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Non-smooth Optimization over Stiefel Manifolds

Fariba Zohrizadeh, Mohsen Kheirandishfard, Farhad Kamangar, and Ramtin Madani

Abstract—This paper is concerned with the class of non-
convex optimization problems with orthogonality constraints.
We develop computationally efficient relaxations that transform
non-convex orthogonality constrained problems into polynomial-
time solvable surrogates. A novel penalization technique is
used to enforce feasibility and derive certain conditions under
which the constraints of the original non-convex problem are
guaranteed to be satisfied. Moreover, we extend our approach
to a feasibility-preserving algorithm that solves a sequence of
penalized relaxations to obtain feasible and near optimal points.
Experimental results on synthetic and real datasets demonstrate
the effectiveness of the proposed approach on the two practi-
cal applications of discriminative dimensionality reduction and
graph clustering.

I. INTRODUCTION

Consider the following optimization problem

minimize
P∈Rn×m

f̄0(P ) + g0(P ) (1a)

subject to f̄k(P ) ≤ 0, k ∈ {1, . . . , p}, (1b)

P>P = Im, (1c)

where g0 : Rn×m → R is a convex piecewise linear function
and each f̄k : Rn×m→ R is an arbitrary quadratic function
of the form f̄k(P ) , 〈Mk,PP

>〉+〈Nk,P 〉+qk, for every
k∈{0, 1, . . . , p}, and {Mk ∈Sn}pk=0, {Nk ∈Rn×m}pk=0 and
{qk ∈ R}pk=0 are given. With no loss of generality, we assume
that q0 =0 and write g0 in the form of g0(P ) = ‖α(P )+b‖1,
where b ∈ Rw is a given vector, α : Rn×m → Rw is a
linear matrix function defined as α(Y ) ,

∑w
i=1〈Ai,Y 〉ei,

the matrices {Ai ∈ Rn×m}wi=1 are given, and {ei ∈ Rw}wi=1

represent the standard basis for Rw. The formulation (1a) –
(1c) encompasses a broad class of computationally-hard opti-
mization problems with a variety of practical applications in
discriminative dimensionality reduction [2], graph matching
[3], feature selection [4], [5], compressed modes [6], [7],
among other areas of machine learning.

The majority of methods in the literature are focused on a
special case of (1a) – (1c) that involves the minimization of a
convex and smooth objective function over non-convex sets of
the form Sn,m,{P∈Rn×m |P>P=Im}, known as the Stiefel
manifolds. There are various iterative local search algorithms
which preserve the structure of Stiefel manifolds via geodesics
steps [8] or retractions [9]. Although these algorithms ex-
hibit satisfactory performance in dealing with orthogonality
constraints, they mostly restrict the objective function to
the class of smooth functions and are not compatible with
additional constraints [10]. To overcome these limitations,

Parts of this paper have appeared in the conference paper [1]. Compared
with the conference version, the new additions to this paper are detailed proofs
and major theoretical results that guarantee the convergence of the proposed
algorithm.

general algorithms are proposed that work with either smooth
or non-smooth objective functions [2], [7]. The paper [2]
uses a family of semidefinite programming (SDP) problems to
generate a converging sequence of points on Stiefel manifolds.
The paper [7] introduces an inner-outer iteration scheme for
solving `1-regularized optimization problems with orthogonal-
ity constraints based on the augmented Lagrangian method
from [11] and the proximal alternating minimization technique
from [12]. Moreover, a series of splitting techniques are
proposed in [6] and [13] that can efficiently handle non-smooth
objective functions. They partition the problem into multiple
sub-problems with analytical solutions and employ Bregman
iterations [14] or its variants to obtain optimal solutions for
orthogonality-constrained problems. In the more recent paper
[15], an extended proximal alternating linearized minimization
method is introduced to minimize convex functions subject to
linear constraints and generalized orthogonality constraints.

The success of related sequential frameworks and penalized
relaxations for nonconvex optimization is demonstrated in
[16]–[18], and in [19] for quadratically-constrained quadratic
programming. In [16], a sequential framework is introduced
for solving BMIs without theoretical guarantees. In [17], [18],
this approach is further investigated and theoretical results
are offered through the notion of generalized Mangasarian-
Fromovitz regularity condition. Another sequential SDP-based
algorithm for pattern recognition is introduced in [2] that is
not feasibility preserving.

A. Contributions

Differentiated from the existing literature, we propose a
computational approach with theoretical analysis for solving
problems of the form (1a) – (1c), that guarantees the recov-
ery of feasible points. The proposed approach generalizes
the existing literature by including additional quadratic in-
equality constraints. The core of our approach is based on
a novel and computationally efficient parabolic relaxation
which transforms the non-convex problem (1a) – (1c) into a
convex quadratically-constrained quadratic program (QCQP).
To ensure that the solution of the relaxed problem is feasible
for (1a) – (1c), we incorporate a penalty term into the objective
function and derive certain conditions that guarantee the re-
covery of feasible points. Moreover, under certain conditions,
we prove that by starting from any arbitrary initial point on
a Stiefel manifold (not necessarily feasible), a sequence of
penalized relaxations can be solved to find a feasible and
near-optimal point. Unlike the existing algorithms, if mild
assumptions are satisfied, the proposed sequential scheme is
feasibility-preserving and improves the objective monotoni-
cally at every step. To corroborate the effectiveness of our
method, we perform experiments on two practical applications
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with both synthetic and real datasets. The experimental results
demonstrate that the proposed approach exhibits comparable
results for both applications.

B. Notation

Throughout this paper, the scalars, vectors, and matrices
are shown by italic, bold lower-case and bold upper-case
letters, respectively. The symbols Rn, Rn×m, Sn, and S+

n

denote the set of real n-dimensional vectors, real n × m
matrices, real symmetric n × n matrices, and real positive
semidefinite matrices, respectively. The symbols tr{.} and (.)>

are indicative of the trace and transpose operators, respectively.
Given a vector a and a matrix A, the symbols ai and Aij ,
respectively, refer to the ith element of a and the (i, j)th

element of A. The notation A � 0 states that A is symmetric
positive semidefinite. Given matrices A and B of the same
size, 〈A,B〉 , tr{A>B} and A ◦B, respectively, denote the
Frobenius inner-product and the Hadamard product of A and
B. The operator diag(.) gets a vector and forms a diagonal
matrix with its input on the diagonal elements. The notation
‖.‖p refers to either matrix norm or vector norm depending on
the context, ‖.‖F shows the Frobenius norm, and |.| indicates
the absolute value or the cardinality of a set depending on the
context. The symbol Im denotes the identity matrix of size m
and the letter K is used as a shorthand for the set {1, . . . , p}.
The symbol Sn,m as the set of real n × m matrices with
orthonormal columns, i.e., Sn,m , {P ∈ Rn×m | P>P =
Im}. The projection operator projSn,m

: Rn×m → Sn,m is
defined as projSn,m

H = arg min{‖P −H‖F | P ∈ Sn,m}.

II. PROBLEM FORMULATION

Optimization problems of the form (1a) – (1c) can be com-
putationally challenging due to the non-convexities of the
objective function and constraints. In order to derive convex
relaxations, we first lift the problem into a higher dimensional
space by introducing an auxiliary variableX ∈ Sn, accounting
for the quadratic term PP>. For every k ∈ {0} ∪ K, define
fk : Rn×m × Sn → R as:

fk(P ,X) , 〈Mk,X〉+ 〈Nk,P 〉+ qk. (2)

Using the auxiliary variable X , the optimization problem
(1a) – (1c) can be equivalently reformulated as

minimize
P∈Rn×m

X∈Sn

f0(P ,X) + g0(P ) (3a)

subject to fk(P ,X) ≤ 0 k ∈ K, (3b)

P>P = Im, (3c)

P P>= X , (3d)

with a convex objective function and convex linear inequality
constraints (3b). The above formulation is still not convex due
to the presence of the constraints (3c) and (3d) that capture
all non-convexities of the problem.

A. Convex Relaxation

In order to convexify the lifted problem (3a) – (3d), we relax
the constraints (3c) and (3d) to

Im−P>P ∈C ∧ X−PP> ∈D ∧ tr{X}=m, (4)

where C ⊆ Sm and D ⊆ Sn are convex cones to be defined.
In this work, we consider the common-practice semidefinite
programming (SDP) relaxation and introduce a novel convex
relaxation that transforms the problem (3a) – (3d) into a convex
quadratically-constrained quadratic program (QCQP).

1) Semidefinite Programming Relaxation: This relaxation
provides a powerful method for tackling non-convex poly-
nomial optimization problems [20]. The SDP relaxation of
the problem (3a) – (3d) can be derived by having C = S+

m

and D = S+
n . Despite the effectiveness of this relaxation in

providing high-quality solutions, its applicability is limited to
the problems of moderate size due to the computational cost
of imposing high-dimensional conic constraints.

2) Parabolic Relaxation: We propose a computationally
efficient convex relaxation as an alternative to the SDP re-
laxation. In order to formulate the proposed relaxation for the
problem (3a) – (3d), we need to set C = Vm and D = Vn,
where for every positive integer o, set Vo ⊆ So is defined as
follows

Vo,{H ∈So |Hii+Hjj≥2|Hij |, ∀i,j∈{1, . . . , o}}.

Remark 1. It can be easily observed that if (C,D)=(Vm,Vn),
the constraints (3c) and (3d) are equivalent to the following
convex quadratic inequalities:

‖P (ėi− ėj)‖22≤ 2, ∀i,j∈{1, . . . ,m}, (5a)

‖P (ėi+ ėj)‖22≤ 2, ∀i,j∈{1, . . . ,m}, (5b)

‖P>(ëi− ëj)‖22≤ Xii+Xjj−2Xij , ∀i,j∈{1, . . . ,n }, (5c)

‖P>(ëi+ ëj)‖22≤ Xii+Xjj+2Xij , ∀i,j∈{1, . . . ,n }, (5d)
tr{X} = m. (5e)

where {ėk ∈ Rm}mk=1 and {ëk ∈ Rn}nk=1 denote the standard
basis for Rm and Rn, respectively. Hence, the proposed
relaxation reduces (3a) – (3d) to a convex QCQP.

Notice that either of the aforementioned relaxations may fail
to produce a feasible point for (1a) – (1c), because in general,
an optimal solution to a convex relaxation does not necessarily
satisfy the constraints (3c) and (3d). In what follows, we
propose a penalization technique that guarantees the recovery
of feasible points for (1a) – (1c) under certain conditions.

III. PENALIZATION

In this section, we show that by including a penalty term
in the objective, one can obtain feasible points for the non-
convex problem (3a) – (3d). Given an arbitrary initial point
P̌ ∈ Sn,m, that is not necessarily feasible, we transform the
problem (3a) – (3d) into the following convex relaxation with
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revised objective function:

minimize
P∈Rn×m

X∈Sn

f0(P ,X) + g0(P )− µ〈P , P̌ 〉 (6a)

subject to fk(P ,X) ≤ 0 k ∈ K, (6b)

Im − P>P ∈ C, (6c)

X − P P>∈D, (6d)
tr{X} = m, (6e)

where (C,D) ∈ {(S+
m,S+

n ), (Vm,Vn)}, and the fixed param-
eter µ > 0 sets a trade-off between the original objective
function and the linear penalty term 〈P , P̌ 〉.

Remark 2. If an optimal solution (
∗
P ,

∗
X) of the problem

(6a) – (6e) satisfies the constraints (3c) and (3d), then
∗
P is

feasible for (1a) – (1c).

In the remainder of this section, certain conditions are
introduced to guarantee that the penalized relaxation (6a) – (6e)
produces feasible points for the non-convex problem (3a) –
(3d).

Definition 1. Define feasibility distance dF :Rn×m →R as

dF (P ) , inf{‖C − P ‖F | C∈F}, (7)

where F denotes the feasible set of the problem (1a) – (1c).

Definition 2. Define the singularity function s :Sn,m→R as:

s(P ) , sup
D∈ZP

{
min
k∈K
{−〈2MkP+Nk,D〉}

}
, (8)

where ZP , {D ∈ Rn×m | P>D = 0 ∧ ‖D‖F ≤ 1}. A
point P ∈ Sn,m is said to satisfy the Mangasarian-Fromovitz
constraint qualification (MFCQ) condition if it is feasible for
the problem (1a) – (1c) and s(P ) > 0.

Theorem 1. Define the constants

β , max
P∈Sm,n

{|g0(P )+〈M0,PP
>〉+〈N0,P 〉|}, (9a)

ψ , 2‖M0‖F+‖N0‖F+

w∑
i=1

‖Ai‖F, (9b)

κ , 4 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F} (9c)

and let P̌ ∈F be a feasible point for the problem (1a) – (1c)
that satisfies the MFCQ condition. If

µ > max{β−1ψ2, β(26κ)2s(P̌ )−2, 144β}, (10)

then the penalized relaxation (6a) – (6e) has a unique optimal
solution (

∗
P ,

∗
X), that satisfies (3c) and (3d). Moreover,

∗
P is

feasible for (1a) – (1c) and f̄0(
∗
P )+g0(

∗
P ) ≤ f̄0(P̌ )+g0(P̌ ).

Proof. See Section V for the proof.

Remark 3. For every point P ∈ Sm,n, it is straightforward

Algorithm 1 Sequential Penalized Relaxation

Input: P̌ ∈Sn,m, a fixed parameter µ > 0, and k = 0,
1: repeat
2: k ← k + 1
3: P k ← solve (6a) – (6e) with the penalty µ〈P , P̌ 〉
4: P̌ ← projSn,m

P k

5: until stopping criteria is met
Output: P k

to calculate s(P ) by solving the following convex problem:

maximize
t∈R,D∈ZP

t

subject to t ≤ −〈2MkP +Nk,D〉, k ∈ K.

Notice that β is upper bounded by ψ and it can be simply
lower-bounded by any arbitrary member of the set Sm,n.
This certifies the existence of a bounded µ that satisfies
(10). In practice, there is no need to compute s(P ) for fine-
tuning parameter µ, since (10) offers a conservative sufficient
condition and usually, there exists a smaller µ that satisfies
Theorem 1. In Section IV, we assess the sensitivity of our
approach with respect to different choices of µ.

Theorem 1 is concerned with the case where the initial point
P̌ is feasible for the original problem (1a) – (1c). However,
finding a feasible starting point can be difficult due to the
presence of the non-convex quadratic inequality constraints
(1b). The next theorem states that even if P̌ is not feasible,
the proposed penalized relaxation can still result in a feasible
point for the non-convex problem (1a) – (1c).

Theorem 2. Consider an initial P̌ ∈ Sn,m that satisfies

dF (P̌ ) < 1, (12a)

s(P̌ ) > κ dF(P̌ )
[
1 + (1− dF (P̌ ))−1

]
, (12b)

where κ is defined in (9c). If µ is sufficiently large, then the
penalized convex relaxation (6a) – (6e) has a unique optimal
solution (

∗
P ,

∗
X) that satisfies (3c) and (3d). Moreover,

∗
P is

feasible for (1a) – (1c).

Proof. See Section V for the proof.

A. Sequential Penalized Relaxation

Motivated by Theorems 1 and 2, this section presents
a sequential approach that solves a sequence of penalized
relaxations of the form (6a) – (6e) to infer high-quality feasible
points for the non-convex problem (1a) – (1c). The proposed
scheme starts from an initial point P̌ on the Stiefel manifold.
In each round, the solution of the penalized relaxation (6a) –
(6e) is projected onto the Stiefel manifold and then the
projected point is employed as an initialization for the next
round. Once a feasible point for (1a) – (1c) is obtained, accord-
ing to Theorem 1, the proposed scheme preserves feasibility
and generates a sequence of points whose objective values
monotonically improves. The details of the sequential scheme
are delineated in Algorithm 1.
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Fig. 1: Two dimensional data representation on a training set from the synthetic data set. Left: MMDA [2], middle: SPR-S,
right: SPR-Q. The results show that the SPR-S and SPR-Q algorithms have provided more discriminative 2D representations
compared to the MMDA method.

The following theorem guarantees the convergence of Al-
gorithm 1 to at least a locally optimal solution.

Theorem 3. Let F̌ , {P ∈ F|f̄0(P )+g0(P ) ≤ h} denote
an epigraph of the problem (1a)–(1c) such that s(P ) > 0 for
every P ∈ F̌ . If P̌ ∈ F̌ and

µ > max
{
β−1ψ2, β(26κ)2 min

P∈F̌
{s(P )}−2, 144β

}
, (13)

then the sequence generated by Algorithm (1) converges to a
local minimizer of the problem (1a)–(1c).

IV. EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments on
real and synthetic datasets to verify the effectiveness of the
proposed sequential approach, termed SPR, in solving non-
convex optimization problems with orthogonality constraints.
In Subsections IV-A and IV-B, we apply SPR on two practical
problems involving orthogonality constraints. We use SPR-
S and SPR-P to refer to the combination of Algorithm 1
with the SDP relaxation and the proposed parabolic relaxation,
respectively. To solve the penalized relaxations in each round
of the algorithm, we use MOSEK version 7.0. Through the
experiments, we leverage the inherent sparsity patterns of
the problems to reduce the computational cost of solving
large-scale semidefinite programs. This enables us to break
down large-scale conic constraints into a set of smaller ones
[21]. Since finding a feasible point for (1a) – (1c) can be
computationally demanding, we initialize Algorithm 1 with
an arbitrary starting point on the Stiefel manifold and aim to
improve the quality of the point. If the algorithm can recover
a feasible point for (1a) – (1c), according to Theorem 1, it can
generate a sequence of feasible points whose objective values
monotonically improve. To measure the level of infeasibility,
define tr{X̄−P̄ P̄>} as the feasibility violation of an arbitrary
feasible point (P̄ , X̄) of the problem (6a) – (6e). We terminate
the sequential algorithm once the feasibility violation and
objective value improvement are less than 10-5 or if the round
number exceeds 100. Notice that the Nesterov acceleration
technique can be employed to improve the convergence be-
haviour of the SPR algorithm. However, in this case, the
algorithm may fail to preserve the monotonically decreasing
order of the objective values even if the initial point is feasible.

We apply the sequential algorithm on two fundamental
machine learning problems of discriminative dimensionality
reduction and graph clustering. Notice that each of these prob-
lems are well-studied in the literature and several approaches
have been developed to efficiently target these applications.
Therefore, it is not the intent of this work to compete with
these state-of-the-art problem-specific approaches, but rather
to demonstrate the potential of Algorithm 1 in solving the
problems of form (1a) – (1c) that widely arise in different areas
of machine learning.

A. Experiment I: Discriminative Dimensionality Reduction

Given a collection of high-dimensional data points from c
different classes, the problem of discriminative dimensionality
reduction aims to learn a low-dimensional subspace on which
the projection of different classes are well-separated. To this
end, [2] proposed a max-min distance analysis (MMDA) that
maximizes the minimum distance between all class pairs.
This problem can be cast as a non-convex and non-smooth
optimization problem of form

maximize
P∈Rn×m

min
1≤i<j≤c

〈Aij ,PP>〉 (14a)

subject to P>P = Im, (14b)

where each Aij ∈ Sn is a given weighted distance matrix
between the ith and jth classes. In this experiment, we
evaluate the performance of the SPR algorithm for solving
the problems of form (14a) – (14b). Closely related to our
work, [2] uses a sequence of local SDP relaxations to find
the solution of problem (14a) – (14b). We benchmark the
SPR method against the MMDA on both real and synthetic
datasets. To ensure the comparison is fair, both methods use
the same initial point and the same distance matrices Aij

which are computed based on [2]. Other parameter settings
of the MMDA are set to their default values. Following [2],
we conduct 100 independent experiments on 10-dimensional
synthetic data from seven classes. For each class i, a mean
vector ηi ∈ R10 is sampled from 10-dimensional zero mean
Gaussian distribution with co-variance matrix 2I10 and then
a pair of training and testing sets, each with 100 members, is
generated based on the Gaussian distribution N (ηi, I10).

To compare the classification error rate, we project each
test set into subspaces with varying dimensions, learned on
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Fig. 2: Performance of SPR comparing to MMDA [2] on left:
synthetic dataset, right YALE dataset [23]. Best viewed in
color.

its corresponding training set. The projected instances are
then classified using the nearest mean classifier. Figure 2
(left) shows the average classification error rate with respect
to the reduced dimensionality on the synthetic datasets. To
run the experiment on the synthetic datasets, we set µ to
100 and 200 for SPR-S and SPR-P, respectively. Moreover,
we conduct this experiment on the YALE dataset consisting
of 165 frontal face images of 15 individuals under different
illumination and lightening conditions [22]. Each image is of
size 32×32 pixels. The results of this experiment are illustrated
in Figure 2 (right). According to Figure 2, SPR-S and SPR-P
perform on par or better than the MMDA algorithm on both
real and synthetic datasets in the problem of discriminative
dimensionality reduction. In the experiment on the YALE
dataset, we set µ to 5000 and 10000 for SPR-S and SPR-P,
respectively. To qualitatively compare the methods, Figure 1
visualizes the results of projecting a randomly chosen training
set from the synthetic dataset on the 2D space. Observe that
comparing to the MMDA method, the SPR-based algorithms
learn more discriminative 2D representations that are suitable
for classification tasks.

To assess the sensitivity of the SPR algorithm with respect to
the parameter µ, we perform the discriminative dimensionality
reduction experiment with m = 2 on YALE dataset and report
the results in Figure 3 for various choices of µ. Observe that
the final solution obtained by the proposed algorithm is not
very sensitive to the choice of µ. According to the figure, the
SPR-S requires smaller values of µ to recover feasible points,
e.g. µ = 5000, while SPR-P fails to find feasible points for
such choice of µ. Moreover, it can be seen that if µ exceeds
a certain threshold, both SPR-S and SPR-P provide the same
sequence of feasible points.

B. Experiment II: Graph Clustering

Given a weighted graph G with n vertices, the graph cluster-
ing problem aims to partition G into a set of sub-graphs such
that the vertices within each one are more densely connected
to each other than those belonging to different sub-graphs.
Inspired by the well-known spectral clustering technique [24],
this experiment incorporates a set of non-negative constraints
to formulate the graph clustering problem as the following
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Fig. 3: Sensitivity analysis of SPR-S (left) and SPR-Q (right)
with respect to different choices of parameter µ for the dis-
criminative dimensionality reduction problem, where m= 2.
This experiment is performed on the YALE dataset. Best
viewed in color.

Dataset n Dim. m ONGR SPR-S SPR-Q

Iris 150 4 3 79.84 86.71 81.23
Spiral 312 2 3 87.44 95.76 94.15
Jain 373 2 2 88.42 92.33 90.26
Compound 399 2 6 74.57 74.25 76.48
R15 600 2 15 86.07 85.36 86.94
Aggregation 788 2 7 87.84 86.39 84.66

TABLE I: Clustering performance (%) on the UCI datasets
[26] and shape sets [27]–[29].

optimization [25]:

minimize
P∈Rn×m

〈L,PP>〉 (15a)

subject to P>P = Im, (15b)
P ≥ 0, (15c)

where L denotes the Laplacian matrix of the weighted graph
G and ≥ is the element-wise inequality operator. Comparing
to the spectral clustering, formulation (15a) – (15c) offers a
more interpretable clustering framework which requires no
further post-processing steps to identify the cluster members.
Given

∗
P , the optimal solution of the above problem, each

vertex i is assigned to a cluster with label argmaxj
∗
Pij . [25]

proposed a fast and scalable heuristic, denoted by ONGR, to
solve large-scale instances of the form (15a) – (15c). Due to
the fact that this problem is a special case of (1a) – (1c), we
apply the SPR algorithm to find the solution of (15a) – (15c)
and use the same procedure as [25] to create the Laplacian
matrix L. To make a fair comparison between the ONGR and
SPR, we use the same initialization for both methods. Table I
reports the clustering performance of the SPR against [25] on
well-known datasets from the UCI machine learning repository
[26] and shape sets [27], [28]. For each dataset, n, Dim, and
m refer to the number of sample points, dimension of each
point, and the number of classes, respectively. The scores for
each method is computed by averaging over 30 independent
runs for each dataset. As the results indicate, SPR-S and SPR-
P exhibit better performance compared to [25] on most of the
datasets. Through this experiment, we set µ = 1000 in the
SPR algorithm and use the default parameter settings for the
ONGR algorithm.
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V. PROOFS

This section presents the proof of Theorems 1, 2, and 3. Be-
fore proceeding with the proofs, we provide some prerequisite
lemmas.

Using the well-known epigraph technique [20], the non-
smooth term g0(P ) in (3a) can be removed by adding a pair
of linear constraints and incorporating an additional term into
the objective function. This reformulation of (3a) – (3d) leads
to the following penalized non-convex problem:

minimize
P∈Rn×m

t∈Rw

1>t+〈M0,PP
>〉+〈N0,P 〉−µ〈P̌ ,P 〉 (16a)

subject to γ̄ :+α(P ) + b ≤ t, (16b)

¯
γ :−α(P )− b ≤ t, (16c)

λ :〈Mk,PP
>〉+〈Nk,P 〉+qk≤0, k∈K, (16d)

Ω :P>P = Im, (16e)

with γ̄∈Rw,
¯
γ∈Rw, λ∈R|K|, and Ω∈Sm as the dual variables

associated with the constraints (16b), (16c), (16d), and (16e),
respectively. Observe that the problems (16a) – (16e) and (1a) –
(1c) are equivalent, if µ = 0. In what follows, we show that
under certain conditions, the optimal solution of (16a) – (16e)
can be obtained in polynomial time via convex relaxation.

Lemma 1. Consider an arbitrary point P̌ ∈ Rn×m. Every
optimal solution (

∗
P ,

∗
t) of the problem (16a) – (16e) satisfies,

0 ≤ ‖
∗
P − P̌ ‖F − dF (P̌ ) ≤ 2

√
βµ−1 (17)

where β is defined in (9a).

Proof. According to Definition 1, the distance between an
arbitrary point P̌ and any points in F is greater than or equal
to dF (P̌ ). This implies that ‖

∗
P − P̌ ‖F − dF (P̌ ) is lower

bounded by zero. To prove the validity of the upper bound, let
P̄ be an arbitrary member of {P ∈ F | ‖P − P̌ ‖F =dF (P̌ )}.
Since

∗
P is the minimizer of the optimization problem (16a) –

(16e), one can write:

‖α(
∗
P )+b‖1+〈M0,

∗
P

∗
P>〉+〈N0,

∗
P 〉−µ〈

∗
P , P̌ 〉

≤ ‖α(P̄ )+b‖1+〈M0,P̄ P̄
>〉+〈N0, P̄ 〉−µ〈P̄ , P̌ 〉.

and due to feasibility of
∗
P and P̄ we have:

µ

2
‖

∗
P − P̌ ‖2F − β

≤ ‖α(
∗
P ) + b‖1 + 〈M0,

∗
P

∗
P>〉+ 〈N0,

∗
P 〉+

µ

2
‖

∗
P − P̌ ‖2F

≤ ‖α(P̌ ) + b‖1 + 〈M0, P̄ P̄
>〉+ 〈N0, P̄ 〉+

µ

2
‖P̄ − P̌ ‖2F

≤ µ

2
‖P̄ − P̌ ‖2F + β =

µ

2
× dF (P̌ )2 + β.

where β is defined in (9a). Therefore,

‖
∗
P − P̌ ‖F−dF (P̌ )≤

√
‖

∗
P − P̌ ‖2F−dF (P̌ )2≤2

√
βµ−1

which proves the right side of (17).

Based on Lemma 1, the next lemma guarantees that if the
initial point P̌ satisfies the MFCQ regularity condition and if
it is close to the feasible set, then under some assumptions,

MFCQ is satisfied by every optimal point (
∗
P ,

∗
t) of the

problem (16a) – (16e) as well.

Lemma 2. Consider an arbitrary P̌ ∈ Sn,m. Every optimal
solution (

∗
P ,

∗
t) of the problem (16a) – (16e) satisfies

s(
∗
P ) ≥ s(P̌ )− κ(dF (P̌ ) + 2

√
βµ−1) (19)

where β and κ are defined in (9a) and (9c).

Proof. Due to compactness of the set ZP̌ , the supremum in
(8) is attainable. As a result, there exists Ď ∈ ZP̌ such that:

s(P̌ ) = min
k∈K
{−〈2MkP̌ +Nk, Ď〉}. (20)

and hence,

s(P̌ ) ≤ −〈2MkP̌ +Nk, Ď〉 ∀k ∈ K. (21)

On the other hand, we have D′ ∈ Z ∗
P

, where

D′ , (In −
∗
P

∗
P>)Ď. (22)

As a result, we have

− 〈2Mk

∗
P +Nk,D

′〉

≥s(P̌ )+〈2MkP̌ +Nk, Ď〉 − 〈2Mk

∗
P +Nk,D

′〉

=s(P̌ )+〈2MkP̌+Nk,D
′+

∗
P

∗
P>Ď〉−〈2Mk

∗
P +Nk,D

′〉

=s(P̌ )+〈2MkP̌+Nk,D
′+

∗
P (

∗
P−P̌ )>Ď〉−〈2Mk

∗
P+Nk,D

′〉

=s(P̌ )−〈2Mk(
∗
P−P̌ ),D′〉+〈2MkP̌+Nk,

∗
P (

∗
P−P̌ )>Ď〉

=s(P̌ )−〈2M>
kD

′−Ď(2MkP̌+Nk)>
∗
P ,

∗
P−P̌ 〉

≥s(P̌ )−‖2M>
kD

′−Ď(2MkP̌+Nk)>
∗
P ‖F‖

∗
P−P̌ ‖F

=s(P̌ )−(4‖Mk‖F + ‖Nk‖F)‖
∗
P − P̌ ‖F

≥s(P̌ )−κ‖
∗
P − P̌ ‖F.

Now, according to Lemma 1, we can write

−〈2Mk

∗
P +Nk,D

′〉 ≥ s(P̌ )− κ‖
∗
P − P̌ ‖F

≥ s(P̌ )− κ(dF (P̌ ) + 2
√
βµ−1).

Additionally, based on Definition 2, for every k ∈ K we have:

s(
∗
P ) ≥ −〈2Mk

∗
P +Nk,D

′〉,

which together with the above relations conclude (19).

The next lemma guarantees the existence of Lagrange
multipliers corresponding to optimal solutions of the problem
(16a) – (16e).

Lemma 3. Consider an arbitrary P̌ ∈ Sn,m that satisfies

s(P̌ )− κ dF (P̌ ) > 0. (25)

If the following inequality holds true,

µ > 4β[κ−1s(P̌ )− dF (P̌ )]−2, (26)

then for every primal optimal pair (
∗
P ,

∗
t) of (16a) – (16e), there

exists Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×R|K|×Sm

that satisfy the following Karush–Kuhn–Tucker (KKT) condi-
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tions

∇PL(
∗
P ,

∗
t,

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) = µP̌ , (27a)

1 +
∗
γ̄ +

∗

¯
γ = 0, (27b)

∗
γ̄ ◦ (+α(

∗
P ) + b−

∗
t) = 0, (27c)

∗

¯
γ ◦ (−α(

∗
P )− b−

∗
t) = 0, (27d)

∗
λk(〈Mk,

∗
P

∗
P>〉+ 〈Nk,

∗
P 〉+ qk) = 0 k ∈ K, (27e)

∗
γ̄ ≤ 0,

∗

¯
γ ≤ 0,

∗
λ ≤ 0, (27f)

where L(P , t, γ̄,
¯
γ,λ,Ω) represents the Lagrangian function

of (16a) – (16e), defined as

L(P, t,γ̄,
¯
γ,λ,Ω),1>t+〈M0,PP

>〉+〈N0,P 〉
− γ̄>(α(P )+b−t) +

¯
γ>(α(P )+b+t)

−
∑
k∈K

λk(〈Mk,PP
>〉+〈Nk,P 〉+qk)−〈Ω,P>P−Im〉. (28)

and, β and κ are defined in (9a) and (9c).

Proof. According to Lemma 2, and due to the assumptions
(25) and (26) we have s(

∗
P ) > 0. Therefore, according to

Definition 2, there exist
∗
D ∈ Rn×m such that the following

Mangasarian-Fromovitz constraint qualification conditions are
satisfied:

+ α(
∗
D)−

∗
d < 0 (29a)

− α(
∗
D)−

∗
d < 0 (29b)

〈2Mk

∗
P +Nk,

∗
D〉 < 0, k ∈ K (29c)

∗
P>

∗
D = 0, (29d)

where
∗
d = 2|α(

∗
D)|. According to (29a) – (29d) and due to

the optimality of
∗
P , we can conclude that there exists a dual

point (γ̄,
∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×Rp×Sm for which the KKT

conditions are satisfied.

Lemma 4. Let (
∗
P ,

∗
t) be a primal optimal solution of

(16a) – (16e) with the corresponding Lagrange multipliers
(

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) that satisfy the KKT conditions (27a) – (27e). The

point (
∗
P ,

∗
P

∗
P>) is the unique primal solution of the penalized

convex relaxation (6a) – (6e), if

−M0 +
∑
k∈K

∗
λkMk + θIn ≺ ∗

D
0, (30a)

∗
Ω− θIm ≺ ∗

C
0, (30b)

where
∗
C and

∗
D denote the dual cones of C and D, respectively.

Proof. Consider the following equivalent formulation of the

penalized convex relaxation (6a) – (6e)

minimize
P∈Rn×m

t∈Rw×1

X∈Sn

1>t+ 〈M0,X〉+ 〈N0,P 〉 − µ〈P̌ ,P 〉 (31a)

subject to γ̄ : +α(P ) + b ≤ t, (31b)

¯
γ : −α(P )− b ≤ t, (31c)

λ : 〈Mk,X〉+〈Nk,P 〉+qk≤0, k ∈ K, (31d)

Ψ : Im − P>P �C 0, (31e)

Λ : X − P P>�D 0, (31f)
θ : tr{X} = m, (31g)

with γ̄ ∈ Rw,
¯
γ ∈ Rw, λ , [λ1, . . . , λk]> ∈ R|K|, Ψ ∈ Sm,

Λ ∈ Sn, and θ ∈ R as the dual variables associated with the
constraints (31b), (31c), (31d), (31e), (31f), (31g), respectively.

Let (
∗
P ,

∗
t) and (

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) denote a pair of primal and dual

optimal solutions for the nonconvex problem (16a) – (16e) and
define ∗

Λ , −M0 +
∑
k∈K

∗
λkMk.

In order to prove the lemma, we show that the following pair
satisfies the KKT condition for (31a) – (31g):

(P ,X, t) = (
∗
P ,

∗
P

∗
P>,

∗
t), (32a)

(γ̄,
¯
γ,λ,Ψ,Λ, θ) = (

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω−

∗
θIm,

∗
Λ +

∗
θIm,

∗
θ). (32b)

These conditions can be formulated as:

- Stationarity with respect to X , P and t, respectively:

Λ +M0 −
∑
k∈K

λkMk − θIn = 0, (33a)

2PΨ+2ΛP−N0+
∑
k∈K

λkNk+

w∑
i=1

(̄γi−
¯
γ
i
)Ai+µP̌ = 0, (33b)

1 + γ̄ +
¯
γ = 0, (33c)

- Complementary slackness:

γ̄ ◦ (+α(P ) + b− t) = 0, (33d)

¯
γ ◦ (−α(P )− b− t) = 0, (33e)

λk(〈Mk,X〉+ 〈Nk,P 〉+ qk) = 0, k ∈ K, (33f)

Ψ (P>P − Im) = 0, (33g)

Λ (P P>−X) = 0, (33h)

- Dual feasiblity:

γ̄ ≤ 0,
¯
γ ≤ 0, λ ≤ 0, (33i)

Ψ ≺ ∗
C

0, Λ ≺ ∗
D

0. (33j)

The equations (33a)–(33c) are followed from the definition
of

∗
Λ and

∗
Ψ, along with the stationarity conditions (27a) –

(27b). Complementary slackness conditions are immediate
consequences of primal feasibility. Finally, the dual feasibility
conditions are resulted from (27f) and the assumptions (30a)
and (30b).

The next lemma provides an upper bound on the Lagrange
multipliers of the problem (16a) – (16e), that will be used to
show that this problem can be relaxed to (6a) – (6e) with no
effect on the solution.

Lemma 5. Consider an arbitrary P̌ ∈ Sn,m that satisfies (25)
and let µ satisfy (26). For every solution (

∗
P ,

∗
t) of (16a) –
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(16e), there exist Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×

Rw×Rp×Sm that satisfy the KKT conditions (27a) – (27f) as
well as the inequalities:

−1>
∗
λ

µ
≤ dF(P̌ ) + µ−1ψ+2

√
βµ−1

s(P̌ )− κ(dF (P̌ ) + 2
√
βµ−1)

(34a)

‖ 2

µ

∗
Ω+Im‖F≤κ2

(
− 1>

∗
λ

µ

)
+dF (P̌ )+µ−1ψ+2

√
βµ−1

(34b)

where constant κ2 is given by

κ2 , 2 max
k∈K
{‖Mk‖F}+ max

k∈K
{‖Nk‖F}, (35)

and β, ψ and κ are defined in (9a) – (9c).

Proof. According to Lemma 2, and due to the assumptions
(25) and (26), we have s(

∗
P ) > 0. Hence, there exists

∗
D ∈ Z ∗

P
such that:

−〈2Mk

∗
P +Nk,

∗
D〉 > 0, k ∈ K. (36)

According to Lemma 3 and due to optimality of
∗
D, the

condition (27a) yields

0 = 〈∇PL(
∗
P ,

∗
t,

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω),

∗
D〉

= 〈2M0

∗
P +N0,

∗
D〉−

∑
k∈K

∗
λk〈2Mk

∗
P+Nk,

∗
D〉+〈2

∗
PΩ,

∗
D〉

− (
∗
γ̄ − ∗

¯
γ)>α(

∗
D)− µ〈P̌ ,

∗
D〉.

The above equation together with Definition 2 and the fact
that

∗
D>

∗
P = 0 give rise to the following inequality

−(1>
∗
λ)s(

∗
P )≤

∑
k∈K

∗
λk〈2Mk

∗
P+Nk,

∗
D〉

=〈2M0

∗
P+N0,

∗
D〉−(

∗
γ̄− ∗

¯
γ)>α(

∗
D)+µ〈

∗
P − P̌ ,

∗
D〉

≤ 2‖M0‖F+‖N0‖F+
w∑

i=1

‖Ai‖F+µ‖
∗
P−P̌ ‖F,

which leads to

−1>
∗
λ

µ
≤
µ−1(2‖M0‖F+‖N0‖F+

∑w
i=1‖Ai‖F) + ‖

∗
P−P̌ ‖F

s(
∗
P )

.

The above inequality along with Lemmas 1 and 2, concludes
(34a).

Now, (34b) can be proven by pre-multiplying
∗
P> to the

KKT stationarity condition (27a) resulting in

(2
∗
Ω + µIm) , 2

∗
P>M0

∗
P +

∗
P>N0 −

w∑
i=1

(
∗
γ̄i −

∗

¯
γ
i
)

∗
P>Ai

−
∑
k∈K

∗
λk(2

∗
P>Mk

∗
P +

∗
P>Nk)− µ

∗
P>(P̌ −

∗
P ).

Hence, according to (27b) and (27f), we have

‖2
∗
Ω + µIm‖F ≤ 2‖M0‖F+‖N0‖F+

w∑
i=1

|
∗
γ̄i −

∗

¯
γ
i
|×‖Ai‖F

−
∑
k∈K

∗
λk(2‖Mk‖F+‖Nk‖F) + µ‖

∗
P − P̌ ‖F

≤ ψ − κ2(1>
∗
λ) + µdF (P̌ ) + 2

√
βµ,

which concludes (34b).

Using Lemma 5, the next lemma offers conditions to
guarantee that penalized relaxations give feasible points for
(16a) – (16e).

Lemma 6. Consider an initial point P̌ ∈ Sn,m and µ > 0. Let
(

∗
P ,

∗
t) be a primal optimal solution of (16a) – (16e) with the

corresponding Lagrange multipliers (
∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) that satisfy

the KKT conditions (27a) – (27e). Define

ε ,
1

4

(
1− dF (P̌ )− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

)
. (38)

If the following inequalities hold true

2µ−1‖M0‖ ≤ ε, (39a)

−1>
∗
λ

µ
≤ dF(P̌ )

s(P̌ )− κ dF (P̌ )
+

ε

2κ2
, (39b)

‖ 2

µ

∗
Ω + Im‖F ≤ κ2

(
− 1>

∗
λ

µ

)
+ dF(P̌ ) + ε, (39c)

then the pair (
∗
P ,

∗
P

∗
P>) is the unique primal solution of the

penalized convex relaxation (6a) – (6d), where κ and κ2 are
defined in (9c) and (35), respectively.

Proof. According to Lemma 4, it suffices to find θ ∈ R that
satisfies (30a) and (30b). Define:

θ , −2−1µ(κ− κ2) dF(P̌ )

s(P̌ )− κ dF (P̌ )
− µε

The conic inequality (30a) can be proven as follows:

2µ−1‖M0 −
∑
k∈K

∗
λkMk‖F ≤ 2µ−1‖M0‖−(κ− κ2)

1>
∗
λ

µ

≤ ε+ (κ− κ2)

(
dF(P̌ )

s(P̌ )− κ dF (P̌ )
+

ε

2κ2

)

=
(κ− κ2)dF(P̌ )

s(P̌ )− κ dF (P̌ )
+ 2ε− (3κ2 − κ)ε

2κ2
< −2µ−1θ

⇒ −M0 +
∑
k∈K

∗
λkMk ≺ ∗

C
−θIn.

Moreover, the conic inequality (30b) can be proven as:

‖ 2

µ

∗
Ω + Im‖F ≤ κ2

(
− 1>

∗
λ

µ

)
+ dF(P̌ ) + ε

= κ2

(
− 1>

∗
λ

µ

)
+ ε+ 1− 4ε− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

≤ κ2

( dF(P̌ )

s(P̌ )− κ dF (P̌ )
+

ε

2κ2

)
+ ε+ 1− 4ε− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

= 1− (κ− κ2)dF(P̌ )

s(P̌ )− κ dF (P̌ )
− 5ε

2

= 1 + 2µ−1θ − ε

2
< 1 + 2µ−1θ

⇒
∗
Ω +

µ

2
Im ≺ ∗

D
(
µ

2
+ θ)Im ⇒

∗
Ω ≺ ∗

D
θIm.

Hence, according to Lemma 4, the pair (
∗
P ,

∗
P

∗
P>) is the

unique primal solution of the penalized convex relaxation
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(6a) – (6d).

Proof of Theorem 1. Due to the main assumption, it is
straightforward to verify the following three inequalities:

µ−1ψ <
√
βµ−1, (42a)

2κ
√
βµ−1 < 13−1s(P̌ ), (42b)√
βµ−1 < 12−1. (42c)

Consider an arbitrary optimal solution (
∗
P ,

∗
t) of (16a) – (16e).

The point
∗
P is consequently feasible for (1a) – (1c). Therefore

dF (P̌ ) = 0 and the inequalities (25) and (26) are satisfied.
According to Lemma 5, there exist Lagrange multipliers
(

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×Rp×Sm corresponding to (

∗
P ,

∗
t)

that satisfy the KKT conditions (27a) – (27f) as well as the
inequalities (34a) and (34b). Based on Lemma 6 and since
dF (P̌ ) = 0, in order to prove the theorem, it suffices to show
that:

2µ−1‖M0‖ ≤ 4−1 (43a)

−1>
∗
λ

µ
≤ 4−1

2κ2
(43b)

‖ 2

µ

∗
Ω + Im‖F ≤ κ2

(
− 1>

∗
λ

µ

)
+ 4−1. (43c)

• (43a) is the direct consequence of (42a):

2µ−1‖M0‖≤ µ−1ψ ≤
√
βµ−1 ≤ 12−1<4−1. (44)

• (43b) is the direct consequence of (34a), (42b), and (42c):

−1>
∗
λ

µ
≤ µ−1ψ+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

≤
√
βµ−1+2

√
βµ−1

s(P̌ )−2κ
√
βµ−1

(45a)

≤
√
βµ−1 + 2

√
βµ−1

s(P̌ )− 13−1s(P̌ )
=

3
√
βµ−1

(1− 13−1)s(P̌ )
(45b)

≤ 3× 13−1(2κ)−1s(P̌ )

(1− 13−1)s(P̌ )
=

4−1

2κ
<

4−1

2κ2
. (45c)

• (43c) can be concluded from (34b), (42a), and (42c):

‖ 2

µ

∗
Ω+Im‖F≤κ2

(
− 1>

∗
λ

µ

)
+µ−1ψ+2

√
βµ−1 (46a)

≤κ2

(
− 1>

∗
λ

µ

)
+3
√
βµ−1 (46b)

≤κ2

(
− 1>

∗
λ

µ

)
+4−1. (46c)

Hence, according to Lemma 6, the point (
∗
P ,

∗
P

∗
P>) is the

unique optimal solution for the penalized relaxation (6a) – (6e),
for which the relaxed constraints (3c) and (3d) are satisfied.
Finally, due to feasibility of the pair (P̌ , P̌ P̌>), we have:

f̄0(P̌)+g0(P̌)−µm=f0(P̌,P̌ P̌>)+g0(P̌)−µ〈P̌,P̌ 〉 (47a)

≥f0(
∗
P,

∗
P

∗
P>)+g0(

∗
P)−µ〈

∗
P,P̌ 〉 (47b)

≥ f̄0(P̌ )+g0(P̌ )−µm (47c)

and the proof is completed.

Proof of Theorem 2. Consider an arbitrary optimal solution
(

∗
P ,

∗
t) of (16a) – (16e). Due to the main assumption, (25) is

satisfied and if µ is large, then (26) is satisfied as well. More-
over, according to Lemma 5, there exist Lagrange multipliers
(

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×Rp×Sm corresponding to (

∗
P ,

∗
t)

that satisfy the KKT conditions (27a) – (27f) as well as the
inequalities (34a) and (34b). According to Lemma 6, the proof
follows directly from the fact that

ε =
1

4

(
1− dF (P̌ )− κ dF(P̌ )

s(P̌ )− κ dF (P̌ )

)
> 0, (48)

and therefore, if µ is sufficiently large, the inequalities (34a)
and (34b) conclude (39a) – (39c). As a result, if µ is suffi-
ciently large, (

∗
P ,

∗
P

∗
P>) is the unique primal solution of the

penalized convex relaxation (6a) – (6d).

Lemma 7. Consider a set Q ∈ F for which there exists ν > 0
such that s(P ) > ν for every P ∈ Q. For every

µ > max{β−1ψ2, β(26κ)2ν−2, 144β}, (49)

define hQ,µ : Q → F as the function mapping any initial
point P̌ ∈ Q in problem (16a) – (16e) to its unique solution
∗
P (whose existence and uniqueness is guaranteed by Theorem
(1)). Then hQ,µ is continuous throughout Q.

Proof. According to Berge’s maximum theorem, hQ,µ is upper
hemicontinuous. However, according to Theorem (1) it is a
function and therefore, it is continuous.

Proof of Theorem 3. Let {P k}∞k=0 represent the sequence
generated by Algorithm (1). Assume by induction that P k ∈
F̌ and let (

∗
P ,

∗
P

∗
P>) be the solution to the problem (6a) –

(6e) with P̌ = P k. According to the optimality of
∗
P and

feasibility of P k we have:

f̄0(
∗
P )+g0(

∗
P ) +

µ

2
‖

∗
P − P k‖2F≤

f̄0(
∗
P )+g0(

∗
P )−µ〈

∗
P ,P k〉+µm≤

f̄0(
∗
P )+g0(

∗
P )−µ〈P k,P k〉+µm≤ f̄0(P k)+g0(P k). (50)

Hence, according to Theorem (1), P k+1 =
∗
P ∈ F̌ and

the sequence {f̄0(P k)+g0(P k)}∞k=0 is monotonically non-
increasing and convergent. On the other hand, according to
(50), we have

‖P k+1 − P k‖2F≤
2µ−1

[
f̄0(P k)+g0(P k)− f̄0(P k+1)−g0(P k+1)

]
(51)

which implies that the sequence {P k}∞k=0 is convergent to a
point P∞ ∈ F̌ .

Define hF̌,µ : F̌ → F̌ as the function mapping any initial
point P̌ ∈ F̌ in problem (16a) – (16e) to its unique solution.
According to Lemma 7, hF̌,µ is continuous, and therefore:

hF̌,µ(P∞) = P∞ (52)

Now, according to Lemma 3, there exists Lagrange multipliers
(

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) ∈ Rw×Rw×R|K|×Sm that satisfy the following
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Karush–Kuhn–Tucker (KKT) conditions

∇PL(P∞,
∗
t,

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω) = µP∞, (53a)

1 +
∗
γ̄ +

∗

¯
γ = 0, (53b)

∗
γ̄ ◦ (+α(P∞) + b−

∗
t) = 0, (53c)

∗

¯
γ ◦ (−α(P∞)− b−

∗
t) = 0, (53d)

∗
λk(〈Mk,P

∞P∞>〉+ 〈Nk,P
∞〉+ qk) = 0 k ∈ K, (53e)

∗
γ̄ ≤ 0,

∗

¯
γ ≤ 0,

∗
λ ≤ 0, (53f)

and the pair of primal and dual solutions P∞ and
(

∗
γ̄,

∗

¯
γ,

∗
λ,

∗
Ω− I/2) satisfy KKT optimality conditions for the

problem (1a) – (1c).

VI. CONCLUSIONS

This work introduces convex relaxations for solving a broad
class of non-convex and non-smooth optimization problems
involving orthogonality constraints. The proposed approach
relies on solving a sequence of penalized convex relaxations
to find feasible and near optimal points for a given non-convex
orthogonality-constrained problem. Experimental results on
two fundamental problems in machine learning demonstrate
the potential and effectiveness of the proposed approach in
solving practical problems.
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