitment.
To ensure that the resulting solutions are feasible for the
original non-convex problem, we incorporate penalty terms into
the objective of the proposed relaxation. We generalize our
penalization method to a sequential algorithm which starts from
an initial point (not necessarily feasible) and leads to feasible
and near-optimal solutions for AC unit commitment. Once a
feasible point is attained, the algorithm preserves feasibility
and improves the objective value until a near optimal point is
obtained. The experimental results on Matpower’s Illinois 200-
bus, South Carolina 500-bus, and European 1354-bus power
system models demonstrate the performance of the proposed
method in solving challenging instances of AC unit commitment.

I. INTRODUCTION

The unit commitment (UC) is a classical problem in the
area of power systems which involves determining the optimal
schedule for power generating units throughout a given plan-
ning horizon. The main objective is to meet power demand
with minimum production cost while respecting the limita-
tions of generating units and network constraints. Due to the
economic importance of the UC problem, it has been heavily
investigated for decades and is proven to be computationally
hard in general [2], [3]. The reader is referred to [4], [5] and
the references therein, for detailed surveys of the conventional
formulations and methods for solving unit commitment.

A general unit commitment problem can be formulated
as a mixed-integer optimization whose solution specifies the
optimal status of generating units as well as voltages and
power flows throughout the planning horizon. Additionally,
several papers have considered uncertainties of demand and
renewable generation into consideration using stochastic and
robust optimization frameworks [6]–[13]. The incorporation
of several other power system optimization problems into
unit commitment has been envisioned as well, such as the
optimal power flow [14]–[16], network topology control [17],
demand response [18], air quality control [19], and scheduling
of deferrable loads [20].

Parts of this paper have appeared in the conference paper [1]. Compared
with the conference version, the new additions to this paper are major
changes to the algorithm and simulations on larger benchmark systems.
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Various optimization methods have been used to approach
the UC problem, such as branch-and-bound techniques [21]–
[27] and convex relaxations [28]–[30]. In order to improve
the efficiency of branch-and-bound searches, many papers
have offered partial convex hull characterizations of UC
feasible sets [31]–[34]. Conic inequalities are proposed in
[14], [35]–[37] to strengthen convex relaxations in the pres-
ence of nonlinear cost functions. In [38], a combination of
semidefinite programming relaxation and branch-and-bound is
used to solve the day-ahead hydro unit commitment problem.
In [39], [40], reformulation-linearization cuts are proposed
to strengthen semidefinite programming relaxations of unit
commitment. In [41], a decomposition method is developed
based on second-order cone programming (SOCP) to solve
network constrained unit commitment with AC power flow
constraints. In [42], a family of valid inequalities are pro-
posed to improve the quality of SOCP relaxations of unit
commitment. In [43], a global search algorithm is proposed
which solves a sequence of mixed-integer second-order cone
programming (MISOCP) problems, as well as nonlinear non-
convex problems to lower- and upper-bound the globally
optimal cost of unit commitment. In [44], [45], distributed
frameworks on high-performance computing platforms are in-
vestigated for solving large-scale UC problems. Nevertheless,
the improvements in run-time are reported to diminish with
more than 15 parallel workers [46].

In this paper, we introduce a novel sequential convex
relaxation for solving unit commitment with AC transmis-
sion constraints. We propose a penalization method which
is guaranteed to recover feasible solutions for general non-
convex optimization problems under certain assumptions [47],
[48]. The proposed penalized convex relaxation can be solved
sequentially in order to find feasible and near-globally optimal
solutions. Our experimental results verify the effectiveness of
this procedure in solving AC unit commitment problems on
Matpower benchmark systems of size 200-bus, 500-bus, and
1354-bus.

A. Notations

Throughout this paper, matrices, vectors, and scalars are
represented by boldface uppercase, boldface lowercase, and
italic lowercase letters, respectively. The symbols R, C, and
Hn denote the sets of real numbers, complex numbers, and
n × n Hermitian matrices, respectively. The notation “i” is
reserved for the imaginary unit. Notation | · | denotes either
the absolute value of a scalar or the cardinality of a set,
depending on the context. The symbols (·)∗ and (·)> represent
the conjugate transpose and transpose operators, respectively.
For a given matrix A, the notations A•,k, Aj,•, and Ajk



TABLE I: Unit and network constraints in power system
scheduling.

Unit Constraints:

xg,t ∈ {0, 1} (1a)

cg,t=αgpg,t+βgp
2
g,t+

γgxg,t +γ↑g (1−xg,t-1)xg,t+γ
↓
gxg,t-1(1−xg,t) (1b)

xg,τ−xg,τ-1≤xg,t ∀τ ∈{t−m↑g+1, . . . , t} (1c)

xg,τ-1−xg,τ ≤1−xg,t ∀τ ∈{t−m↓g+1, . . . , t} (1d)

¯
pg xg,t ≤ pg,t ≤ p̄g xg,t (1e)

¯
qg xg,t ≤ qg,t ≤ q̄g xg,t (1f)

pg,t−pg,t-1 ≤ rgxg,t-1+sg(1− xg,t-1) (1g)

pg,t-1−pg,t ≤ rgxg,t+sg(1− xg,t) (1h)

AC Network Constraints:

d•,t+diag{v•,tv∗•,tY∗} = C>(p•,t +iq•,t) (2a)

diag{~C v•,tv
∗
•,t
~Y∗} ≤ f2max;t (2b)

diag{ ~C v•,tv
∗
•,t

~Y∗} ≤ f2max;t (2c)

¯
v ≤ |v•,t| ≤ v̄ (2d)

refer to the kth column, jth row, and (j, k)th entry of the
matrix A, respectively. The Notation A � 0 means that A is
symmetric/Hermitian and positive semidefinite.

II. PROBLEM FORMULATION

The unit commitment (UC) problem aims at finding the
most reliable and cost-efficient schedule for a set of gener-
ating units throughout a discrete time horizon T , subject to
forecasted electricity demands and operational constraints. Let
G denote the set of generating units whose schedule needs
to be determined. Define xg,t ∈ {0, 1} as a binary variable
indicating whether the generating unit g ∈ G is committed
during the time slot t ∈ T . If xg,t = 1, the unit is active and
generates power within its capacity limitations, otherwise, no
power is produced by g during the time interval t. Define
pg,t and qg,t, respectively, as the amounts of active power
and reactive power injections of generator g during the time
interval t.

Denoted V and E as the sets of buses and branches in
the network, respectively. For every bus k ∈ V , the demand
forecast at time t is denoted as dk,t ∈ C, whose real
and imaginary parts account for active and reactive power
demands, respectively. Let C ∈ {0, 1}|G|×|V| be the incidence
matrix whose (g, k) entry is equal to 1, if and only if the
generating unit g belongs to the bus k. Define the matrices
~C, ~C ∈ {0, 1}|E|×|V| as the from and to incidence matrices,
respectively. The (l, k) entry of ~C is equal to one, if and only
if the line l ∈ E starts at bus k, while the (l, k) entry of ~C is
equal to 1, if and only if the line l ends at bus k. Additionally,
define Y ∈ C|V|×|V| as the nodal admittance matrices of the
network and ~Y, ~Y ∈ C|E|×|V| as the from and to branch
admittance matrices.

The feasible set of AC unit commitment can be described by
unit constraints and AC network constraints. Unit constraints

impose the minimum up and down time limits (1c) – (1d),
generator capacities (1e) – (1f), as well as ramp limits (1g) –
(1h). Define m↑g and m↓g , respectively, as the minimum up
time and minimum down time limits for generating unit g. If
the unit g is committed during the interval t, then its, active
and reactive power injections must lie within the intervals
[
¯
pg, p̄g] and [

¯
qg, q̄g], respectively. Additionally, denote rg as

the maximum variation of active power injection by unit g
between two consecutive time slots in which the unit stays
committed. Define sg as the maximum amount of active power
injection after start-up and prior to shutdown.

The network constraint (2a) accounts for nodal power bal-
ances. The constraint (2d) enforces voltage magnitude limits.
Moreover, the constraints (2b) and (2c) enforce the thermal
limits of lines.

Given the above definitions, the AC unit commitment prob-
lem can be formulated as the optimization problem

minimize
∑
g,t

cg,t (3a)

subject to (x>g,•,p
>
g,•,q

>
g,•, c

>
g,•) ∈ Ug ∀g ∈ G, (3b)

(p•,t,q•,t,v•,t)∈Nt ∀t ∈ T , (3c)

with respect to the matrix variables x , [xg,t], p , [pg,t], q ,
[qg,t], c , [cg,t], and v , [vk,t]. The objective function (3a) is
equal the sum of the production costs of all generating units
throughout the time horizon T . For any arbitrary generating
unit g in time interval t, the production cost consists of the
generation cost, start-up cost, shutdown cost, and a fixed cost.
The generation cost is a quadratic function with respect to pg,t
with nonnegative coefficients αg and βg . The start-up cost γ↑g
and shutdown cost γ↓g are associated with every time slots at
which the unit changes status. The fixed production cost γg is
enforced if the unit is active.

Definition 1: For every generating units g ∈ G, define Ug⊂
R|T |×4 to be the set of all quadruplets (x>g,•,p

>
g,•,q

>
g,•, c

>
g,•)

that satisfy the constraints (1a) – (1h) throughout the entire
planning horizon.

Definition 2: For every t ∈ T , define Nt⊂R|G|×2×C|V| to
be the set of all triplets (p•,t,q•,t,v•,t) that satisfy the network
constraints (2a) – (2d).

Problem (3a) – (3c) is a mixed-integer nonlinear optimiza-
tion, due to the presence of binary variables and nonlinearity
of the network constraints. In what follows, we will develop a
convex relaxation to tackle the non-convexity of this problem.

III. CONVEX RELAXATION OF THE UC PROBLEM

The non-convex sets {Ug}g∈G and {Nt}t∈T , are the sources
of computational complexity. In this paper, we introduce
convex surrogates {U conv

g }g∈G and {N conv
t }t∈T , which lead

to a class of computationally-tractable relaxations of the
problem (3a) – (3c). To this end, define the auxiliary variables
u,o ∈ R|G|×|T |, whose components account for monomials
xg,t−1xg,t and p2g,t, respectively. Using the defined variables,
non-convex constraints (1a) – (1b) can be convexified as (4a),



Unit Constraints:

cg,t=αgpg,t+βgog,t+γgxg,t

+γ↑g (xg,t−ug,t)+γ↓g (xg,t-1−ug,t), (4a)

xg,τ−xg,τ-1≤xg,t ∀τ ∈{t−m↑g+1, . . . , t} (4b)

xg,τ-1−xg,τ ≤1−xg,t ∀τ ∈{t−m↓g+1, . . . , t} (4c)

¯
pg xg,t ≤ pg,t ≤ p̄g xg,t (4d)

¯
qg xg,t ≤ qg,t ≤ q̄g xg,t (4e)

pg,t−pg,t-1 ≤ rgxg,t-1+sg(1− xg,t-1) (4f)

pg,t-1−pg,t ≤ rgxg,t+sg(1− xg,t) (4g)[
xg,t−1 ug,t
ug,t xg,t

]
−

[
xg,t−1

xg,t

] [
xg,t−1 xg,t

]
� 0, (4h)[

xg,t pg,t
pg,t og,t

]
−

[
xg,t
pg,t

] [
xg,t pg,t

]
� 0. (4i)

AC Network Constraints:

d•,t+diag{WtY
∗} = C>(p•,t +iq•,t), (5a)

diag{~C Wt
~Y∗} ≤ f2max;t, (5b)

diag{ ~C Wt
~Y∗} ≤ f2max;t, (5c)

¯
v2 ≤ diag{Wt} ≤ v̄2, (5d)

Wt − v•,tv
∗
•,t � C 0. (5e)

TABLE II: Relaxed unit and AC network constraints.

(4h), and (4i). Note that if equality holds for (4h) – (4i) at
optimality, then we have:

xg,t=x2g,t, ug,t=xg,txg,t−1, og,t=p2g,t, pg,t=xg,tpg,t. (6)

In addition, to relax the non-convexity of AC network con-
straints, we define the auxiliary variables Wt ∈ H|V|, account-
ing for v•,tv

∗
•,t. Using the above auxiliary variables, the non-

convex constraints (2a) – (2d) can be relaxed as (5a) – (5e).
In order to capture the binary requirements of the com-

mitment decisions and enforce the relationship between the
auxiliary variables and the corresponding monomials, we
strengthen the proposed convex relaxation via conic con-
straints (4h) – (4i), and (5e), where C in (5e) is a pointed con-
vex cone. Next, we define the convex surrogates {U conv

g }g∈G
and {N conv

t }t∈T .
Definition 3: For every g ∈ G, define U conv

g ⊂ R|T |×6 to

be the set of all nonuplets (x>g,•,p
>
g,•,q

>
g,•, c

>
g,•,u

>
g,•,o

>
g,•) that

satisfy the constraints (4a) – (4i) throughout the entire planning
horizon.

Definition 4: For every t ∈ T , define N conv
t ⊂ R|G|×2×

C|V|×H|V| to be the set of all quadruplets (p•,t,q•,t,v•,t,Wt)
that satisfy the constraints (5a) – (5e).

The cone programming relaxation of network constraints
can be derived by incorporating the following convex set into
the constraint (5e):

Ĉ ,
{
H ∈ H|V|

∣∣ Hii ≥0, HiiHjj ≥ |Hij |2, ∀(i,j)∈E
}
,

which leads to 3×3 semi-definite programming constraints of
the form:Wii Wij vi

Wji Wjj vj
vi vj 1

 � 0 ∀(i, j) ∈ E . (7)

This relaxation is not reducible to the well-known second-
order cone programming relaxation since we are incorporating
the elements of v into the objective for the purpose of
obtaining feasible points. The solution provided by the this
relaxation is a lower-bound for the globally optimal solution
of AC unit commitment. In general, solutions obtained from
convex relaxations are not necessarily feasible for the original
non-convex problem. To remedy this shortcoming, we propose
a novel penalization method to obtain feasible points. In the
next section, we describe the proposed penalization method in
details.

IV. PENALIZATION METHOD

We incorporate a linear penalty term κ({Wt}t∈T , v,x) into
the objective of the relaxed problem to enforce feasibility.
Given an initial guess y0 =(v0,x0) that is sufficiently close to
the feasible set of the problem (3a) – (3c), the following choice
of penalty function guarantees the feasibility of the resulting
solution under the assumptions in [47], [48]:

κM,y0({Wt}t∈T ,v,x) ,∑
t
µ1(tr{WtM}−v0

•,t
∗
Mv•,t−v∗•,tMv0

•,t + v0

•,t
∗
Mv0

•,t)+

µ2(x>•,t1− 2x>•,t x
0

•,t + x0

•,t
>
x0

•,t) (8)

where M ∈ H|V| is a fixed penalty matrix.
By augmenting the penalty term (8) into the objective func-

tion of the relaxed problem, the penalized convex relaxation
of AC unit commitment can be formulated as:

min
∑
g,t

cg,t + κM,y0
({Wt}t∈T ,v,x) (9a)

s.t. (x>g,•,p
>
g,•,q

>
g,•,c

>
g,•,u

>
g,•,o

>
g,•)∈ U conv

g ∀g∈G, (9b)

(p•,t,q•,t,v•,t,Wt)∈N conv
t ∀t∈T , (9c)

with respect to decision variables x , [xg,t], p , [pg,t], q ,
[qg,t], c , [cg,t], o , [og,t], v , [vk,t], and {Wt}t∈T . The
nonnegative penalty parameter µ1, µ2 > 0 set the trade off
between the objective and the penalty functions. The penalized
convex relaxation (9a) – (9c) is said to be tight if it possesses a
unique optimal solution (x,p,q, c,o,v, {Wt}t∈T ) such that
xg,t ∈ {0, 1} and Wt = v•,tv

∗
•,t, for every g ∈ G and t ∈ T .

The tightness of the penalization guarantees the recovery of a
feasible point for AC unit commitment (3a) – (3c).

A. Choice of Penalty Matrix

Motivated by the previous literatures [49]–[51], we choose
M such that the penalty term tr{WtM} reduces the apparent
power loss over the series admittance of every line in the
network. Consider the standard π-model of line l ∈ E ,
with series admittance ysrs, l , gsrs, l + i bsrs, l and total shunt
susceptance bprl, l, in series with a phase shifting transformer



τle
iθl: 1

vf

~pl+i ~ql
gsrs, l + i bsrs, l

~psrs, l+i ~qsrs, l ~psrs, l+i ~qsrs, l

i
bprl, l

2
i
bprl, l

2

~pl+i ~ql

vt

Fig. 1: Branch Model

whose tap ratio has magnitude τl and phase shift angle θl
[52]. The model is shown in Figure 1. In order to penalize the
apparent power loss over all lines of the network, we choose
matrix M as,

M =
∑

(i,j)∈E

[ei, ej ](Mij+αI2)[ei, ej ]
>,

where e1, . . . , e|V| denote the standard basis for R|V|, and
α = 10−8. Moreover, each Mij is a 2×2 positive semidefinite
matrix defined as,

Mij = (~Yp; l + ~Yp; l) + η × ζij(~Yq; l + ~Yq; l)

where η ≥ 0 sets the trade-off between active and reactive
loss minimization, and

~Yp; l,


gsrs, l
τ2
l

eiθl ysrs, l
-2τl

y∗srs, l
-2τleiθl

0

, ~Yq; l,


bsrs, l
-τ2
l

eiθl ysrs, l
2τli

y∗srs, l
-2τlieiθl

0

,
~Yp; l,

 0
eiθl y∗srs, l

-2τl
ysrs, l

-2τleiθl
gsrs, l

, ~Yq; l,

 0
eiθl y∗srs, l
−2τli

ysrs, l
2τlie

iθl
-bsrs, l

.
Each ζij ∈ {−1,+1} is determined based on the inductive
or capacitive behavior of the line l ∈ E . More precisely, we
set ζij = 1 if the series admittance ysrs, l is inductive (i.e.,
bsrs, l ≤ 0), and ζij = −1, otherwise.

B. Sequential Penalized Relaxation

The penalized relaxation (9a) – (9c) is guaranteed to produce
a feasible solution for AC unit commitment if the initial guess
y0 is sufficiently close to the feasible set of the original
problem (3a) – (3c). If a high quality initial point is not
available, the proposed penalized relaxation can be solved
sequentially until a feasible point for problem (3a) – (3c) is
obtained. Once feasibility is attained, the sequential procedure
improves the objective function while preserving the feasibility
at each round until a near-optimal point is achieved. This
sequential procedure is detailed by Algorithm 1.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our experiment
on Illinois 200-bus and South Carolina 500-bus power system
models from MATPOWER [52]. The numerical experiments
are performed in MATLAB using a 64-bit computer with an
Intel 3.0 GHz, 12-core CPU, and 256 GB RAM. Note that the
experiments are all performed on a workstation with a single

Algorithm 1 Sequential Penalized SOCP Relaxation.

Input: µ1, µ2, M, (v0,x0)
1: repeat
2: Solve problem (9a) – (9c) to obtain (v,x)
3: (v0,x0)← (v,x)
4: until stopping criteria satisfied

Output: (v,x)

CPU. The CVX package version 3.0 [53] and MOSEK version
7.0 [54] are used to solve the proposed convex relaxations.

For each experiment, the ramp limits of each generating
unit are set to rg = sg = (p̄g −

¯
pg)/2. For each generating

unit, the minimum up and down limits m↑g and m↓g are set
to 3 and 2 hours, respectively. Hourly load changes for the
day-ahead at all buses are considered proportional to the
numbers reported in [55]. The changes in demand throughout
the 24-hour planning horizon are reported in Table III. For
every time epoch, the corresponding demand factor at that
time is multiplied by all loads in the system. Lastly, for the
case PEGASE 1354, due to missing quadratic and constant
cost coefficient data, we have considered the cost coefficients
αg = 0.01, βg = 1, and γg = 100 for all generators.

In order to evaluate the resulting feasible solutions from
Algorithm 1 we solved an unpenalized convex relaxation of
AC unit commitment by setting µ1 = µ2 = 0. The unpenalized
relaxation offers a lower bound for the globally optimal cost
of AC unit commitment, using which we can calculate the
quality of our feasible solutions from Algorithm 1 through
the formula

GAP% = 100×
∑
g,t(c

feasible
g,t − clower−bound

g,t )∑
g,t c

feasible
g,t

, (10)

where cfeasibleg,t denotes the optimal cost value of the generating
unit g ∈ G at time t ∈ T from the proposed sequential
relaxation, and clower−bound

g,t denotes the cost values obtained
from unpenalized relaxation of (3a) – (3c). The initial point
of Algorithm 1 for all of the experiments is chosen as
v0 = 1|V|×|T | and x 0 is set to the output of unpenalized
relaxation. For both of the simulations, we set µ1 = 103,
µ2 = 105, and η = 0.

Figures 2, 3, and 4 illustrate the progress of Algorithm 1.
As shown by the figures, we arrive to a feasible solutions (less
than 10-5 per unit constraint violation) after 6, 12 and 5 rounds
of Algorithm 1 for cases Illinois 200-bus, South Carolina 500-
bus, and PEGASE 1354-bus systems, respectively. Moreover,
the resulting optimality gaps are 7.47%, 8.32%, and 10.08%,
respectively. Lastly, the resulting commitment keys for the two



Fig. 2: The progress of Algorithm 1 for the case Illinois 200-bus system.

Fig. 3: The progress of Algorithm 1 for the case South Carolina 500-bus system.

Fig. 4: The progress of Algorithm 1 for the case PEGASE 1354-bus system.

TABLE III: Hourly Demand Factor.

Hour Demand Factor Hour Demand Factor
12:00 AM 0.684 12:00 PM 0.946
01:00 AM 0.645 01:00 PM 0.952
02:00 AM 0.620 02:00 PM 0.972
03:00 AM 0.604 03:00 PM 0.999
04:00 AM 0.606 04:00 PM 1.000
05:00 AM 0.627 05:00 PM 0.964
06:00 AM 0.677 06:00 PM 0.961
07:00 AM 0.694 07:00 PM 0.927
08:00 AM 0.730 08:00 PM 0.927
09:00 AM 0.808 09:00 PM 0.909
10:00 AM 0.893 10:00 PM 0.765
11:00 AM 0.922 11:00 PM 0.764

smaller cases are reported in Tables IV and V. The run times
of Algorithm 1 for the two smaller cases are less than one
hour and for the PEGASE system is less than 4 hours.

VI. CONCLUSIONS

In this work, a sequential convex relaxation method is
introduced for solving unit commitment with AC transmission
constraints. We first, develop a cone programming relaxation
to convexity AC unit commitment problems. We then incorpo-
rate a penalty term into the objective of the proposed relaxation
in order to find feasible solutions for the original non-convex

AC unit commitment. The proposed penalized relaxations
can be solved sequentially, to find feasible and near-globally
optimal points. The experimental results on Matpower’s Illi-
nois 200-bus, South Carolina 500-bus, and European 1354-
bus power system models demonstrate the effectiveness of the
proposed approach in solving challenging instances of AC unit
commitment.
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