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Abstract—We offer a novel convex relaxation method to solve
the equations governing the behavior of linear and nonlinear
dynamical systems. This relaxation is used for the purpose of
system identification. We demonstrate significant improvements
in the overall scalability in comparison with the state-of-the-art
convex relaxations. When the proposed relaxation is inexact, a
sequential algorithm is provided which converges within a finite
number of rounds. Theoretical guarantees and simulation results
demonstrate the effectiveness of the proposed approach.

Index Terms—Computational methods, Optimization, Identifi-
cation.

I. INTRODUCTION

SYSTEM identification methods aim to devise a dynam-
ical model from system observations (e.g., input-output

data) [1]. Linear systems employ statistical methods; e.g.,
maximum likelihood, Bayesian, cross validation, variance,
regularization techniques, and least-squares methods [2]. More
comprehensive methods [3]–[5], that handle both linear and
nonlinear systems, could be prone to local minimums and have
convergence issues. One could pursue convex optimization as a
mean to identify dynamical systems [6], [7]. General-purpose
convex relaxation methods; e.g., semidefinite programming
(SDP) [8] and second-order cone programming (SOCP) re-
laxations [9], primarily rely on a process referred to as lifting.
Lifting introduces new auxiliary variables by lift-and-project
procedure performed to relax the problem [10]. The lifting
mechanism severely limits the adoption of these algorithms
due to the curse of dimensionality.

Alternatively, we formulate system identification as an
optimization problem, and provide a scalable solution via a
novel sequential parabolic relaxation method. The proposed
approach relies on a modest number of auxiliary variables, and
effectively addresses the computational issues caused by the
lifting process in existing relaxation techniques. Generally, the
state-of-the-art estimation methods require full input and state
information, which may not be readily available. Here, we
provide theoretical guarantees for an optimal solution within
a short period of time using only a sample of input and state
information. We validate our proposed method using linear and
nonlinear benchmark systems, including the nonlinear dynam-
ics of a permanent magnet synchronous machine (PMSM).

The remainder of the paper is organized as follows: section
II, will elaborate the notations used in the paper. Section III
defines the problem statement, and discusses the merits of
parabolic relaxation against SDP and SOCP, for linear system
identification. Section IV highlights the theoretical guarantees,
and Section V extends the proposed approach to nonlinear
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systems. Section VI offers numerical experiments and, finally,
Section VII concludes the paper.

II. NOTATIONS AND TERMINOLOGIES

The vectors and matrices are, respectively, shown by lower-
case and upper-case bold letters. Symbols R, Rn, and Rn×m,
respectively, denote the set of real scalars, real vectors of size
n, and real matrices of size n × m. The set of real n × n
symmetric matrices and positive semidefinite matrices are
shown with Sn and S+n , respectively. Notation A � 0 (A � 0)
means that A is positive-semidefinite (positive definite). tr{.},
(.)>, and rank{.}, respectively, denote the trace, transpose,
and rank operators. ‖.‖p refers tonorm of a vector or a matrix.
|.| indicates the absolute value operator.

III. IDENTIFICATION OF LINEAR SYSTEMS

A. Problem Formulation
Consider a linear dynamical system:

x[t + 1] = Ax[t] + Bu[t] t ∈ T (1a)
y[t] = Cx[t] + Du[t] t ∈ T . (1b)

T , {1, 2, . . . , τ} is a discrete time horizon, and {x[t] ∈
Rn}t∈T ∪{τ+1}, {y[t] ∈ Rm}t∈T , and {u[t] ∈ Ro}t∈T denote
the state, observation, and system input vectors, respectively.

Assume that system matrices (A,B,C,D) and the state
vectors at snapshots T ′ , {t1, t2, . . . , tτ ′} ⊆ T ∪ {τ + 1}
are unknown. We seek to determine the unknowns based on
system observation, system input, and limited knowledge of
state vectors at times (T ∪ {τ + 1}) \ T ′. This problem can
be formulated as follows:

find A ∈ Rn×n, B ∈ Rn×o, C ∈ Rm×n, D ∈ Rm×o,
{x[t] ∈ Rn}t∈T ′ (2a)

subject to x[t + 1] = Ax[t] + Bu[t] t ∈ T (2b)
y[t] = Cx[t] + Du[t] t ∈ T (2c)

Problem (2a) – (2c) is non-convex, due to the bi-linear
terms Ax[t] and Cx[t]. One approach for tackling the non-
convexity of dynamical system equations is convex relaxation
or approximation [11], which has been used in the parameter
estimation [6], [12]. The number of feasible connected compo-
nents induced by dynamical system equations can grow expo-
nentially, which renders local search methods intractable [12].
Herein, our focus in on the scalability of convex relaxation by
introducing a computationally-efficient parabolic relaxation to
tackle constraints of the form (2b) and (2c).

B. State-of-the-Art Relaxations

We first cover two forms of the common-practice semidefi-
nite programming (SDP) and second-order cone programming
(SOCP) relaxations [13]–[15] and show that each suffer from
major drawbacks compared to the proposed method.
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Figure 1. The bipartite sparsity pattern of the constraint (5).

1) Vector Formulation: Let the vector sets {ak ∈ Rn}nk=1,
{bk ∈ Ro}nk=1, {ck ∈ Rn}mk=1, and {dk ∈ Ro}mk=1 represent
the columns of A, B, C, and D, respectively, i.e.,

A =
[
a1 a2 . . . an

]>
B =

[
b1 b2 . . . bn

]> (3a)

C =
[
c1 c2 . . . cm

]>
D =

[
d1 d2 . . . dm

]> (3b)

To formulate the standard conic relaxations of the problem (2a)
– (2c), one can cast the identification problem with respect to
the new vector and matrix variables:

h ,
[
a>1 a>2 . . . a>n c>1 c>2 . . . c>n

x>[t1] . . . x>[tτ ′ ]
]> ∈ Rn(m+τ) (4a)

H , hh> (4b)

using which the nonlinear constrains (2b) and (2c) can be cast
linearly [16]. This approach is regarded as lifting, as we are
transitioning to a higher-dimensional space with respect to the
new matrix variable H. The relations between the pair (H,h)
can then be implicitly imposed as[

H h
h 1

]
∈ H, (5)

where H ∈ Sn(m+τ) is an appropriate convex set depending
on the choice of relaxation / approximation [16].

The main drawback of the aforementioned approach is the
curse of dimensionality caused by lifting, even if the present
sparsity of the problem is fully leveraged. Let K denote the
sparsity graph of the quadratic constraints (2b) – (2c), whose
every vertex corresponds to an element of the vector h, and
every edge corresponds a bilinear term:

Aik xk[t] ∀(i, k, t) ∈ N ×N × T ′ (6a)

Cjk xk[t] ∀(j, k, t) ∈M×N × T ′ (6b)

adding up to a total of n(n + m)τ ′ edges, where N =
{1, . . . , n} and M = {1, . . . ,m}. More precisely each pair
of elements in h are connected, if and only if their product
appears in either (2b) or (2c). As demonstrated in Figure 1, it
can be easily observed that

K = Kn+m,τ ′ ∪ Kn+m,τ ′ ∪ · · · ∪ Kn+m,τ ′︸ ︷︷ ︸
n

(7)

where Kn+m,τ ′ denotes the complete bipartite graph with
partitions of size n + m and τ ′. The complexity of solving
cone programming relaxations is closely related to the sparsity
graph of the problem [17], [18]. As shown in Table I, in
the case of SOCP relaxation for problem (2a) – (2c), one
can leverage the sparsity of K by incorporating only those
elements of H that correspond to existing edges amounting to
n(n+m)τ ′ auxiliary variables.

The curse of dimensionality caused by lifting is further
pronounced in the case of SDP relaxation that requires the
incorporation of every element in H corresponding to the
edges of an arbitrary chordal extension (Table I). In the
reminder of this section, we discuss an alternative conic
relaxation for which a smaller number of variables are needed.

2) Matrix Formulation: Another approach for tackling
problems of the form (2a) – (2c) through convex relaxation
is the matrix formulation. To this end, constraints (2b) and
(2c) can be cast in the following form:Ā [

x[t1+1] . . . x[tτ ′+1]
]
− BU A

∗ X̄ X>

∗ ∗ In×n

 ∈ C1 (8a)

C̄ [
y[t1] . . . y[tτ ′ ]

]
−DU C

∗ X̄ X>

∗ ∗ In×n.

 ∈ C2 (8b)

where X ,
[
x[t1] . . . x[tτ ′ ]

]
and U =

[
u[t1] . . .u[tτ ′ ]

]
, and Ā,

C̄, and X̄ are auxiliary variables accounting for AA>, CC>

and X>X, respectively. Having

C1 = {W ∈ S2n+τ ′ | W � 0, rank{W } = n} (9a)
C2 = {W ∈ Sm+τ ′+n | W � 0, rank{W } = n} (9b)

makes the two formulations (2a) – (2c) and (8a) – (8b) equiv-
alent. Additionally, various convex relaxations/approximation
can be formulated via different choices for C1 ⊆ S2n+τ ′ and
C2 ⊆ Sm+τ ′+n, e.g., the common-practice SDP and SOCP
relaxations. Next, we pursue an alternative approach with far
less complexity, involving convex quadratic constraints only.

C. Parabolic Relaxation

To formulate parabolic relaxation of the problem (2a) – (2c),
we need to introduce n+m+ τ ′ auxiliary variables:
• Define ā ∈ Rn as the variable whose k-th element

represents ‖ak‖22,
• Define c̄ ∈ Rm as the variable whose k-th element

represents ‖ck‖22,
• Define x̄ ∈ Rτ ′ as the variable whose k-th element

represents ‖x[tk]‖22,
Then, problem (2a) – (2c) can be reformulated as:

find ā ∈ Rn, c̄ ∈ Rm, x̄ ∈ Rτ
′
, {x[t] ∈ Rn}t∈T ′ ,

{ak ∈ Rn}nk=1, {bk ∈ Ro}nk=1, {ck ∈ Rn}mk=1,

{dk ∈ Ro}mk=1, (10a)

subject to

āk+x̄t+2xk[t+1]−2b>ku[t]≥‖ak+x[t]‖22 t∈T ′, k∈N (10b)

āk+x̄t−2xk[t+1]+2b>ku[t]≥‖ak−x[t]‖22 t∈T ′, k∈N (10c)

c̄k+x̄t+2yk[t]−2d>ku[t]≥‖ck+x[t]‖22 t∈T ′, k∈M (10d)

c̄k+x̄t−2yk[t]+2 d>ku[t]≥‖ck−x[t]‖22 t∈T ′, k∈M (10e)

x̄t = ‖x[t]‖22 t ∈ T ′ (10f)

āk = ‖ak‖22 k ∈ N (10g)

c̄k = ‖ck‖22 k ∈M (10h)

xk[t + 1] = a>kx[t] + b>ku[t] t ∈ T \T ′, k ∈ N (10i)

yk[t] = c>kx[t] + d>ku[t] t ∈ T \T ′, k ∈M (10j)
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Table I
COMPLEXITY OF STATE-OF-THE-ART CONVEX RELAXATIONS VERSUS PARABOLIC RELAXATION.

Max size of SDP constraints Number of SDP constraints Number of new variables
SDP relaxation of (4b)∗ (maxV ∈V |V |)× (maxV ∈V |V |) n|V| n(n+m)τ ′

SOCP relaxation of (4b) 2× 2 n(n+m)τ ′ n(n+m)τ ′

SDP relaxation of (8) (n+ max{m,n}+ τ ′)× (n+ max{m,n}+ τ ′) 2
(
n+1
2

)
+
(
m+1
2

)
+
(
τ ′+1
2

)
SOCP relaxation of (8) 2× 2

(
n+m+τ ′

2

)
+
(
2n+τ ′

2

) (
n+1
2

)
+
(
m+1
2

)
+
(
τ ′+1
2

)
Parabolic relaxation Convex Quadratic 2(n+m)τ ′ + n+m+ τ ′ n+m+ τ ′

∗ (V, E) is an arbitrary tree decomposition of Kn+m,τ ′

Problems (2a) – (2c) and (10a) – (10j) are equivalent since
the pair of constraints (10b) and (10c) are equivalent to

xk[t + 1] ≥ a>kx[t] + b>ku[t]− (x̄t − ‖x[t]‖22)− (āk − ‖ak‖22) (11a)

xk[t + 1] ≤ a>kx[t] + b>ku[t] + (x̄t − ‖x[t]‖22) + (āk − ‖ak‖22) (11b)

and the pair of constraints (10d) and (10e) are equivalent to:

yk[t] ≥ c>kx[t] + d>ku[t]− (x̄t − ‖x[t]‖22)− (c̄k − ‖ck‖22) (12a)

yk[t] ≤ c>kx[t] + d>ku[t] + (x̄t − ‖x[t]‖22) + (c̄k − ‖ck‖22). (12b)

According to (10f), (10g) and (10h), the terms (x̄t−‖x[t]‖22),
(āk − ‖ak‖22), and (c̄k − ‖ck‖22) are zero, which means that:

xk[t + 1] = a>kx[t] + b>ku[t] t ∈ T ′, k ∈ N (4a)

yk[t] = c>kx[t] + d>ku[t] t ∈ T ′, k ∈M (4b)

that are equivalent to (2b) and (2c).
The primary motivation behind the use of formulation (10a)

– (10h) is that the only non-convex constraints in this new
formulation are (10a), (10b), and (10c). These non-convex
constraints can be readily relaxed to

x̄t ≥ ‖x[t]‖22 āk ≥ ‖ak‖22 c̄k ≥ ‖ck‖22 (5)

We regard this as the parabolic relaxation of the problem
(2a) – (2c). Unlike the common-practice SDP and SOCP
relaxations that require O(n2) number of auxiliary variables
(even when the sparsity of the problem is leveraged), the
proposed approach relies on a modest number of auxiliary
variables, which is its primary strength.

If the relaxed problem has a unique solution for which the
non-convex equalities (10b) – (10h) hold true, i.e., if

x̄solt = ‖xsol[t]‖22 āsolk = ‖asolk ‖22 c̄solk = ‖csolk ‖22, (6)

then we refer to the relaxation as exact. However, like any
other convex relaxation, we may encounter cases where the
equalities in (6) are not true and the relaxation is inexact. To
remedy this issue, we introduce a family of penalty functions
whose minimization can help address this issue.

D. Sequential Penalization
Motivated by [19], we minimize a penalty function to obtain

feasible points for the problem (10a) – (10j). The penalized
parabolic relaxation of the bi-linear problem (10a) – (10j) is

minimize
A, B, C, D,
{x[t]}t∈T ′ ,
ā, c̄, x̄

η1

(
1>n ā− 2 tr

{
[a1 . . . an]>Ǎ

}
+ ‖Ǎ‖2F

)
+

η2

(
1>n c̄− 2 tr

{
[c1 . . . cn]>Č

}
+ ‖Č‖2F

)
+

η3

∑
t∈T

(
x̄t − 2 x̌>[t] x[t] + ‖x̌[t]‖22

)
(14a)

Algorithm 1 Sequential Penalized Parabolic Relaxation.

Require: Ǎ ∈ Rn×n, Č ∈ Rm×n, {x̌[t] ∈ Rn}t∈T ′ , and
η1, η2, η3 > 0

1: repeat
2: solve the penalized convex problem (14a) –

(14b) to obtain (Asol,Bsol,Csol,Dsol, {xsol[t]}t∈T ′ ,
āsol, c̄sol, x̄sol).

3: set Ǎ := Asol, Č := Csol, and x̌[t] := xsol[t] for all
t ∈ T ′.

4: until stopping criterion is met.
5: return (Asol,Bsol,Csol,Dsol)

subject to (10b), (10c), (10d), (10e), (5), (10i), (10j). (14b)

η1, η2, η3 > 0 are fixed regularization parameters, and Ǎ ∈
Rn×n, Č ∈ Rm×n. {x̌[t] ∈ Rn}t∈T ′ represent an arbitrary
initial guess for the solution. We propose Algorithm 1 which
starts from an initial point and solves a sequence of penalized
relaxations until the ground-truth system is identified.

IV. THEORETICAL GUARANTEES

We first offer some preliminary notations and definition and,
then, state the main theoretical result of the paper.

Definition 1. For every A ∈ Rn×n, C ∈ Rm×n, and {x[t] ∈
Rn}t∈T ′ , define the Jacobian matrix

J
(
A,C, x[t1], . . . , x[tτ ′ ]

)
,[ ∂vec{Q}

∂vec{A}
∂vec{Q}
∂vec{B}

∂vec{Q}
∂vec{C}

∂vec{Q}
∂vec{D}

∂vec{Q}
∂x[t1]

. . . ∂vec{Q}
∂x[tτ′ ]

∂vec{R}
∂vec{A}

∂vec{R}
∂vec{B}

∂vec{R}
∂vec{C}

∂vec{R}
∂vec{D}

∂vec{R}
∂x[t1]

. . . ∂vec{R}
∂x[tτ′ ]

]
(15)

where the matrix functions

Q : Rn×n×Rn×o×Rm×n×Rm×o×Rn×. . .×Rn → Rn×τ

R : Rn×n×Rn×o×Rm×n×Rm×o×Rn×. . .×Rn → Rm×τ

are defined as:

Q
(
A,B,C,D, x[t1], . . . , x[tτ ′ ]

)
,[

x[2] . . . x[τ+1]
]
− A

[
x[1] . . . x[τ ]

]
− B

[
u[1] . . . u[τ ]

]
(16a)

R
(
A,B,C,D, x[t1], . . . , x[tτ ′ ]

)
,[

y[1] . . . y[τ ]
]
− C

[
x[1] . . . x[τ ]

]
−D

[
u[1] . . . u[τ ]

]
(16b)

The point (A,C, {x[t]}t∈T ′) is said to satisfy the linear in-
dependence constraint qualification (LICQ) condition if the
columns of J

(
A,C, x[t1], . . . , x[tτ ′ ]

)
are linearly independent.
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K
(
A,B,C,D, x[t1], . . . , x[tτ ′ ], ā, c̄, x̄

)
,

diag
{
ā−diag{AA>}

}
0n×m

[
x[t1+1] . . . x[tτ ′+1]

]
−A
[
x[t1] . . . x[tτ ′ ]

]
−B
[
u[t1] . . . u[tτ ′ ]

]
∗ diag

{
c̄−diag{CC>}

} [
y[t1] . . . y[tτ ′ ]

]
−C
[
x[t1] . . . x[tτ ′ ]

]
−D

[
u[t1] . . . u[tτ ′ ]

]
∗ ∗ diag

{
x̄− diag

{[
x[t1] . . . x[tτ ′ ]

]>[
x[t1] . . . x[tτ ′ ]

]}}
 (18)

Moreover, the singularity function s : Rn×n×Rm×n×Rn×
. . .×Rn → R is defined as

s
(
A,C, x[t1], . . . , x[tτ ′ ]

)
,σmin

{
J
(
A,C, x[t1], . . . , x[tτ ′ ]

)}
J is full row rank

0 otherwise,

where σmin denotes the smallest singular value operator.

The next theorem states that if the initial guess of the
penalized convex relaxation (14a) – (14b) is sufficiently close
to the ground truth, then the relaxation is exact and the solution
can be recovered using the penalized convex relaxation.

Theorem 1. Let (
∗
A,
∗
B,
∗
C,
∗
D, {∗x[t]}t∈T ′) denote a solution for

the problem (2a) – (2c) that satisfies the LICQ condition. If√
η2

1‖
∗
A− Ǎ‖2F + η2

2‖
∗
C− Č‖2F + η2

3

∑
t∈T ′
‖∗x[t]− x̌[t]‖22 <

min

{
η1√
τ
,
η2√
τ
,

η3√
m+ n

}
s
(
A,C, x[t1], . . . , x[tτ ′ ]

)
2

(17)

then (
∗
A,
∗
B,
∗
C,
∗
D, {∗x[t]}t∈T ′) is the unique solution of the

penalized convex relaxation (14a) – (14b).

Corollary 1. According to Theorem 1, it can be observed
that if Algorithm 1 converges to a ground truth solution, then
convergence occurs within a finite number of rounds.

Proof. Define the matrix function K as shown in (18). Con-
straint (14b) is true if and only if

K
(
A,B,C,D, x[t1], . . . , x[tτ ′ ], ā, c̄, x̄

)
∈ F, (19)

where

F ,
{
F ∈ Sn+m+τ ′ | Fii + Fjj ≥ 2Fij

∀i, j ∈ {1, . . . , n+m+ τ ′}
}
. (20)

In order to prove the optimality of (
∗
A,
∗
B,
∗
C,
∗
D, {∗x[t]}t∈T ′),

it suffices to construct a dual certificate. To this end, define
Λ ∈ Rn×τ ′ andΠ ∈ Rm×τ ′ as the pair of matrices satisfying:

[
vec{Λ}
vec{Π}

]
=2J+( ∗A, ∗C, ∗x[t1], . . . ,

∗
x[tτ ′ ]

)

η1vec{

∗
A− Ǎ}

η2vec{
∗
C− Č}

η3(
∗
x[t1]−x̌[t1])

...
η3(
∗
x[tτ ′ ]−x̌[tτ ′ ])

. (21)

We claim that the matrix

Γ ,

η1In×n 0n×m Λ
∗ η2Im×m Π
∗ ∗ η3Iτ ′×τ ′

 (22)

qualifies as a Lagrange multiplier associated with (19).

Stationarity with respect to primal variables is an immediate
consequence of (21). Additionally, according to (21), we have√
‖Λ‖2F + ‖Π‖2F ≤

2

√
η2

1‖
∗
A− Ǎ‖2F + η2

2‖
∗
C− Č‖2F + η2

3

∑
t∈T ′‖

∗
x[t]− x̌[t]‖22

s
(
A,C, x[t1], . . . , x[tτ ′ ]

) , (23)

which concludes that√
‖Λ‖2F + ‖Π‖2F < min

{
η1√
τ
,
η2√
τ
,

η3√
m+ n

}
, (24)

meaning that Γ is strictly diagonally-dominant. Since, the set
of strictly diagonally-dominant matrices is the dual cone of F,
Γ is dual feasible and qualifies as a dual certificate.

V. EXTENSION TO NON-LINEAR SYSTEMS

In this section, we extend the proposed methodology to non-
linear systems. Consider the following dynamical equations:

x[t + 1] = Ax[t] + Bu[t] + E s[t] + F r[t] t ∈ T (25a)
y[t] = Cx[t] + Du[t] t ∈ T (25b)
r[t] = (G1 x[t]) ◦ (G2 x[t]) t ∈ T (25c)
s[t] = x[t] ◦ x[t] t ∈ T (25d)

where the matrices (A,B,C,D,E,F) are unknown, and
(G1,G2) are known binary incidence matrices that are selected
in such a way that r[t] contains all possible monomials of type
xi[t]xj [t] (i 6= j) that may appear in the dynamics, i.e.,
• s[t] encapsulates all monomials of the type xi[t]

2,
• r[t] encapsulates a known subset of monomials of the

type xi[t]xj [t], where i 6= j.

Example 1. This example presents the model of a Permanent
Magnet Synchronous Machine (PMSM) in the above form. The
machine dynamical equations are formulated in qd reference
frame [20]. The internal parameters are rs as the stator resis-
tance, lq as the q-axis inductance, ld as the d-axis inductance,
λm as the permanent magnet flux, p as pole pairs, jm as
the rotor inertia, and dm as the viscous friction coefficient.
The time-domain system states are iqs[t] as the q-axis stator
current, ids[t] as the d-axis stator current, wr[t] as the rotor
electrical speed, and θr[t] as the rotor electrical position. The
time-domain inputs are vqs[t] as the q-axis stator voltage,
vds[t] as the d-axis stator voltage, and tl[t] as the load torque.

The dynamics of the PMSM can be formulated as

x[t + 1] = Ax[t] + Bu[t] + Fr[t] (26a)
r[t] = (G1x[t]) ◦ (G2x[t]) (26b)

with respect to the time-domain state and input vectors

x[t] =
[
iqs[t] ids[t] wr[t] θr[t]

]> (27a)

u[t] =
[
vqs[t] vds[t] tl[t]

]> (27b)
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where

A=


1− rsδ

lq
0 −λmδ

lq
0

0 1− rsδ
ld

0 0
3λmp

2δ
2jm

0 1− dmδ
jm

0
0 0 1 δ

 B=


δ
lq

0 0

0 δ
ld

0

0 0 − pδ
jm

0 0 0



F=


− ldδ

lq
0 0

0
lqδ

ld
0

0 0
3(ld−lq)p2δ

2jm
0 0 0

 (28)

and δ is the time step, and

G1 =

0 0 1 0
0 0 1 0
1 0 0 0

 G2 =

0 1 0 0
1 0 0 0
0 1 0 0

 . (29)

In Section VI, we demonstrate how the proposed method re-
covers the unknown time-domain parameters of this machine.

In order to convexify the dynamical equations (25), we first
introduce the auxiliary vectors {xA[t] = Ax[t] ∈ Rn}τ∈T ,
{sE[t] = E s[t] ∈ Rn}τ∈T , {rF[t] = F r[t] ∈ Rn}τ∈T , and
{xC[t] = Cx[t] ∈ Rn}τ∈T . Using these auxiliary variables,
the dynamical equations (25) can be cast linearly in form of:

x[t + 1] = xA[t] + Bu[t] + sE[t] + rF[t] t ∈ T (30a)

y[t] = xC[t] + Du[t] t ∈ T (30b)

Additionally, let ek and fk be the k-th column of E> and F>,
respectively. We then impose the following constraints to relate
xA[t], sE[t], rF[t], and xC[t] and their corresponding values:

āk + x̄t + 2xAk [t] ≥ ‖ak + x[t]‖22 t ∈ T , k ∈ N (31a)

āk + x̄t − 2xAk [t] ≥ ‖ak − x[t]‖22 t ∈ T , k ∈ N (31b)

ēk + s̄t + 2sEk[t] ≥ ‖ek + s[t]‖22 t ∈ T , k ∈ N (31c)

ēk + s̄t − 2sEk[t] ≥ ‖ek − s[t]‖22 t ∈ T , k ∈ N (31d)

f̄k + r̄t + 2rFk[t] ≥ ‖fk + r[t]‖22 t ∈ T , k ∈ N (31e)

f̄k + r̄t − 2rFk[t] ≥ ‖fk − r[t]‖22 t ∈ T , k ∈ N (31f)

c̄k + x̄t + 2xCk[t] ≥ ‖ak + x[t]‖22 t ∈ T , k ∈M (31g)

c̄k + x̄t − 2xCk[t] ≥ ‖ak − x[t]‖22 t ∈ T , k ∈M (31h)

where ēk = ‖ek‖2, f̄k = ‖fk‖2, s̄t = ‖s[t]‖2, and r̄t = ‖r[t]‖2.
The following constraints impose the relationship between r[t]
and the corresponding monomials that it contains:

G1 s[t] + G2 s[t] + 2 r[t] ≥
(G1 x[t] + G2 x[t]) ◦ (G1 x[t] + G2 x[t]) t ∈ T (32a)
G1 s[t] + G2 s[t]− 2 r[t] ≥
(G1 x[t]− G2 x[t]) ◦ (G1 x[t]− G2 x[t]) t ∈ T (32b)

Finally, the following constraints complete the proposed
parabolic relaxation for nonlinear systems:

x̄t = 1>s[t], r̄t ≥ ‖r[t]‖22 t ∈ T (33a)

s̄t ≥ ‖s[t]‖22, s[t] ≥ x[t] ◦ x[t] t ∈ T (33b)

āk ≥ ‖ak‖22, ēk ≥ ‖ek‖22, f̄k ≥ ‖fk‖22 k ∈ N (33c)

c̄k ≥ ‖ck‖22 k ∈M. (33d)

If equality holds for all of the constraints in (33), then the
relaxation is exact. The penalized parabolic relaxation for

identification of nonlinear systems can cast as follows:

minimize η1

(
1>n ā− 2 tr

{
[a1 . . . an]>Ǎ

}
+ ‖Ǎ‖2F

)
+

η2

(
1>n c̄− 2 tr

{
[c1 . . . cn]>Č

}
+ ‖Č‖2F

)
+

η3

(
1>n ē− 2 tr

{
[e1 . . . en]>Ě

}
+ ‖Ě‖2F

)
+

η4

(
1>n f̄ − 2 tr

{
[f1 . . . fn]>F̌

}
+ ‖F̌‖2F

)
+

η5

∑
t∈T

(̄
rt − 2 ř>[t] r[t] + ‖ř[t]‖22

)
+

η6

∑
t∈T

(
s̄t − 2 š>[t] s[t] + ‖š[t]‖22

)
+

η7

∑
t∈T

(
x̄t − 2 x̌>[t] x[t] + ‖x̌[t]‖22

)
(34a)

subject to (30), (31), (32), (33). (34b)

This problem can then be solved sequentially to obtain a
feasible solution for the set of dynamical equations (25).

VI. NUMERICAL RESULTS

A. Linear System Identification

We consider system identification problems with n = 16,
m = 12, o = 10, τ = 250, and T̂ = T \ {1, 6, 11, . . . , 246}.
The resulting problem is 3928-dimensional accounting for the
elements of A ∈ R16×16, B ∈ R16×10, C ∈ R12×16, D ∈
R12×10, and {x[t] ∈ R16}t∈T ′ . The ground truth matrices are

• Every element of A−In×n is uniformly chosen from the
interval [−0.25,+0.25].

• The elements of B ∈ R16×10, C ∈ R12×16, and D ∈
R12×10 have zero-mean standard normal distribution.

• The elements of x[1] are uniformly chosen from the
interval [0.5; 1.5].

• For every t ∈ T , we have u[t] = Fx[t] + w[t], where the
elements of w[t] have independent Gaussian distribution
with zero mean and standard deviation 0.1. Additionally,
F = −(Im×m + B>P)−1B>PA is an optimal LQR
controller with P representing the unique positive-definite
solution to the Riccati equation:

A>PA + In×n − P = A>PB(In×n + B>PB)−1B>PA (35)

We generate 15 random systems and solve the resulting
problem using the sequential Algorithm 1 with the initial point
Ǎ = In×n and x̌[t] = 0n for every t ∈ T̂ . Figure 2 illustrates
the convergence of the error function(

τ∑
t=1

‖x[t]− xtrue[t]‖22

)1/2

, (36)

for all 15 experiments. Each round of the penalized parabolic
is solved in less than 15 seconds.

For comparison, we have performed system identification
on the same randomly generated systems using the methods
in [21]. We found that subspace system identification works
well when all the instances of the state matrix x[t] are well
known in advance. However, when only a portion of the input
states x[t] were known, that method failed. By contrast, our
proposed method converges quite quickly with high accuracy.
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Figure 2. The performance of the sequential Algorithm 1 for linear
system identification.
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Figure 3. The performance of the proposed sequential approach on
the nonlinear model of the PMSM example.

B. Nonlinear System Identification

We consider a PMSM machine with the parameters rs =
0.1465, ld = lq = 0.0001395, dm = 0.009, λm = 0.005,
p = 7, and jm = 0.0000835 [22]. We have generated time-
domain signals with time steps of size δ = 5× 10−6 seconds
and attempted to recover the unknown parameters using the
approach proposed in Section V. We have considered a time
horizon of length 20, with the following input signals:
• Each vqs[t] random Gaussian distribution with mean 12

and standard deviation 1.
• Each vds[t] random Gaussian distribution with mean 0.25

and standard deviation 1.
• tl[t] =

{
0 t < 10

0.25 t ≥ 10
It should be noted that above inputs are not physical input,
rather excitements considered for the sole purpose of system
identification. The following parameters are assumed known:
• The matrices G1 and G2.
• The last row of matrices A, B, and F, due to the trivial

relation between the rotor position and rotor speed.
• The state vector x[t] at times t ∈ {1, 5, 15, 20}.

The convergence of the error function (36) is shown in Fig. 3.

VII. CONCLUSION

System identification is the process of finding optimized
parameters of an unknown system using the input/output data.
This paper presents a novel parabolic relaxation to identify
linear and nonlinear dynamical systems. The proposed convex
relaxation relies on a significantly smaller number of auxiliary
variables leading to a higher efficiency compared to the state-
of-the-art methods. We have provided theoretical guarantees
on the method’s feasibility, and used numerical simulation to
validate this method for both linear and nonlinear systems.
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