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Abstract—This paper details and solves a stability-constrained
optimal power flow (SCOPF) for inverter-based AC microgrids.
To ensure sufficient stability margin during optimal generation, a
small-signal stability constraint is embedded into the conventional
OPF formulation. This condition is enforced using a Lyapunov
stability equation. A reduced-order model of the microgrid is
adopted to alleviate the computational burden involved in solving
the resulting SCOPF. Even then, the resulting stability conditions
are highly non-linear and cannot be handled using the existing
methods. To tackle the non-convexity in SCOPF due to the
presence of the non-linear stability constraint, two distinct convex
relaxation approaches, namely semi-definite programming and
parabolic relaxations, are developed. A penalty function is added
to the objective function of the relaxed SCOPF, which is, then,
solved sequentially to obtain a feasible point. While off-the-shelf
tools fail to produce any feasible point within hours, the proposed
approach enables us to solve SCOPF in real-time. The efficacy
of the proposed SCOPF is evaluated by performing numerical
studies on multiple benchmarks as well as real-time studies on
a 4-bus microgrid system built in a hardware-in-the-loop setup.

Index Terms—AC Microgrids, Convex optimization, Optimal
power flow, Relaxation, Stability.

I. INTRODUCTION

MAJORITY of distributed generation units are interfaced
with AC microgrids using inverters. Droop mechanism

is a well-established decentralized control tool for proportional
power sharing among inverters. This control approach alone
does not ensure optimal operation or respect operational re-
quirements usually dictated by the optimal power flows (OPFs)
paradigms. An OPF-based droop adjustment is given in [1].
Varying droop parameters could cause small-signal stability
issues [2], [3]. This paper provides an OPF paradigm that
respects the small-signal stability margin, generation limits,
power flow limits, and voltage constraints.

To enhance the stability margin, supplementary control
loops [4], auxiliary stabilizers [5], [6], L1−adaptive droop
control [7], virtual droop frameworks [8], and lead compen-
sators [9], are offered. These control methods are tuned for a
selected range of operating points. Alternatively, an stability
margin can be enforced by a proper generation dispatch via
a holistic stability-constrained optimal power flow (SCOPF)
formulation. SCOPF problem has already been studied in the
context of conventional power systems [10]–[15].
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SCOPF, with stability constraint dependent on state matrix
sensitivities with respect to OPF variables, is detailed in
[10], [11]. The stability constraint is presented as a semi-
definite programming (SDP) problem in [12], and the resulting
SCOPF is transformed to a non-linear optimization problem.
SCOPF might lead to infeasible solutions due to its non-
convex nature and the rigid threshold of the stability constraint
[12]–[14]. To obtain a feasible solution, sequential quadratic
programming and sequential optimization techniques, based
on eigenvalue sensitivity matrix, are presented in [13] and
[14], respectively. All these dispatching schemes are developed
for conventional power systems with synchronous generators,
and rely on interior-point methods that are sensitive to initial
conditions. Alternatively, bilinear matrix inequalities (BMIs)
can be employed to obtain optimal operating points ensuring
stability margins. In [15], SCOPF problem is formulated for
conventional power systems, where the stability constraint is
developed using a BMI approach. The formulated SCOPF
is convexified using SDP relaxation techniques, which could
become computationally inefficient as the number of genera-
tors increases. The primary challenge tackled in this paper is
the accommodation of highly non-linear matrix inequalities,
resulted from enforcing stability conditions in inverter-based
microgrids, that might not be within the reach of existing
solvers. The key contributions can be summarized as follows:

• An illustrative example shows the susceptibility of OPF
solutions for inverter-based AC microgrids to instability.

• SCOPF is formulated here by employing reduced-order
dynamical model of inverter-based microgrids [16], and
incorporating the Lyapunov stability equations that keeps
system spectral abscissa below a certain threshold offer-
ing small-signal stability margin.

• While the existing optimization tools, e.g., PENBMI [17]
and BMILAB [18], could not provide timely solutions for
SCOPF, we solve the resulting non-linear and non-convex
BMI equations using computationally-tractable SDP or
parabolic relaxation techniques [19], [20].

• SCOPF is solved sequentially through objective penal-
ization, to obtain feasible solutions that are beyond the
reach of existing solvers.

• The penalized, relaxed SCOPF is experimentally vali-
dated for a 4-inverter microgrid system in a hardware-
in-the-loop (HIL) environment under various loading
scenarios.
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II. NOTATIONS

The bold-italic upper case (A), bold-italic lower case (a),
and italic lower case (a) indicate matrices, vectors, and scalars,
respectively. R and C represent sets of real numbers, complex
numbers, respectively. Sn and Hn, respectively, indicate sets
of n × n symmetric matrices and n × n hermitian matrices.
The diagonal matrix with the ‘a’ vector of diagonal terms is
shown by [a]. [a]n indicates the matrix formed by repeating
the vector a for n columns. (·)> and (·)∗ indicate the transpose
and conjugate transpose of a matrix, respectively. In and 0n

indicate identity and zero matrices of size n×n, respectively.
The diagonal elements vector of a square matrix is shown by
diag{·}. The vector or a scalar absolute value is given by
|·|. The trace of a matrix is shown by tr{·}. The frobenius
norm of a matrix or a vector is represented by ‖·‖. The Re{·}
and Im{·} indicates real and imaginary parts of the complex
numbers, respectively. The notation a·b indicates the element-
wise product of vectors a and b.

The AC microgrid has N = {1, 2, ..., n} set of buses on the
power distribution network, L = {1, 2, ..., l} ⊆ N ×N set of
distribution lines, and G = {1, 2, ..., ng} set of inverters. The
vectors of the injected active and reactive powers are pg ∈
Rng×1 and qg ∈ Rng×1, respectively. d ∈ Cnd×1 is the vector
of power demand. An inverter and load incidence matrix, that
locates inverters and loads on the distribution bus, is defined
as G ∈ {0, 1}ng×n and D̂ ∈ {0, 1}nd×n. The bus admittance
matrix is given by Y ∈ Cn×n. The from and to admittance
matrices are represented as ~Y , ~Y ∈ Cn×n, and their respec-
tive branch-incidence matrices as ~L, ~L ∈ {0, 1}l×n. Loads are
considered as constant complex impedances, and included as
shunt elements in Y . vg ∈ Cng×1 is the vector of bus voltages
at point of coupling, and vb ∈ Cn−ng×1 is the vector of all
remaining buses, such that v = vg

⋃
vb. vo is the terminal

voltages at inverter output terminals.

III. STABILITY-CONSTRAINED OPTIMAL POWER FLOW

A. OPF in AC Microgrids

The OPF for an AC microgrid is formulated as

minimize h(pg) (1a)

subject to G>(pg + jqg) = D̂
>
d+ diag{vv∗Y ∗} (1b)

diag{~L vv∗ ~Y
∗
} ≤ fmax (1c)

diag{ ~L vv∗ ~Y ∗} ≤ fmax (1d)

pmin ≤ pg ≤ pmax (1e)

qmin ≤ qg ≤ qmax (1f)

(vmin)2 ≤ |v|2 ≤ (vmax)2 (1g)

varaibles v ∈ Cn×1,pg ∈ Rn
g×1, qg ∈ Rn

g×1.

Here, h(pg) is assumed to be a quadratic cost function

h(pg) = (pg)>[c2]p̃g + c>1 p
g + c>0 1ng , (2)

where c2, c1, and c0 are the cost coefficients. Quadratic cost
functions are widely used in OPF problems even for inverter-
based systems [21], [22]. The problem formulation, however,
can be solved for any convex formulation of the cost function.

The nodal power balance is enforced using (1b). The line
flows are limited in either directions using (1c) and (1d). The
active and reactive powers generated by individual inverters
are bounded using (1e) and (1f), respectively. The constraint
(1g) bounds the voltage magnitude within [vmin,vmax].

B. The Case for Stability-constrained OPF

The OPF alone cannot guarantee a stable operation for a
microgrid. Consider an illustrative example of a three-bus,
two-inverter microgrid shown in Fig 2. Primary droop control
tunes individual inverters [23], in which the voltage reference
(vref) and frequency reference (ωref) are obtained using

ωref = ωnom −mp · p+mp · popt, (3)

vref = vopt + nq · qopt − nq · q. (4)

p, q are the vectors of filtered active and reactive power of
inverter, respectively. popt, qopt, and vopt are the vector of
active power, reactive power, and voltages set-points provided
by the OPF. mp and nq are the vectors of p − ω and q − v
droop relations, respectively. Droop constants, used in the local
primary control of inverters, are chosen as mp = 6.5× 10−4

(for the active power-frequency droop) and nq = 1.3 × 10−3

(for the reactive power-voltage droop). Respective cost func-
tions of inverters are formulated as h(pg1) = 0.1(pg1)2 + 20pg1
and h(pg2) = 0.35(pg2)2 + 20pg2. The microgrid operation,
under conventional OPF, is shown in Fig. 3. When the power
demand at bus 3 changes at t = 2s, the microgrid becomes
unstable. This example illustrates the need to incorporate
stability constraints in the OPF formulation. Next, additional
constraints concerning system stability, inspired by the micro-
grid dynamics in [2], are needed to strengthen (1).

C. Incorporating Stability Constraint

To formulate the stability constraint, first, the microgrid is
modeled as a set of differential-algebraic equations,

ẋ = f(x, z), (5a)
0 = g(x, z), (5b)

where f and g represent the vectors of non-linear differential
and algebraic equations of a microgrid, respectively. x and
z are the vectors of state and algebraic variables of size nx
and nz, respectively. To reduce the computational burden, a
3rd-order inverter model [16] is adopted. The voltage and
current controllers with LC filter in Fig. 1 have high closed-
loop bandwidth compared to the power controller module, and
one can safely assume that these control loops reach a quasi
steady-state fast. Thus, the vector of differential equations, f ,
with state variables x = [p>, q>, δ>]> ∈ Rnx×1, is composed
of

ṗ = −ωc · p+ ωc · Re{vo · (io)∗}, (6a)
q̇ = −ωc · q + ωc · Im{vo · (io)∗}, (6b)

δ̇ = (ω − ωcom)ωnom. (6c)

Here, ωc ∈ Rng×1 is the cutoff frequency of the low-pass
filters used in power controller modules (Fig. 1). p ∈ Rng×1
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Fig. 1: AC microgrid schematic, inverter control, SCOPF optimization, and data flow.
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Fig. 2: A three-bus, two-inverter AC microgrid example system
with line and load parameters.

and q ∈ Rng×1 are the vectors of filtered active and reactive
power, respectively. ωnom and ω are the microgrid nominal
frequency and inverter operating frequency, respectively. vo ∈
Cng×1 = vod + jvoq and io ∈ Cng×1 = iod + jioq are the
inverter terminal’s voltage and current, respectively. δ is the
vector of inverter power angles with respect to a common
reference, usually the inverter at bus 1 (i.e., ωcom = ω1). The
operating frequency ω is obtained using

ω = ωnom −mp · p+mp · popt, (7)

where popt is the active power set-point provided by the OPF,
and mp is the p− ω droop constant.
The vector of algebraic equations g, with algebraic variables
z = [(iod)>, (ioq)>]> ∈ Rnz × 1, are given by

iod = Re{Y̌ (vo − io · zc)}, (8a)

ioq = Im{Y̌ (vo − io · zc)}. (8b)

Y̌ is the Kron-reduced admittance matrix of the distribution
network [16], zc is the impedance of the line connecting an
inverter to the power distribution network, and

vo = (vopt + nq · qopt − nq · q) · (cos δ + j sin δ), (9)

where qopt and vopt are the optimal reactive power and voltage
set-points provided by the OPF, respectively. nq is q−v droop
constant.
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Fig. 3: Unstable microgrid operation with conventional OPF
but without enforcing any stability constraint.

Proposition 1. Consider a microgrid system defined by (5a)
and (5b). Its small-signal stability, with a minimum decay
rate(∝ damping ratio) of η, can be assured [24] iff there exits
a symmetric positive definite matrix M that satisfies

Â
>
M +MÂ � −2ηM , (10)

where Â is the microgrid state matrix.

Proof. Linearizing (5a) and (5b) at the operating point
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∂f

∂x
=


−[ωc] −

[
ωc · nq · (ioq · sin δ + iod · cos δ)

]
−
[
ωc · (vref − nq · q) · (iod · sin δ − ioq · cos δ)

]
0n

g
[
ωc · nq · (ioq · cos δ − iod · sin δ)− ωc

] [
ωc · (vref − nq · q) · (iod · cos δ + ioq · sin δ)

]
Mp 0n

g−1 0n
g−1

 (11)

∂f

∂z
=

[ωc · (vref − nq · q) · cos δ
] [

ωc · (vref − nq · q) · sin δ
][

ωc · (vref − nq · q) · sin δ
]
−
[
ωc · (vref − nq · q) · cos δ

]
0ng−1 0ng−1

 (12)

∂g

∂x
=

[
0ng (Ǧ · [nq · cos δ]n

g − B̌ · [nq · sin δ]n
g

) Ǧ · [(vref − nq · q) · sin δ]n
g

+ B̌[(vref − nq · q) · cos δ]n
g

0ng (Ǧ · [nq · sin δ]n
g

+ B̌ · [nq · cos δ]n
g

) B̌ · [(vref − nq · q) · sin δ]n
g − Ǧ[(vref − nq · q) · cos δ]n

g

]
(13)

∂g

∂z
=

[
In

g

+ Ǧ · [rc]n
g − B̌ · [xc]n

g −Ǧ · [xc]n
g − B̌ · [rc]n

g

B̌ · [rc]n
g

+ Ǧ · [xc]n
g

In
g

+ Ǧ · [rc]n
g − B̌ · [xc]n

g

]
(14)

(x0, z0), using Taylor series expansion, gives∆ẋ

0

 =

∂f∂x ∂f
∂z

∂g
∂x

∂g
∂z

∆x

∆z

 . (15)

The partial differential matrices ∂f
∂x , ∂f

∂z , ∂g
∂x , and ∂g

∂z in (15)
are given by (11)-(14), respectively. The Mp in (11) is

Mp =


−mp

1 mp
2 0 · · · 0

−mp
1 0 mp

3 · · · 0
...

...
...

. . . 0
−mp

1 0 0 · · · mp
ng

 , (16)

where mp
i indicates droop constant of ith inverter. Ǧ and B̌

are, respectively, the real and imaginary components of the
Kron-reduced admittance matrix Y̌ .
Defining A(iod, ioq, δ, q) = ∂f

∂x , B(δ, q) = ∂f
∂z , C(δ, q) =

∂g
∂x , and D = ∂g

∂z , and eliminating the algebraic variables z,
(15) can be reformulated [25] as,

ẋ = Âx, (17)

where Â ∈ Rnx×nx is the state matrix obtained by

Â = A(iod, ioq, δ, q)−B(δ, q)(D)−1C(δ, q). (18)

Consider a Lyapunov energy function, V = x>Mx, where
M ∈ Snx is a symmetric positive definite matrix. Differenti-
ating V , one has

V̇ = ẋ>Mx+ x>Mẋ,

= (Âx)>Mx+ x>MÂx,

= x>(Â
>
M +MÂ)x. (19)

For the microgrid to have a minimum damping (or decay rate)
η, the necessary condition on the Lyapunov function [24] is

V̇ < −2ηE. (20)

From (19) and (20)

Â
>
M +MÂ � −2ηM , (21a)

M � Inx . (21b)

Proof of Proposition 1 is completed.

From Proposition 1, the microgrid stability can be main-
tained by choosing η to be a small positive constant. η should
be properly chosen, as a large η could lead to an infeasible
solution, and a small η might not provide sufficient damping.
Herein, η is selected in the range of [0.5, 5].

To interlink the inverter internal variables with the OPF
variables, additional constraints are formulated as

vg = (vref − nq · q) · (cos δ + j sin δ)− io · zc, (22)

io = Y̌ vg, (23)
p+ iq = diag{io(io)∗[zc]}+ pg + iqg. (24)

The OPF in (1), with additional constraints (21)-(24), con-
stitute a SCOPF for an inverter-dominant microgrid. The con-
straints (1b)-(1g) are quadratic functions of the bus voltage v.
The state matrix Â in (21a), and the constraints (22) and (24),
are non-linear functions of io, q, and δ. These non-linearities
make problem non-convex. In the next section, the SCOPF
problem is lifted and relaxed to make it computationally
tractable.

IV. LIFTING, RELAXATION, AND PENALIZATION

A. Lifted Formulation

The constraints (1b)-(1g) can be convexified by defining an
auxiliary matrix W ∈ Hn [26] as

W , vv∗. (25)

To convexify the constraints (22) and (24), and the state matrix
Â in (21a), variables δc ∈ Rng×1, δs ∈ Rng×1, δqc ∈ Rng×1,
δqs ∈ Rng×1, and a new vector, uk ∈ Rnu×1 ∀ k ∈ G, are
defined for each inverter as

δc , cos δ, δs , sin δ, (26a)

δqc , q · cos δ, δqs , q · sin δ, (26b)

uk , [iodk , i
oq
k , δ

c
k, δ

s
k, qk, δ

qc
k , δ

qs
k ]> ∀k ∈ G. (26c)

Using (26c), an auxiliary matrix for each inverter, Xk ∈
Snu ∀ k ∈ G, is defined as

Xk , uku
>
k , (26d)
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that satisfies a set of constraints U given as

(eδ
s

k )>Xke
q
k − δ

qs
k = 0, (27a)

(eδ
c

k )>Xke
q
k − δ

qc
k = 0, (27b)

(eδ
c

k )>Xke
δqs

k − (eδ
s

k )>Xke
δqc

k = 0, (27c)

(eδ
c

k )>Xke
δc

k + (eδ
s

k )>Xke
δs

k − 1 = 0, (27d)

(eδ
c

k )>Xke
δqc

k + (eδ
s

k )>Xke
δqsk − qk = 0, (27e)

(eδ
qc

k )>Xke
δqc

k + (eδ
qs

k )>Xke
δqs

k − (eqk)>Xke
q
k = 0. (27f)

ei
od

k , ei
od

k , eδ
c

k , e
δs

k , e
q
k, e

δqc

k , and eδ
qs

k are the standard
basis for respective elements of the vector uk.
From (25)-(26d), the constraints (1b)-(1g), (22), (24) and
sub-matrices A(iod, ioq, δ, q), B(δ, q), and C(δ, q) can be
reformulated as the linear functions of uk, and Xk as in (29),
(30), (31), and (32). The state matrix Â and the stability
constraint (21a) are still non-linear due to the presence of
B (D)

−1
C, Â

>
M , and MÂ terms. To overcome this, two

auxiliary matrices, E and L, are defined

E =

[
Ebb Ebc

Ecb Ecc

]

,

[
B(δc, δs, δqc, δqs)

Ĉ
>

(δc, δs, δqc, δqs)

][
B(δc, δs, δqc, δqs)

Ĉ
>

(δc, δs, δqc, δqs)

]>
(28a)

L =

[
Lmm Lma

Lam Laa

]
,

[
M

Â
>

]
[M , Â], (28b)

where Ĉ(δc, δs, δqc, δqs) = (D)−1C(δc, δs, δqc, δqs). D is
a constant matrix for a given distribution network.
The lifted formulation of the SCOPF is given in (29), where
(29b)-(29l) are linear and convex. The non-convexity present
in the original SCOPF is encapsulated by the constraints (29o)-
(29r).

B. Convex Relaxation

To ensure that (29) is computationally tractable, non-
convex constraints (29o)- (29r) are relaxed. This paper details
two distinct relaxation approaches, a SDP relaxation and a
computationally-efficient parabolic relaxation.

1) SDP relaxation: The SDP relaxation of the non-convex
constraints in the lifted SCOPF problem (29) is given as

W − vv∗ � 0, (33a)[
Ebb Ebc

Ecb Ecc

]
−
[
B(δc, δs, δqc, δqs)

Ĉ
>
(δc, δs, δqc, δqs)

] [
B(δc, δs, δqc, δqs)

Ĉ
>
(δc, δs, δqc, δqs)

]>
� 0,

(33b)[
Lmm Lma

Lam Laa

]
−
[
M

Â
>

]
[M , Â] � 0, (33c)

Xk − ukuk> � 0 ∀ k ∈ G. (33d)

minimize h(pg) (29a)
subject to

OPF constraints:

G>(p+ jq) = D̂
>
d+ diag{WY ∗} (29b)

diag{~L W ~Y
∗
} ≤ fmax (29c)

diag{ ~L W ~Y ∗} ≤ fmax (29d)

pmin ≤ p ≤ pmax (29e)

qmin ≤ q ≤ qmax (29f)

(vmin)2 ≤ diag(W ) ≤ (vmax)2 (29g)

io = G>Y v (29h)

G>v = vref · (δc + jδs)− nq · (δqc + jδqs)− io · zc (29i)

pk + jqk = ((ei
od

k )>Xke
iod

k + (ei
oq

k )>Xke
ioq

k )zck

+ pgk + jqgk ∀ k ∈ G (29j)

Stability constraints:

Lam +Lma � −2ηM (29k)
M � Inx (29l)

Auxiliary variable constraints:

Â = A(Xk)−E ∀ k ∈ G (29m)

uk = [iodk , i
oq
k , δ

c
k, δ

s
k, qk, δ

qc
k , δ

qs
k ]> ∀k ∈ G (29n)

W = vv∗ (29o)[
Ebb Ebc

Ecb Ecc

]
=

[
B(δc, δs, δqc, δqs)

Ĉ
>
(δc, δs, δqc, δqs)

] [
B(δc, δs, δqc, δqs)

Ĉ
>
(δc, δs, δqc, δqs)

]>
(29p)[

Lmm Lma

Lam Laa

]
=

[
M

Â
>

]
[M Â] (29q)

Xk = [iodk , i
oq
k , δ

c
k, δ

s
k, qk, δ

qc
k , δ

qs
k ]>[iodk , i

oq
k , δ

c
k, δ

s
k, qk, δ

qc
k , δ

qs
k ]

∀ k ∈ G (29r)

Xk, [i
od
k , i

oq
k , δ

c
k, δ

s
k, qk, δ

qc
k , δ

qs
k ]> ∈ U ∀ k ∈ G (29s)

variables

v ∈ Cn×1, pg ∈ Rn
g×1, qg ∈ Rn

g×1, io ∈ Cn
g×1,

q ∈ Rn
g×1, δc ∈ Rn

g×1, δs ∈ Rn
g×1, δqc ∈ Rn

g×1,

δqs ∈ Rn
g×1, M ∈ Sn

g

, W ∈ Hn, Â ∈ Rnx×nx ,

E =

[
Ebb Ebc

Ecb Ecc

]
∈ R2nx×2nx , L =

[
Lmm Lma

Lam Laa

]
∈ R2nx×2nx ,

and Xk ∈ Rnu×nu∀ k ∈ G.
where
U is set of constraints defined as (27),
The matrices A(Xk), B(δc, δs, δqc, δqs), and
C(δc, δs, δqc, δqs) are defined as (30), (31), and (32), respectively.

Remark 1. The constraints (33a)-(33d) can be cast as[
W v
v∗ 1

]
� 0, (34) Ebb Ebc B>(δc, δs, δqc, δqs)

Ecb Ecc Ĉ
>
(δc, δs, δqc, δqs)

B>(δc, δs, δqc, δqs) Ĉ(δc, δs, δqc, δqs) Inz

�0,

(35)Lmm Lma M

Lam Laa Â
>

M Â Inx

 � 0, (36)

[
Xk uk
u>k 1

]
� 0, ∀k ∈ G. (37)
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A =



−[ωc] −
[(
ωc
kn

q
k((e

ioq

k )>Xke
δs

k + (ei
od

k )>Xke
δc

k )
)
k∈G

]
−
[(
ωc
k(v

ref
k ((ei

oq

k )>Xke
δs

k + (ei
od

k )>Xke
δc

k ))
)
k∈G

]
+[(

ωc
kn

q
k(((e

ioq

k )>Xke
δqs

k + (ei
od

k )>Xke
δqc

k ))
)
k∈G

]

0n
g

[(
ωc
kn

q
k((e

ioq

k )>Xke
δc

k − (ei
od

k )>Xke
δs

k )− ωc
k

)
k∈G

] [(
ωc
k(v

ref
k ((ei

od

k )>Xke
δc

k + (ei
oq

k )>Xke
δs

k ))
)
k∈G

]
−[(

ωc
kn

q
k(((e

iod

k )>Xke
δqc

k + (ei
oq

k )>Xke
δqs

k ))
)
k∈G

]
Mp 0n

g−1 0n
g−1


(30)

B =


[(
ωc
k(v

ref
k δck − nq

kδ
qc
k )
)
k∈G

] [(
ωc
k(v

ref
k δsk − nq

kδ
qs
k )
)
k∈G

]
[(
ωc
k(v

ref
k δsk − nq

kδ
qs
k )
)
k∈G

]
−
[(
ωc
k(v

ref
k δck)− nq

kδ
qc
k )
)
k∈G

]
0ng−1 0ng−1

 (31)

Ĉ =D−1

0ng Ǧ · [(nq
kδ

c
k)k∈G ]

ng

− B̌ · [(nq
kδ

s
k)k∈G ]

ng

Ǧ · [(vrefk δsk − nq
kδ

qs
k )k∈G ]

ng

+ B̌ · [(vrefkδck − nq
kδ

qc
k )k∈G ]

ng

0ng Ǧ · [(nq
kδ

s
k)k∈G ]

ng

+ B̌ · [(nq
kδ

c
k)k∈G ]

ng

B̌ · [(vrefk δsk − nq
kδ

qs
k )k∈G ]

ng

− Ǧ[(vrefkδck − nq
kδ

qc
k )k∈G ]

ng

 (32)

The above remark transforms the quadratic matrix inequal-
ities (33b)-(33d) to convex linear matrix inequalities making
the SCOPF more tractable. Nevertheless, with the increase in
number of inverters and system size, solving SCOPF in (29)
may become computationally challenging.

2) Parabolic relaxation: This is an alternative relaxation
technique with a reduced computational burden. The non-
convex problem is transformed to a convex quadratic constraint
quadratic programming problem. The parabolic relaxation [26]
of the non-convex voltage constraint, (29o), is given by

|vj + vk|2 ≤Wjj +Wkk + (Wkj +Wjk) ∀(j, k) ∈ L (38a)

|vj − vk|2 ≤Wjj +Wkk − (Wkj +Wjk) ∀(j, k) ∈ L (38b)

|vj + jvk|2 ≤Wjj +Wkk − j(Wkj −Wjk) ∀(j, k) ∈ L (38c)

|vj − jvk|2 ≤Wjj +Wkk + j(Wkj −Wjk) ∀(j, k) ∈ L (38d)

|vj |2 ≤Wjj ∀j ∈ N .(38e)

The parabolic relaxation of (29p)-(29r) can be obtained using
the following proposition.

Proposition 2. Assume R ∈ Rr×s, S ∈ Rs×r, and T ∈ S2r
are the matrices expressed by

T =

[
T rr T rs

T sr T ss

]
= [R>, S]>[R>, S]. (38f)

The parabolic relaxation [19] is formulated as

T rr
jj + T ss

kk + 2T rs
jk ≥ ‖rj + sk‖2 ∀j, k ∈ {1, 2, .., r}, (38g)

T rr
jj + T ss

kk − 2T rs
jk ≥ ‖rj − sk‖

2 ∀j, k ∈ {1, 2, .., r}. (38h)

Here, rj and sk are the jth and kth column vectors of the
matrices R and S>, respectively.

Proposition 2 convexifies the non-linear matrix equality
constraints given by (29p)-(29r) using the parabolic relax-
ation technique. This approach relaxes the non-convex SCOPF
problem into a tractable SCOPF problem. While the relaxed
SCOPF problem is computationally tractable, it may not
guarantee a feasible solution for the original problem in (1).
Therefore, a sequential penalization approach is adopted.

C. Sequential Penalization

The solution obtained from the lifted problem (29a)-(29m)
with the relaxed SCOPF constraints (34)-(37) or (38a)-(38h)
may not be always feasible with the original problem (1).
To resolve this, a linear penalty function ρ is added to the
objective function in (29a)

minimize h(pg) + ρ(W ,v,E,B, Ĉ,L,M , Â,X,u) (39a)
subject to (29b)-(29m), (39b)

(34)-(37) SDP-relaxed constraints, (39c)
or

(38a)-(38h) Parabolic-relaxed constraints, (39d)

where

ρ(W ,v,E,B, Ĉ,L,M , Â,X,u) (40)

, (tr{WP } − v∗0Pv − v∗Pv0 + v∗0Pv0) + µ1(tr{E}−

2tr{B0B
>} − 2tr{Ĉ0Ĉ

>
}+ tr{B0B

>
0}+ tr{Ĉ0Ĉ

>
0})

µ2(tr{L} − 2tr{M0M
>} − 2tr{Â0Â

>
}+ tr{M0M

>
0}

+ tr{Â0Â
>
0}) + µ3tr{Xk − 2u0ku

>
k + u0ku

>
0k
}. (41)

v0,B0, Ĉ0,M0, Â0,u0k are the given initial values. µ1, µ2,
and µ3 are the penalty positive coefficients valued at 0.1, 0.5,
and 5, respectively. Here, P is the penalty function coefficient
matrix for the voltage which can be calculated as in [26].
For an arbitrary initial point, the SCOPF (39) is solved
sequentially until a feasible solution to (1) is obtained. It can
then reduce the value of the objective function in subsequent
iterations until a near optimal solution is found [19], [20]. The
flow chart for solving sequential penalized SCOPF problem is
shown in Fig.4. The penalized SCOPF is solved till the ε is
less than considered threshold value. Here ε is given as,

ε = max(||v − v0||, ||B −B0||, ||Ĉ − Ĉ0||,
||M −M0||, ||Â− Â0||, ||uk − u0k ||). (42)
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opt g opt g opt g, ,  p p q q v v

 
Fig. 4: Steps of the sequential penalized SCOPF solution.

V. VALIDATION AND VERIFICATION

A. Numerical Studies

The efficacy of both SDP and parabolic convex relaxations
are evaluated on several standard test systems. All numeri-
cal studies are performed in MATLAB/CVX platform using
MOSEK solver [27], on a 64-bit personal computer (PC) with
3.4GHz Intel i7 quadcore processor and 64 GB RAM. The
droop constants mp = 1.5× 10−4 and nq = 7.2× 10−4, and
the minimum decay rate of η = 1, are chosen.

In Table I, upper bound (UB) indicates the optimal cost
obtained after sequential penalization, Lower bound (LB) indi-
cates the optimal cost obtained for the relaxed problem without
penalty, and computational time indicates the time taken by

the optimization solver to solve the relaxed problem without
sequential penalization. From Table I, for smaller systems with
less number of inverters, the SDP relaxation offers LBs closer
to the optimal solution with similar computational time as
compared to parabolic relaxation. As the number of inverters
and system size increases, SDP becomes computationally more
expensive.

B. Hardware-in-the-Loop Validation

The proposed SCOPF is tested on a 4-bus, 4-inverter micro-
grid system [28], shown in Fig. 5. Inverters power limits and
their cost coefficients are detailed in Table II. The microgrid’s
base power and voltage are 0.1MVA and 480V , respectively.
The nominal frequency of the microgrid is ωnom = 377rad/s.
This microgrid has variable-impedance loads, with 0.707 lag-
ging power factor, at all buses. The complete microgrid is
emulated in two Typhoon HIL604 units. Inverters employ
droop control schemes with mp = 1.04×10−4 (for the active
power-frequency droop) and nq = 2.3×10−4 (for the reactive
power-voltage droop). These controllers are realized using two
dSPACE MLBx control boxes with a 100µs sampling rate. A
personal computer (PC) with an 8-core, 3.5GHz Xeon proces-
sor, and 64GB RAM solves the SCOPF using MATLAB/CVX

TABLE I: Upper bounds, lower bounds, and computational
times for SCOPF with SDP and parabolic relaxations.

SDP Parabolic
Test system ng UB LB time (s) LB time (s)

9-bus 3 4234.76 3984.51 0.44 3900.42 0.42
14-bus 5 7963.32 7076.86 0.61 6561.84 0.53
30-bus 6 563.15 523.77 0.95 498.90 0.61
57-bus 7 43728.37 39803.98 2.88 35740.58 1.26
39-bus 10 39241.56 33307.43 6.83 32607.87 3.33

89pegase 12 5830.64 5127.92 19.95 4226.49 8.69
24_ieee_rts 33 - 56877.63 3487.61 53263.30 728.30

AC microgrid HIL Emulation

dSPACE Microlab Box

SCOPF

minimize  h(pg) + ρ 
Subject to (29b)-(29m), (38a)-(38h)

ω

p

ov̂

q

Voltage
controller

Current
controller

SPWM

VSC

ov

ov̂

ω ∫

pq
Measure
& filter

oi

p

q

ov i

optvoptp optq

SPWM
oi

ov

i

Y

1

2 3

4

0.46+i1.16

85.0i+32.0

47.1i+96.0

Fig. 5: The microgrid test system implemented using HIL
(Typhoon HIL), control unit (dSPACE), and optimization unit
(personal computer), with information flow shown.
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Fig. 6: Operation with droop control and varying loads at
bus 1 and 4: (a) frequency, (b) active power generation, (c)
reactive power generation, (d) voltage magnitude, and (e) total
generation cost.

optimization tool with a MOSEK solver [27]. The stability
constraint threshold in SCOPF is chosen as η = 1. The PC
reads the microgrid information from the HIL emulator every
two minutes, solves the penalized relaxed SCOPF problem,
and sends the optimal solution to the control boxes. The
information sharing between the HIL emulator and the PC,
and the PC and control boxes, is carried out using Ethernet
communication.

1) Microgrid performance without and with SCOPF: The
microgrid system is emulated in the HIL environment for 30
minutes. Every 20 seconds, loads at all buses are randomly
varied following a poisson distribution. Figures 6 and 7 depict
the microgrid operation without and with SCOPF, respectively.
Without SCOPF, the set-point values were held constant at
popt = 0, qopt = 0, and vopt = 480V . The voltages
and the reactive power generations are within the limits for
both scenarios, as shown in Fig. 6(c),(d) and Fig. 7(c),(d).
The active power load variations are shared equally among
all the inverters due to the constant active power set-point
(popt) and identical droop constants (mp), as shown in Fig.
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376

377

378

0

40

60

20

20

60

40

0

480

490
500

0
Time (min)

5 10 15 20 52 03

510

200

280
240

320 with SCOPF
with droop only

(a)

(b)

(c)

(d)

(e)

h
( 

  
  
  
)

Fig. 7: Microgrid operation with SCOPF and varying loads
at bus 1 and 4: (a) frequency, (b) active power generation, (c)
reactive power generation, (d) voltage magnitude, and (e) total
generation cost.
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Fig. 8: (a) Microgrid eigenvalues with varying load conditions
under SCOPF, (b) Zoomed-in view of the plot.
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6(b). On the contrary, using SCOPF, the optimal set-points
are provided at every 2 minutes, leading to unequal, but cost
effective powers supplied by the inverters, as shown in Fig.
7(b). The average total generation cost for 30 minutes, with the
droop control alone, is 253.5723. Using SCOPF, the average
total generation cost reduces to 233.7836. Figure 8 shows the
traces of eigenvalues at different optimal set-points provided
by SCOPF under varying load conditions. It can be observed
that the real part of eigenvalues are always kept less than -1,
which is expected as η = 1. Moreover, it can be observed
from Fig. 6(a) and 7(a) that the operating frequency, with the
droop control alone, deviates further from the nominal value
(ωnom) compared to when SCOPF is employed.

TABLE II: Generational cost coefficients and power limits

Bus c2 c1 c0 pmin pmax qmin qmax

1 1.3 2.2 0 0 1.0 -0.80 0.80
2 1.6 2.8 0 0 1.0 -0.80 0.80
3 2.0 5.5 0 0 1.0 -0.80 0.80
4 1.6 2.4 0 0 1.0 -0.80 0.80

2) Comparing conventional OPF and SCOPF: The advan-
tage of SCOPF over the conventional OPF is demonstrated
here. Figures 9 and 10 portray the microgrid performance with
the operating set-points dictated by OPF and SCOPF, respec-
tively. In both scenarios, initially, the microgrid operates with
load impedance of (5 + i5) Ω at all buses. At t = t1, the load
at bus 3 is disconnected. Set-points provided by SCOPF lead
to better damping as compared to that of conventional OPF,
as observed from Fig. 9(a) and Fig. 10(a). At t = t2, the load
is added back to bus 3. The microgrid driven by OPF exhibits
negative damping leading to an oscillatory instability, while
SCOPF provides stable operation with a positive damping.
Microgrid eigenvalues, under OPF and SCOPF, are shown in
Fig. 11(a) and Fig. 11(b), respectively. Under the conventional
OPF, two eigenvalues are very close to the imaginary axis
which, with a small perturbation in load, could shift to the right
side of the imaginary axis and make the microgrid unstable.
By contrast, under SCOPF, the eigenvalues are further away
from the imaginary axis to provide a stability margin.

3) Microgrid performance with varying load and genera-
tion limits: The SCOPF operation, under correlated variation
in generation limits and load demand based on weather condi-
tions, is considered. The generation limits of all inverters, as
well as the load demand at bus 1 and 4, are varied using
a common Markov transition probability matrix (M̂ ) that
provides probabilities of the transition of weather conditions
based on the initial state vector t̂ as given in [29]. For
simplicity, three possible weather conditions are considered
as ‘good’, ‘normal’, and ‘bad’. For these conditions, M̂ is
defined as

M̂ =

0.96 0.02 0.02
0.02 0.96 0.02
0.02 0.02 0.96

 . (43)

The distribution of initial state vector t̂ is considered as

t̂ =
[
0.02 0.96 0.02

]>
. (44)

0
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Fig. 9: Microgrid performance with optimal set-points pro-
vided by conventional OPF with the load at bus 3 disconnected
and reconnected at t = t1 and t = t2: (a) frequency, (b)
active power generation, (c) reactive power generation, and
(d) voltage magnitude.

The correlated transition of generation limits and load demand
are shown in Figs. 12(b) and 12(c), respectively. The gener-
ation limits and loads are varied based on the occurrence of
these conditions. Based on the transition matrix, if the ‘good’
weather occurs, the generation limits are increased by 10%
and the loads are decreased by 15% from their rated values. If
the ‘bad’ weather happens, the generation limits are decreased
by 15% and the loads are increased by 10% from their rated
values. The active powers generated by all inverters are held
within the varying generation limits, as observed from Figs.
12(b) and 12(d). Throughout, the limits on the reactive powers
are varied keeping the MVA rating of any individual inverter
constant at 0.1 MVA.

C. Incorporating Constant Power Loads in SCOPF

A detailed dynamic model of an inverter-based AC micro-
grid, with constant power loads, is adopted from [30]. Stability
constraints of microgrid using this detailed dynamic model are
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modified as

A>M +MA � −2ηM , (45)
M � Inx , (46)

v ~Y = il, (47)

id = D̂v · 1

zd
, (48)
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where zd is the load impedance and D̂ is the load incidence
matrix. A is a state matrix of the full-order dynamic model of
the inverter-based AC microgrid [30]. The impedance of the
constant power load, at bus j, is dynamically calculated using
zd = v2j /p

d
j + jω0L

d
j , and included in the state matrix A as

given in [30]. pdj is the active power demand, and Ld
j is the

series inductance associated with the constant power load.
Similar to the previously-presented case of constant

impedance loads, SCOPF formulation with constant power
loads would also includes non-linear terms. Similar lifting and
relaxation techniques detailed in Section IV can be used to
convexify the resulting SCOPF formulation. One should note
the difference in system matrices for the reduced-order and
full-order models. For the microgrid example considered here,
the size of the state matrix of the full-order model including
the constant power load, A, is 65 × 65, whereas, the size of
the state matrix using the reduced-order model with constant
impedance load, Â, is 11× 11. To the best of our knowledge,
a reduced-order model of AC microgrids, with constant power
loads, is not yet available in the literature.

In the next study, SCOPF for a microgrid with constant
power loads is illustrated. Constant power loads are connected
at buses 1 and 4, as seen in Fig .13(b). Initially, inverters
operate with local droop mechanisms that caused the drop in
frequency (Fig. 13(a)) and voltage (Fig. 13(e)) from their nom-
inal values of 377rad/s and 480V , respectively. The overall
load demand is shared proportionally among all inverters as
shown in Fig. 13(c). At t = t1, all inverters are provided with
the stable optimal set-points obtained from SCOPF, and adjust
their outputs accordingly, as shown in Fig.13(f).

VI. CONCLUSION

This paper addresses the stable and optimal operation of
inverter-populated AC microgrid. SCOPF provides the optimal
operating set-points to the inverters and exhibits improved
damping characteristics as compared to the operation provided
by the conventional OPF. The stability constraints for the
SCOPF is formulated as a bilinear matrix inequality (BMI)
constraint derived from a Lyapunov stability candidate. The
SCOPF formulation is non-convex due to the presence of mul-
tiple non-linear terms. To make it computationally efficient, we
have relaxed this problem using two distinct convex relaxation
techniques, namely, SDP and parabolic relaxations. To prove
solution scalability, several numerical studies were carried out
on multiple standard IEEE and European test systems. Further,
the feasibility and the efficacy of the proposed SCOPF is
evaluated on a 4-inverter microgrid system emulated in a HIL
setup.
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