
SDP Solver of Optimal Power Flow

User’s Manual

Ramtin Madani, Morteza Ashraphijuo and Javad Lavaei

1 Introduction

This solver aims to solve the optimal power flow (OPF) problem by means of
the semidefinite programming (SDP) relaxation method. The solver is able to
solve two problems: (i) an SDP relaxation of OPF leading to a lower bound
on the optimal cost [1] and (ii) a penalized convex relaxation leading to an
approximate (feasible) solution [2,3]. The goal is to seek a global or near-global
solution with a guaranteed global optimality degree for the nonconvex OPF
problem. The solver rests upon a graph decomposition technique employed for
three purposes: (i) to accelerate the computation, (ii) to detect the problematic
lines of the network causing a nonzero duality gap for OPF, and (iii) to design
a penalization term assisting with the recovery of a near-global solution for the
cases where duality gap is nonzero.

Let W denote the SDP matrix to be found. The main complicating con-
straint of the SDP relaxation is the matrix inequality W � 0 [1]. The SDP
relaxation is exact—leading to a global solution of OPF—if it has a rank-1 solu-
tion Wopt. Given a power network, the solver first designs a tree decomposition
for the power graph with a low maximal clique order. Each node of the tree
decomposition is a group of buses of the network, which we refer to as a bag. Let
B1, B2, ..., Bk denote the bags of the tree decomposition. The computationally-
expensive condition W � 0 in the SDP relaxation can be equivalently replaced
by the cheaper conditions W{Bi} � 0 for i = 1, ..., k, where W{Bi} is a sub-
matrix of W induced by the vertices in the bag Bi. For more details on the
algorithm used to obtain a tree decomposition, please see [4]. As discussed in [2],
the SDP relaxation is exact if the submatrices W{B1}, W{B2}, ...,W{Bk} are
all rank-1 at optimality. OPF Solver first detects every problematic bag Bi—
coresponding to a submatrix W{Bi}’s with a rank higher than 1—and then
identifies all lines of the network which appear in the problematic bags. Each
such line is referred to as a problematic line.

To enforce the submatrices W{B1}, W{B2}, ...,W{Bk} to become rank-1
at optimality, OPF Solver allows a penalization of the total generating reactive
power (or equivalently the reactive loss of the network) [3]. After solving this
problem, the solver identifies all problematic lines of the network and then allows
to further penalize the SDP relaxation via the total loss of apparent power flows

1

over a set of user-defined or software-detected problematic lines. OPF Solver
accepts a two-tier objective function (consisting of the cost function and two
penalty terms) for its penalized SDP relaxation:

∑

k∈G

fk(PGk
) + εb

∑

k∈G

QGk
+ εl

∑

(l,m)∈L0

|Slm + Sml | (1)

where the sum represents the total active power generation cost, a penalized
reactive loss of all lines, and a penalized apparent loss of the problematic lines
(the set of such lines is denoted as L0). A customary SDP relaxation can be
obtained by setting εb and εl to zero.

1.1 How to use this solver?

In order to run OPF Solver, you need to have CVX v2.1 installed on your
computer. One of the three common SDP solvers of Mosek, SeDumi and SDPT3
should be called in CVX to numerically solve the SDP relaxation. SDPT3 can
be used to find a solution with a high precision for a large-scale OPF problem.
Mosek is usually noticeably faster than SDPT3 but the quality of the solution is
lower. In order to obtain an accurate solution for a large-scale OPF via SDPT3,
the files

sqlpcheckconvg.m

sqlpmain.m

should be tweaked in order to disable the stopping criteria of SDPT3. Please
copy and replace these two files from the folder

...\Tweaked SDPT3 files

to the place where CVX is installed at

...\cvx\sdpt3\Solver

after getting a backup for yourself. If you have installed SDPT3 separately, you
have to change the MATLAB path so that the SDP relaxation is handled by
the SDPT3 inside CVX’s folder (as opposed to another copy of the SDPT3).

OPF Solver uses Matpower data format [5]. Make sure that you either have
the folder ‘Test cases’ or the folder of Matpower in the MATLAB path. To test
whether the options of SDPT3 has been correctly manipulated, please run the
script

clear settings;

settings.alpha = 1;

settings.line_prob = ’all’;

settings.epL = 10000;

settings.tol_feas = 1.5 * 10^(-5);

results = OPF_Solver(’case3012wp’,settings);

2

You should observe two runs of SDP problems, each taking a few minutes, where
the first run ends after exactly 120 iterations.

In order to solve an OPF problem with the input data stored in a file named
‘case.m’, the following command can be used:

results = OPF_Solver(’case’,settings);

where ‘settings’ is optional and described in Table 1. If you only need to solve a
simple SDP relaxation of OPF without any penalization, then it suffices to run
the following line:

results = OPF_Solver(’case’);

The content of ‘results’ is also described in Table 2.

Optional settings Description Default values

settings.ebB The parameter εb for the penalty
term ‘εb

P

QGk
’.

0

settings.ebL The parameter εl for the penalty
term ‘εl

P

|Slm + Sml|’.
0

settings.prob_line List of lines whose apparent power
loss should be penalized. To penal-
ize all of the lines, set it to ‘all’.

None

settings.alpha The parameter α in the objective
‘α× Degree + Fill In’ of the greedy
algorithm for tree decomposition.

0

settings.solver The custom solver. ‘sdpt3’,
‘sedumi’ and ‘Mosek’ can be chosen.

‘sdpt3’ for TW ≤
24 and ‘Mosek’ for
TW > 24.

settings.tol_feas Feasibility tolerance for each con-
straint.

10−6

settings.tol_rank A bag with the second largest eigen-
value greater than this tolerance
will be considered as a problematic
bag.

10−6

Table 1: Description of the optional settings of OPF Solver.

3

Results Description

results.sdp.W The optimal sparse matrix W obtained by solving
the SDP

results.sdp.Wbag The principal submatrices of W corresponding to
the bags of tree decomposition

results.sdp.cost The resulting power generating cost obtained by
solving the SDP

results.sdp.Sg Production levels of generators obtained from
SDP

results.sdp.Sb Production levels of buses obtained from SDP

results.sdp.sf Line flows from initial nodes to terminal nodes
obtained from SDP

results.sdp.st Line flows from terminal nodes to initial nodes
obtained from SDP

results.rec.V The recovered voltage phasors

results.rec.cost The power generating cost corresponding to the
recovered voltages

results.rec.Sg Production levels of generators corresponding to
the recovered voltages

results.rec.Sb Production levels at buses corresponding to the
recovered voltages

results.rec.sf Line flows from initial nodes to terminal nodes
resulted from the recovered voltages

results.rec.st Line flows from terminal nodes to initial nodes
resulted from the recovered voltages

results.tw Upper bound on the treewidth of the network

results.bags The bags of the tree decomposition

results.bags_prob List of those bags whose corresponding submatri-
ces of W are not rank-1

results.line_prob List of those lines that are the member of at least
one problematic bag

results.violations Violated OPF constraints

results.feas_flag Is ‘1’ if all constraints are satisfied for the recov-
ered solution (with the preset accuracy) and is ‘0’
otherwise

Table 2: Description of the outcome of OPF Solver

4

2 Case studies

OPF Solver is tested on several systems and the results are reported in Table 3.
For each system, the following numbers are reported:

• TW: an upper bound on treewdith

• # prob. bags: number of problematic bags

• Lower bound: lower bound on the globally-optimal cost of OPF

• Upper Bound: upper bound on the global cost of OPF associated with
the recovered solution

• Opt. degree: global optimality degree interpreted as the closeness of the
recovered solution to the unknown global solution (in percentage)

• Com. time: the total computation time (in seconds) including those con-
sumed towards tree decomposition, finding a W, and recovering a solution
(the simulations were run on a desktop computer with an Intel Core i7
quad-core 3.4 GHz CPU and 16 GB RAM).

Note that the permissible feasibility violation for the recovered solution is equal
to 10−6 for each of the cases reported in Table 3, except for Polish 3012wp and
Polish 3120sp for which the violation level is set as 1.5× 10−5.

Test TW # prob. εb εl Lower Upper Opt. Com.

cases bags bound bound degree time

IEEE 14 bus 2 0 0 0 8081.53 8081.53 %100 ≤ 5

IEEE 30 bus 3 1 0.1 0 576.89 576.89 %100 ≤ 5

NE 39 bus 3 1 10 0 41862.08 41864.40 %99.994 ≤ 5

IEEE 57 bus 5 0 0 0 41737.78 41737.78 %100 ≤ 5

IEEE 118 bus 4 61 10 0 129654.61 129660.81 %99.995 ≤ 5

IEEE 300 bus 6 7 0.1 100 719711.63 719725.10 %99.998 13.9

Polish 2383wp 23 651 3500 3000 1861510.42 1874322.65 %99.316 529

Polish 2736sp 23 1 1500 0 1307882.29 1308270.20 %99.970 701

Polish 2737sop 23 3 1000 0 777626.26 777664.02 %99.995 675

Polish 2746wop 23 1 1000 0 1208273.91 1208453.93 %99.985 801

Polish 2746wp 24 1 1000 0 1631772.83 1632384.87 %99.962 699

Polish 3012wp 24 605 0 10000 2587740.98 2608918.45 %99.188 814

Polish 3120sp 24 20 0 10000 2140765.92 2160800.42 %99.073 910

Table 3: Performance of OPF Solver on several case studies.

In what follows, the scripts used to generate the above results will be pro-
vided. As an example, the command ‘results = OPF_Solver(’case14’);’
solves the OPF problem for the IEEE 14 bus system. For some networks such
as the 300-bus system, there are two ways to solve the problem. The first one
assumes that the problematic lines are unknown and therefore the SDP relax-
ation is solved twice (to find the problematic lines in the first stage and solve

5

a penalized relaxation based on that in the second stage). The second script
assumes that the problematic lines are known and the SDP relaxation is then
solved once. Please refer to [2] for more details.

IEEE 14 bus system:

results = OPF_Solver(’case14’);

IEEE 30 bus system:

clear settings;

settings.epB = 0.1;

results = OPF_Solver(’case30’,settings);

New England 39 bus system:

clear settings;

settings.epB = 10;

results = OPF_Solver(’case39’,settings);

IEEE 57 bus system:

results = OPF_Solver(’case57’);

IEEE 118 bus system:

clear settings;

settings.epB = 10;

results = OPF_Solver(’case118’,settings);

IEEE 300 bus system:

clear settings;

settings.epB = 0.1;

settings.epL = 100;

settings.line_prob = [38; 402];

results = OPF_Solver(’case300’,settings);

Penalized SDP with automatic problematic line detection:

clear settings;

settings.epB = 0.1;

settings.epL = 100;

results = OPF_Solver(’case300’,settings);

settings.line_prob = results.line_prob;

results = OPF_Solver(’case300’,settings);

6

Polish 2383 bus system winter 1999-2000 peak:

clear settings;

settings.epB = 3500;

settings.epL = 3000;

settings.line_prob = [100; 101; 102; 103; ...

104; 130; 134; 819; 821];

results = OPF_Solver(’case2383wp’,settings);

Penalized SDP with automatic problematic line detection:

clear settings;

settings.epB = 3500;

settings.epL = 3000;

results = OPF_Solver(’case2383wp’,settings);

settings.line_prob = results.line_prob;

results = OPF_Solver(’case2383wp’,settings);

Polish 2736 bus system summer 2004 peak:

clear settings;

settings.epB = 1500;

results = OPF_Solver(’case2736sp’,settings);

Polish 2737 bus system summer 2004 off-peak:

clear settings;

settings.epB = 1000;

results = OPF_Solver(’case2737sop’,settings);

Polish 2746 bus system winter 2003-04 off-peak:

clear settings;

settings.epB = 1000;

results = OPF_Solver(’case2746wop’,settings);

Polish 2746 bus system winter 2003-04 evening peak:

clear settings;

settings.epB = 1000;

results = OPF_Solver(’case2746wp’,settings);

Polish 3012 bus system winter 2007-08 evening peak:

7

clear settings;

settings.alpha = 1;

settings.line_prob = ’all’;

settings.epL = 10000;

settings.tol_feas = 1.5 * 10^(-5);

results = OPF_Solver(’case3012wp’,settings);

Polish 3120 bus system summer 2008 morning peak:

clear settings;

settings.alpha = -1.5;

settings.line_prob = ’all’;

settings.epL = 10000;

settings.tol_feas = 1.5 * 10^(-5);

results = OPF_Solver(’case3120sp’,settings);

References

[1] J. Lavaei and S. Low, “Zero duality gap in optimal power flow problem,”
IEEE Transactions on Power Systems, 2012.

[2] R. Madani, M. Ashraphijuo, and J. Lavaei, “Promises of conic relaxation for
contingency-constrained optimal power flow problem,” in Allerton, 2014.

[3] R. Madani, S. Sojoudi, and J. Lavaei, “Convex relaxation for optimal power
flow problem: mesh networks,” in IEEE Transactions on Power Systems,
2014.

[4] H. L. Bodlaender and A. M. Koster, “Treewidth computations i. upper
bounds,” Information and Computation, vol. 208, no. 3, pp. 259–275, 2010.

[5] R. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower 4.1 users manual,”
Power Systems Engineering Research Center (PSERC), 2011.

8

