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MIXED STRATEGY
In the theory of games a player is said to use a mixed strat-
egy whenever he or she chooses to randomize over the set
of available actions. Formally, a mixed strategy is a proba-
bility distribution that assigns to each available action a
likelihood of being selected. If only one action has a pos-
itive probability of being selected, the player is said to use
a pure strategy.

A mixed strategy profile is a list of strategies, one for
each player in the game. A mixed strategy profile induces
a probability distribution or lottery over the possible out-
comes of the game. A Nash equilibrium (mixed strategy)
is a strategy profile with the property that no single player
can, by deviating unilaterally to another strategy, induce a
lottery that he or she finds strictly preferable. In 1950 the
mathematician John Nash proved that every game with a
finite set of players and actions has at least one equilib-
rium.

To illustrate, one can consider the children’s game
Matching Pennies, in which each of two players can
choose either heads (H) or tails (T); player 1 wins a dollar
from player 2 if their choices match and loses a dollar to

player 2 if they do not. This game can be represented as
follows:

Here player 1’s choice determines a row, player 2’s
choice determines a column, and the corresponding cell
indicates the payoffs to players 1 and 2 in that order. This
game has a unique Nash equilibrium that requires each
player to choose each action with probability one-half.

Another example is provided by the Hawk-Dove
game, which has been used by evolutionary biologists to
model animal conflicts:

In this game any strategy profile in which one player
chooses H and the other picks D is in equilibrium. Hence,
there are two pure strategy equilibria, (H,D) and (D,H).
In addition, there is a mixed strategy equilibrium in which
each player selects H with probability 2/3.

One feature of a mixed strategy equilibrium is that
given the strategies chosen by the other players, each
player is indifferent among all the actions that he or she
selects with positive probability. Hence, in the matching
pennies game, given that player 2 chooses each action
with probability one-half, player 1 is indifferent among
choosing H, choosing T, and randomizing in any way
between the two. Because randomization is more complex
and cognitively demanding than is the deterministic selec-
tion of a single action, this raises the question of how
mixed strategy equilibria can be sustained and, more fun-
damentally, how mixed strategies should be interpreted.

In an interpretation advanced in 1973 by John
Harsanyi, a mixed strategy equilibrium of a game with
perfect information is viewed as the limit point of a
sequence of pure strategy equilibria of games with imper-
fect information. Specifically, starting from a game with
perfect information, one can obtain a family of games
with imperfect information by allowing for the possibility
that there are small random variations in payoffs and that
each player is not fully informed of the payoff functions of
the other players. Harsanyi showed that the frequency
with which the various pure strategies are chosen in these
perturbed games approaches the frequency with which

H D
H (0, 0) (4, 1)
D (1, 4) (2, 2)

H T
H (1, �1) (–1, 1)
T (�1, 1) (1, –1)
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they are chosen in the mixed strategy equilibrium of the
original game as the magnitude of the perturbation
becomes vanishingly small.

A very different interpretation of mixed strategy equi-
libria comes from evolutionary biology. To illustrate this,
consider a large population in which each individual is
programmed to play a particular pure strategy. Individuals
are drawn at random from that population and are
matched in pairs to play the game. The payoff that results
from the adoption of any specific pure strategy will
depend on the frequencies with which the various strate-
gies are represented in the population. Suppose that those
frequencies change over time in response to payoff differ-
entials, with the population share of more highly
rewarded strategies increasing at the expense of strategies
that yield lower payoffs. Any rest point of this dynamic
process must be a Nash equilibrium. In the special case of
the Hawk-Dove game any trajectory that begins at a state
in which both strategies are present converges to the
unique mixed strategy equilibrium of the game. In other
words, the long-run population share of each strategy cor-
responds exactly to the likelihood with which it is played
in the mixed strategy equilibrium.

SEE ALSO Evolutionary Games; Game Theory; Nash
Equilibrium; Nash, John; Pure Strategy
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MODEL SELECTION
TESTS
Statistical inference and forecasting, widely used in all of
the sciences, are usually based on a statistical model. Yet,
the specification of an appropriate statistical model is a

difficult problem that has yet to be satisfactorily solved.
Model building is as much an art as a science. All statisti-
cal models are necessarily false, and their usefulness is
their ability to provide the best approximation to the
“true” model. A summary of the complementary
approaches used in this important problem of model spec-
ification is provided below.

THEORY AND SAMPLE DATA

The conceptual approach is based on the use of subject
matter theory in the specification of a model. However,
there may be many competing theories leading to many
alternative models. The many different macroeconomic
models are an example. In other situations, theory may
provide little, if any, information on model specification.
For example, dynamic modeling theory typically provides
little information on the dynamic relations among vari-
ables.

Another source of model specification is the data.
Previously unknown relations between variables can be
suggested from the data. An example is given by the
Phillips curve relation in macroeconomics.

STATISTICAL APPROACHES:
HYPOTHESIS TESTING

The problem of model specification can also be addressed
using statistical hypothesis testing. In this approach, the
comparisons are generally between two competing mod-
els. If the two models are nested—that is, one model can
be obtained as a special case of the other by specifying
appropriate restrictions—standard hypothesis tests can be
used to choose between the two models. Although easy to
implement, this approach can be problematic. First, the
significance level of the test is an arbitrary choice that can
affect the conclusion. Also, using the conventional 5 per-
cent level of significance, the null hypothesis has an
advantage over the alternative hypothesis.

In situations where two models are nonnested, an
artificial compound model can be formulated that
includes both rival models as special cases, and then the
above nested testing procedure can be applied. Common
examples include the J-test of Russell Davidson and James
MacKinnon (1981) and the D. R. Cox test (1961). Both
the J and Cox tests can be generalized to situations where
there are more than two models. However, these tests
include the additional possibility that one accepts or
rejects both models. In the hypothesis testing approaches,
the order of testing is important and can and usually does
affect the final outcome. Thus, two different researchers
with exactly the same models and data can arrive at differ-
ent conclusions based on different orders of testing and
significance levels.
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