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Abstract: Handicap systems are used in many sports to improve competitive balance and

equalize the match-win probability between opponents of differing ability. Recognizing the

absence of such a system in tennis, we develop a novel optimization-based handicap system

for tennis using a Markov Decision Process (MDP) model. In our handicap system, the

weaker player is given β “free point” or “credits” at the start of the match, which he can

use before the start of any point during the match to win the point outright. The MDP

model determines two key features of the handicap system: (1) Fairness: the minimum

value of β required to equalize the match-win probability, and (2) Achievability: the

optimal policy governing usage of the β credits to achieve the desired match-win

probability. We test the sensitivity of the handicap values to the model’s input parameters.

Finally, we apply the model to real match data to estimate professional handicaps.

Keywords: Markov Decision Process, Optimization, Fairness, Dynamic handicap
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1 Introduction

Handicap systems are used in many sports and games to improve competitive balance and

equalize the probability of winning a match between two competitors. Golf has perhaps the

most well-known handicap system (USGA, 2015), but many other sports and games such

as horseracing (BHA, 2015), chess (Hooper and Whyld, 1992), and go (BGA, 2015) have

well-established handicapping rules. Handicap systems are often used at the grassroots or

amateur level to make competition more enjoyable. They also have natural and widespread

applications in sports betting, and are closely connected to ratings systems.

Tennis does not have an official handicap system, although several ideas have been

proposed. For example, Sir Richard Branson developed “Richard’s Rules”, a set of

handicapping rules that give the weaker player “credits” that can be used to purchase

advantages throughout the match (Branson, 2015). The credits can be used to purchase

points directly or to provide an advantage such as eliminating the opponent’s second serve.

These rules are actually used in the Necker Cup, a pro-am tournament hosted by Branson.

Another example comes from the Tencap rating system, which uses the (integral) ratings

difference between two tennis players to determine how many points the weaker player can

claim at any time in a set (Tencap, 2015). The simplest idea for handicapping involves

giving the weaker player an initial lead in the match. The first two examples represent

dynamic handicap systems, where an advantage by the weaker player can be claimed at

any time in the match. In contrast, the initial-lead handicap system is static.

Two questions arise when designing handicap systems in general: 1) Fairness : How can

skill differences be rigorously mapped to a handicap in order to properly equalize the

match-win probability? 2) Achievability : How should the handicap be implemented during

the match to actually achieve the desired competitive balance? Fairness is an issue in both

dynamic and static systems, whereas achievability is an issue primarily for dynamic

systems. The Branson and Tencap systems described above specify how a handicap should

be calculated, but do not quantify the fairness or achievability of that calculation. Before
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describing the approach we take to address these issues, it is important to understand the

“hierarchical” nature of scoring in tennis, which complicates the design of a tennis

handicap system.

The scoring systems of different sports can generally be classified into one of two types:

non-hierarchical and hierarchical. Sports with non-hierarchical scoring (non-hierarchical

sports) include soccer, basketball, baseball, hockey, and football. Non-hierarchical scoring

means that the final score in a match is simply the sum of the points scored throughout

the match. Sports with hierarchical scoring (hierarchical sports) include tennis, volleyball,

badminton, and match play golf. The hierarchy refers to the fact that a match is decomposed

into several subunits, each with its own scoring system. For example, a tennis match is

composed of sets, which are composed of games, which are composed of points.

In non-hierarchical sports, because the final score is the sum of the points scored

throughout, each point contributes equally to the final score. However, this is not the case

in hierarchical sports. If a tennis player wins a point within a game, but ultimately loses

the game, the point won by the player does not contribute to the match score. In fact, it is

possible for a player to win more points than her opponent but still lose the match.

It is well-known that in hierarchical sports, some points are “worth” more than others,

in terms of their contribution to the match outcome (Barnett et al., 2004; Morris, 1977;

O’Donoghue, 2001). For example, assuming point outcomes are independent and identically

distributed (iid) (Klaassen and Magnus, 2001), winning a set-clinching point in tennis has a

much bigger impact on the match-win probability than winning the very first point in a set.

A related feature of hierarchical scoring is that small differences in point-win probabilities

may translate into large differences in the match-win probability (Fischer, 1980).

We now return to the two questions posed earlier and illustrate their relevance through

the following hypothetical tennis match. Suppose Player A is weaker than Player B. To make

the match more competitive, Player B decides to give β “free points” or “credits” to Player

A at the start of the match. A credit can be used at any time during the match before the
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start of a point; whenever Player A uses one, he wins the point outright. Thus, β represents a

handicap that helps the weaker player make the match more competitive. However, the true

value of the handicap depends on how close β is to equalizing the match-win probability (i.e.,

fairness) and when Player A decides to employ the β credits (i.e., achievability). Naturally,

these two issues are linked: Player A’s advantage grows with a larger value of β, but shrinks

with a worse strategy for claiming the free points.

In this paper, we develop a credit-based, dynamic handicap system for tennis using a

Markov Decision Process (MDP) model that addresses both the fairness and achievability

criteria described above: it determines both the smallest value of β needed by the weaker

player to reach a match-win probability of at least 0.5 and the corresponding optimal policy

(i.e., strategy that prescribes an action in every score state) governing credit usage to achieve

this equalizing probability. In our system, credits can only be used to purchase points. The

MDP model has additional benefits such as generalizing the initial-lead handicap system,

and providing novel insight into effort/energy allocation in hierarchical sports.

Our three specific contributions are as follows. We develop the first optimization-based

handicap system for tennis. Our MDP approach models a point-by-point decision-making

process that explicitly integrates hierarchical scoring and is applicable to matches of general

length and structure. The model is tractable using standard methods like policy iteration. It

is also flexible, with the ability to accommodate non-iid effects and server-specific point-win

probabilities.

Second, we establish that the value function of the MDP represents the state-specific

probability of winning the match by the weaker player. As a result, a range of desired match-

win probabilities can be generated through an appropriate choice of β, with the handicap

defined as the smallest value, β∗, required for the weaker player to meet or exceed a match-

win probability of 0.5 (i.e., fairness). We show that even a few credits can have a large impact

on the match-win probability. Moreover, the optimal policy represents a strategy for credit

use throughout the complete horizon of the match to maximize the match-win probability
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(i.e., achievability). In addition, we show that the optimal policy in general employs a

“conservative” strategy of credit usage. Finally, we produce a state-dependent definition of

“important points”, extending existing literature and forming the basis for a comprehensive

decision-making model to guide effort/energy allocation in hierarchical sports.

Third, we demonstrate the model’s application using real match data to estimate

handicaps between the “Big Four” mens tennis players (Djokovic, Federer, Murray, Nadal)

on different court surfaces, over different years, and using server-specific point-win

probabilities.

2 Tennis scoring background

A tennis match is composed of sets, which are composed of games, which are composed of

points. Matches are usually a best-of-five or best-of-three sets competition. To win a set, a

player must win six games by a margin of at least two games. If the score is 5-games all,

then a player needs to win two more games to win the set (final set score of 7-5). If the

score in the set reaches 6-6, then a tiebreaker is played to determine the winner of the set,

at which point the final set score will be 7-6 for the winner. To win a tiebreaker, a player

must win seven points by a margin of at least two points. If the score is 6-points all in the

tiebreaker, then the tiebreaker continues indefinitely until one player has a two-point lead.

To win a game, a player must win four points by a margin of at least two points. If it is tied

at 3-points all, play continues indefinitely until one player has a two-point lead. Instead of

counting points won in a game as 1, 2, 3, the points are called “15”, “30”, “40”. Thus, a 3-1

point score within a game is actually referred to as 40-15, and 40-40 is “deuce”.

Different tournaments employ slightly different scoring rules. For example, the four

Grand Slam tournaments (biggest, most lucrative, and most competitive) employ a best-of-

five sets format for the men, while lower tier tournaments typically employ a best-of-three

sets format. All women’s tournaments are best-of-three sets. Three of the four Grand Slams

(Australian Open, French Open, Wimbledon) do not employ a tiebreaker in the final set,
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and instead the match ends when a player wins the final set with at least a 2-game lead.

Only the U.S. Open has a tiebreaker in the final set.

For a full description of the official rules of tennis, including scoring, we refer the reader

to ITF (2015).

3 Markov Decision Process model

First, assuming that the point-win probability in tennis does not depend on the server,

we formulate an MDP model (Puterman, 1994) to model the sequential decision-making

problem of when to use the credits. Second, we present several properties of the value

function. Third, we show how to extend our basic model to include server-specific point-win

probabilities. Fourth, we present illustrative handicap computations using the two MDP

models. Finally, we explore model sensitivity to the point-win probabilities.

3.1 Server-independent model

The MDP model is based on the classical Markov Chain model for tennis (Kemeny and Snell,

1960). For ease of exposition in model development, we assume the point-win probability,

p, is server-independent in this section. We also make the common assumption that point

outcomes are iid, noting that some research has shown that “deviations from iid are small”

(Klaassen and Magnus, 2001). These two assumptions can easily be relaxed in a model

with server-specific transition probabilities (see Section 3.3) and an augmented state space,

respectively.

States: The state of the MDP is generally written as s = (σ, β), where σ refers to the

current score in the match and β, a nonnegative integer, refers to the number of free points

remaining. Let S be the set of all possible states in the match. Both σ and β are recorded

from the perspective of the weaker player, denoted Player A. The score σ is written as a

triple (x, y, z), where x is the match score in sets, y is the set score in games, and z is the
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game score in points. For example, the state ((1-0, 2-3, 30-30), 5) represents the state of the

match where Player A has won the first set, Player A is trailing in the second set by a score

of two games to three, the current score in the sixth game of the second set is tied at 30-all,

and Player A has five credits remaining in the match. For any score σ, it will be useful

to define two other states, σ+ and σ−, which denote the scores that result when Player A

wins or loses, respectively, the point at hand. We denote by W the “win” score state and L

the “lose” score state, corresponding to Player A winning or losing the match, respectively.

There is one absorbing state, ∆, corresponding to the end of the match (β is not included

in this state definition).

Actions: At each state (σ, β) such that β > 0, Player A has two possible actions: use a

credit (a = 1) or not (a = 0). For states (W,β), (L, β), ∆, or where β = 0, the only possible

action is a = 0. The function π : S → {0, 1} that maps all states to corresponding actions is

called a policy. In other words, a policy dictates whether a free point should be used in any

given state.

Transition probabilities: Let pas,s′ := P (s′|s, a) denote the transition probability from

state s to s′ when action a is used. We slightly abuse notation and write paσ,σ′ := P (σ′|σ, a)

when a focus on score states is more convenient. When a credit is used (a = 1), we assume

the only possible transition is from score state σ to σ+, that is, p1σ,σ+ = 1. For action a = 0,

we assume that p0σ,σ+ = p and p0σ,σ− = 1−p. (Since the state is recorded from the perspective

of the weaker player, 0 < p < 0.5.) Thus, there are only three possible states that can be

reached from any non-absorbing state s = (σ, β) where σ 6= W,L: (σ+, β − 1), (σ+, β), or

(σ−, β). At states (W,β) and (L, β), the only possible transition is to ∆. Given the structure

of the state space and the transition probabilities, it should be clear that the score states

W and L are reachable from any previous score state with sufficiently many point wins or

losses, respectively.
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Rewards (or utility): We assign a reward of 0 to all states irrespective of the action

chosen, except for states of the form (W,β), which receive a reward of 1. That is, the reward

function r satisfies r(s, a) = 1 if s = (W,β), a = 0 and 0 otherwise. Note that “reward”

is standard terminology in MDP models, and in this context is equivalent to “utility,” with

which certain readers may be more familiar.

Bellman equation: The value of employing a particular policy π can be computed using

the standard Bellman equation

V π(s) = r(s, π(s)) +
∑
s′∈S

p
π(s)
s,s′ V

π(s′), (1)

where V π(s) is the expected “utility” or value of the rewards associated with policy π at state

s, capturing both the immediate value of a particular action in a particular state through

the reward function as well as the expected value over all future sample paths. As we will

show in Theorem 1, V π(s) is the probability the weaker player wins the match when in state

s and using policy π. The objective of the weaker player (the decision-maker in our model)

is to maximize her match-win probability. Accordingly, an optimal policy can be determined

by the optimality equation

V ∗(s) = max
a

{
r(s, a) +

∑
s′∈S

pas,s′V
∗(s′)

}
. (2)

Specializing equation (2) to the tennis context described above, we get the following

optimality equation at non-absorbing states where σ 6= W,L and β ≥ 1

V ∗(σ, β) = max{V ∗(σ+, β − 1), pV ∗(σ+, β) + (1− p)V ∗(σ−, β)}, (3)

where the first term in the max corresponds to a = 1 and the second term corresponds to

a = 0. When β = 0, only second term remains in equation (3). When σ = W , V ∗(σ, β) =

1 + V ∗(∆) and when σ = L, V ∗(σ, β) = V ∗(∆). Lastly, V (∆) = V (∆).
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This MDP is an expected total reward model with non-negative rewards, also known as

a positive bounded model (Puterman, 1994). For such models, it is known that the minimal

solution to the optimality equations is the desired solution, which in our case sets V ∗(∆) = 0

and correspondingly implies V ∗(W,β) = 1 and V ∗(L, β) = 0.

3.2 Value function interpretation

The value function V π(σ, β) has a natural interpretation in the context of tennis and possesses

several intuitive properties, which when taken together establish the existence of the handicap

β∗.

Theorem 1. V π(σ, β) equals the probability the weaker player wins the match when using

policy π given score σ and remaining credits β.

Proof. Given a policy π, the Bellman equations for V π(s) are exactly the system of equations

describing the probability of absorption in a Markov Chain (Bertsekas and Tsitsiklis, 2008)

via the win state. Thus, V π(s) is the corresponding probability under policy π.

Corollary 1. V ∗(σ, β) equals the probability the weaker player wins the match under the

optimal policy given score σ and remaining credits β.

Given that V ∗(σ, β) represents the probability Player A wins the match under the optimal

policy, the following properties of the value function are immediate.

Lemma 1. Let σ0 denote the score at the start of the match. Then,

1. V ∗(σ0, 0) < 0.5,

2. V ∗(σ, β) = 1 for β sufficiently large and σ 6= L,

3. V ∗(σ, β) is non-decreasing in β for all σ.

Proof. We only include a formal proof of the third claim. The case of σ = W or L is trivial

since V ∗(σ, β) is constant in β. Next, consider an arbitrary state (σ, β) where σ 6= W,L,
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and let the corresponding optimal action be π∗(σ, β). It suffices to show that V ∗(σ, β) ≤

V ∗(σ, β + 1). Consider a policy π that at state (σ, β + 1) copies the optimal action at state

(σ, β), i.e., π(σ, β+1) = π∗(σ, β), which is feasible since there is at least one credit remaining

at (σ, β + 1). Then, V ∗(σ, β) = V π(σ, β + 1) ≤ V ∗(σ, β + 1), where the equality follows by

construction of π and the inequality follows by optimality.

The intuition behind these properties is straightforward. Property 1: By definition the

weaker player has p < 0.5 and is thus more likely to lose in the absence of a handicap;

Property 2: With enough free points, Player A can win from any state in the match (e.g.,

β = 72 is enough to win a best-of-five set match from σ0); Property 3: More free points

cannot lower the probability of winning the match.

It immediately follows from Lemma 1 that there exists a unique handicap β∗ that is the

smallest handicap the weaker player needs to achieve a match-win probability at least 0.5,

assuming credits are used according to the optimal policy.

Theorem 2. There exists a unique positive integer β∗ such that V ∗(σ0, β
∗) ≥ 0.5 and

V ∗(σ0, β
∗ − 1) < 0.5.

3.3 Server-specific model

In Section 3.1, we assumed that the point-win probabilities do not depend on the server.

This assumption was made to facilitate intuition building while developing the model, but is

unrealistic in practice. We now relax this assumption and present a server-specific extension

to the basic MDP model. We use p1 and p0 to denote the point-win probability of Player A

when she is serving and receiving, respectively. Actions and rewards are not affected, so we

do not discuss them in this section. For the remaining model components, we only discuss

the differences from before and do not repeat any development that is unchanged by the

addition of server-specific point-win probabilities.

For completeness, we need to redefine the weaker player (Player A) in the extended

model. Earlier, Player A was defined to have p < 0.5. Instead, Player A in the extended
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model is the player with p1 + p0 < 1 (or equivalently, the player with the lower point-win

probability on her serve). Note that the model in Section 3.1 is a special case of the extended

model presented below when p1 = p0 = p. Moreover, it is straightforward to show that the

theoretical results from the server-independent model, appropriately adjusted, extend to the

server-specific case.

States: The state of the server-specific MDP is now s = (σ, β, ψ), where σ and β are the

same as before and ψ ∈ {0, 1} denotes whether Player A is receiving (ψ = 0) or serving

(ψ = 1). We define ψ+ and ψ− in a similar manner as we defined σ+ and σ−. For example,

when Player A has a game point on her serve (ψ = 1), then ψ+ = 0 since winning the point

will result in Player B serving on the next point. On the other hand, ψ− = 1 since losing

the point will mean that Player A keeps serving.

Transition probabilities: The definition of pas,s′ := P (s′|s, a) remains the same, given

the expanded state definition s = (σ, β, ψ). As before, we use pa,ψσ,σ′ := P (σ′|σ, a, ψ) when a

focus on score states is more convenient. The possible transition probabilities are similar to

before. Specifically, when a = 1, p1,ψσ,σ+ = 1 for ψ ∈ {0, 1}. When a = 0, then p0,ψσ,σ+ = pψ and

p0,ψσ,σ− = 1− pψ.

Bellman equation: The Bellman equation (1) and the optimality equation (2) still hold.

Specializing equation (2) to the server-specific model, we get the following optimality

equation at non-absorbing states where σ 6= W,L and β ≥ 1

V ∗(σ, β, ψ) = max{V ∗(σ+, β − 1, ψ+), pψV
∗(σ+, β, ψ+) + (1− pψ)V ∗(σ−, β, ψ−)}, (4)

where the first term in the max corresponds to a = 1 and the second term corresponds to

a = 0.
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3.4 Computing handicaps

Given the point-win probabilities, which encode the skill difference between two players,

we can determine the handicap β∗ by solving the Bellman equations and determining the

smallest β such that V ∗(s0) ≥ 0.5, where s0 denotes the state at the beginning of the match,

including who is serving in the server-specific model. Recall that we do not need to examine

values of β beyond 72 for a five-set match. It turns out that policy iteration solves this

problem efficiently. For example, in the server-specific model, there are roughly 800,000

states for a best-of-five sets match with β = 72 and policy iteration solves this problem in

under 10 minutes on a standard laptop computer (1.8 GHz Intel Core i5 processor with 4 GB

of memory) using Matlab. In Sections 3.4.1 and 3.4.2, we present illustrative computations

using the server-independent and server-specific models, respectively.

3.4.1 Server-independent model computations

Figure 1 illustrates the impact of β on the match-win probability assuming a

server-independent point-win probability and a best-of-five sets match. It is evident that

even a few credits can substantially increase the match-win probability, especially when

compared to the initial-lead handicap system giving a β-point head start at the start of the

match to Player A. For example, with a point-win probability of 0.49, three credits suffice

to bring the match-win probability from 0.36 to 0.50. Under the initial lead system, 12 free

points, equivalent to a 3-0 lead in the set or half a set, are needed to raise the match-win

probability to 0.50. When p = 0.45, a handicap of 15 is needed under the MDP model to

equalize the match-win probability, whereas the initial-lead system requires over 50 points,

i.e., a two-set lead. In general, heuristic policies will be suboptimal and unlikely to achieve

fairness given the optimal handicap β∗ (associated with the optimal policy) derived from

the MDP. The initial-lead policy is one example of a suboptimal policy for credit usage and

Figure 1 illustrates how a poor policy regarding credit usage can be far from achieving

fairness given the same number of credits used by the optimal policy. It would be
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worthwhile to further study the impact of suboptimal credit usage, but this is outside the

scope of the present paper, which focuses on the rigorous development of the handicap

system. Finally, we note that our MDP model can take any policy, even suboptimal ones,

and evaluate it using the Bellman equation (cf. Theorem 1). In fact, the act of evaluating a

policy simply reduces the MDP to a Markov Chain with the corresponding transition

probabilities induced by the given policy.

β
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Figure 1: Match-win probability as a function of the number of credits for various server-
independent point-win probabilities under our handicap system and the initial-lead system.

Figure 2 shows the optimal policy for a one-set, no tiebreaker match with β = 2 and

p = 0.48. No tiebreaker means that a set score 6-5, 7-6, etc. is equivalent to 5-4. We see

that the optimal policy is “conservative”, recommending credit use primarily when it would
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secure the game or bring the game to deuce. A conservative policy avoids wasting credits.

Of course, the policy recommends using a credit when Player A is two points from winning

the match (i.e., when the set score is 5-0, 5-1, . . ., 5-4 and the game score is 30-0, 30-15, or

30-30). A credit is also used when losing the point would end the match.
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Figure 2: Optimal policy in a one-set, no tiebreaker match with β ∈ {1, 2} and p = 0.48.
The set score is the number in the upper left corner of each tableau and the game scores are
in the row and column labels of each tableau. “1” indicates the states in which it is optimal
to use a free point when β = 1 but not optimal when β = 2. “2” indicates the states in which
it is optimal to use a free point when β = 2 but not optimal when β = 1. “b” indicates the
states in which it is optimal to use a free point for both β = 1 and β = 2.

3.4.2 Server-specific model computations

Figure 3 is similar to Figure 1 but considers server-specific point-win probabilities (p1, p0) =

(p + c, p − c) for p = 0.45. As c increases from 0 to 0.15, β∗ decreases from 15 to 9. Note

that β∗ depends on ψ0 (whether or not Player A is the initial server). However, as shown in

Table 1, the sensitivity of β∗ to ψ0 is small, with a slight first-server advantage, as expected.
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Consequently, unless stated otherwise going forward, we fix ψ0 = 1 for simplicity.
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Figure 3: Match-win probability as a function of the number of credits for various server-
specific point-win probabilities under our handicap system assuming Player A is the initial
server.

Next, we examine the structure of the optimal policy given server-specific point-win

probabilities (p1, p0) = (p + c, p − c) with p = 0.48 and c = 0.2. Figures 4 and 5 display

the optimal policy assuming Player A is receiving (ψ = 0) and serving (ψ = 1) in that

state, respectively. Although not identical, the optimal policies depicted in Figures 4 and 5

retain the conservatism shown in Figure 2, the server-independent case. Under the realistic

assumption that the point-win probability is higher for the server, credits are used more

often on return (Figure 4) than on serve (Figure 5) and typically to generate (or save) a

service break.
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Table 1: Handicap values for various combinations of ψ0 and (p1, p0). The handicaps are
fractional because they are linearly interpolated between β∗ and β∗−1 to achieve a match-win
probability of exactly 0.5.

ψ0
(p1, p0)

(0.45, 0.45) (0.50, 0.40) (0.55, 0.35) (0.60, 0.30)
0 14.35 13.18 10.79 8.39
1 14.35 12.97 10.58 8.24
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   0   0    0    0    0   0    0   0    0    0    0   0    0   0    0    0    0   0    0   0    0    0    0   0    0   0    0    0    0   0    0   0    0    0    b   0
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Figure 4: Optimal policy in a one-set, no tiebreaker match with β ∈ {1, 2}, ψ = 0, and
(p1, p0) = (0.68, 0.28). “1, 2, b” are defined as before.

The example optimal policies shown in Figures 2, 4, and 5 also illustrate the concept of

“important points”, typically considered to be the points with the largest difference in the

resulting match-win probability if they are won versus lost. The optimal policy identifies

when it is worthwhile to immediately claim a point even if it reduces by one the budget of

credits for future use. Thus, the optimal policy provides a novel state-dependent definition

of important points. Furthermore, the action a = 1 can be seen as an extreme case of a

player exerting extra effort to win a point. Thus, the optimal policy also provides insight

into when it is most beneficial to expend that energy.
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Figure 5: Optimal policy in a one-set, no tiebreaker match with β ∈ {1, 2}, ψ = 1, and
(p1, p0) = (0.68, 0.28). “1, 2, b” are defined as before.

3.5 Model sensitivity to point-win probabilities

Since point-win probabilities are the key input to the MDP model, we explore the sensitivity

of the outputted handicap values to these probabilities in this section. We wish to understand

the extent to which uncertainty in the estimated probabilities may translate into variability

in β.

3.5.1 Sensitivity of the server-independent model

Figure 6 illustrates how the handicap β and match-win probability vary as a function of p

from 0 to 0.5. The handicaps are fractional because they are linearly interpolated between β∗

and β∗− 1 to achieve a match-win probability of exactly 0.5. Over this entire range, clearly

β and the match-win probability vary a lot. However, we argue essentially by contradiction

that the uncertainty in p is likely to be captured in a small range. First, note that small

changes in p, especially in the range p ∈ [0.4, 0.6] translate to a huge difference in match-win

18



probability. Suppose match-win probability can only be estimated to within 40 percentage

points, from 0.3 to 0.7, for example, which we argue is conservative. Even in this case, p

resides in the small interval [0.48,0.52], corresponding to a handicap between 0 and 5 given

to one of the two players. So, even though the model is sensitive to p over a large range,

over realistic ranges of uncertainty in p, the impact on handicap variability should hopefully

be small.
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Figure 6: Handicap and match-win probability as a function of the point-win probability
in a best-of-three sets match with tiebreakers.

3.5.2 Sensitivity of the server-specific model

In Table 2, we show match-win probability and handicap as a function of p1 and p0. We

evaluate a small range for both probabilities. Since the average point-win probability on
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Table 2: Sensitivity of the match-win probability and handicap as a function of (p1, p0)
for p1 ∈ {0.63, 0.64, . . . , 0.67} and p0 ∈ {0.33, 0.34, . . . , 0.37} in a best-of-three sets match
with tiebreakers. Entries (x, y) in the table: x = match-win probability, y = interpolated
handicap. Positive (negative) handicap indicates that the player receives (gives) the
corresponding number of credits from (to) the other player.

p1
p0

0.33 0.34 0.35 0.36 0.37
0.63 (0.31, 1.87) (0.35, 1.43) (0.40, 0.97) (0.45, 0.50) (0.50, 0.00)
0.64 (0.36, 1.35) (0.40, 0.91) (0.45, 0.47) (0.50, 0.00) (0.55, −0.50)
0.65 (0.40, 0.86) (0.45, 0.44) (0.50, 0.00) (0.55, −0.47) (0.60, −0.97)
0.66 (0.45, 0.42) (0.50, 0.00) (0.55, −0.44) (0.60, −0.91) (0.65, −1.43)
0.67 (0.50, 0.00) (0.55, −0.42) (0.60, −0.86) (0.64, −1.35) (0.69, −1.87)

serve is around 0.65 for men (Klaassen and Magnus, 2001), we do sensitivity analysis around

(p1, p0) = (0.65, 0.35). We see that even for a relatively large range in match-win probability,

over 35 percentage points, the variability in the handicap is less than four credits. We can

also gain some insight from Table 2 into how sensitive the handicap calculation is to the

value of p1 + p0 − 1, which is the difference in point-win probabilities on serve between the

two players. A difference of 0.01 corresponds to about a 0.4 to 0.5 difference in handicap.

Furthermore, even for the same value of p1 + p0 − 1, there can be slight differences in the

induced handicap, since the specific p1 and p0 values may be different. This result is evident

when examining the diagonals (bottom left to top right) in Table 2, which correspond to

cases with the same value of p1 + p0 − 1.

4 Handicapping the “Big Four”

The “Big Four” refers to Novak Djokovic, Roger Federer, Andy Murray, and Rafael Nadal,

players who have dominated men’s tennis over the last decade. From 2004-2015 inclusive,

these four have won 42 out of the 48 Grand Slam tournaments. In this section, we illustrate

the application of our method to calculate handicaps between these players on different

surfaces and over different years. Data from http://www.tennisabstract.com is used to

calculate server-specific point-win probabilities.
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First, we determined the server-specific point-win probabilities overall and by court

surface based on point-level data from all matches played between the two players to the

end of 2015 (Figure 7). Specifically, we estimate the P(player i wins a point against player

j | player i is serving and court surface is k) as the proportion of points won by player i

against player j when player i was serving and the court surface was k. Other methods

leveraging betting markets data or advanced statistical models can also be used to estimate

point-win probabilities, but we take a simple approach here since the probability

estimation is not the main focus of our paper.

(a) Overall (b) Hard (c) Grass (d) Clay

Figure 7: Server-specific point-win probabilities between the Big Four overall (over surfaces
and years) and by surface (over years). Numbers in cell refer to probability the row player
wins the point when serving to the column player. D = Djokovic, F = Federer, M = Murray,
N = Nadal. Point-win probability was calculated as total points won divided by total points
played.

Using the estimated point-win probabilities and assuming a best-of-five sets match, we

determined the corresponding match-win probabilities and handicap using our MDP model

(Figure 8). The handicaps are fractional because they are linearly interpolated between β∗

and β∗ − 1 to achieve a match-win probability of exactly 0.5. To read Figure 8, notice that

below diagonal match-win probabilities greater than 0.5 indicate the row player is stronger,

and thus, the above diagonal handicap is positive, meaning his opponent (the new row player)

receives credits. As a helpful mnemonic, from the row player’s perspective, “red = receive”

and “green = give” in terms of credits. Alternatively, via a “betting the spread” lens, one

can view a positive value as a handicap “taken” by the weaker player and a negative value

as a handicap “given” by the stronger player, from the row player’s perspective.
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(a) Overall (b) Hard (c) Grass (d) Clay

Figure 8: Match-win probabilities and handicaps between the Big Four overall (over surfaces
and years) and by surface (over years). Numbers below diagonal refer to probability the row
player wins the match against the column player. Numbers above diagonal refer to the
interpolated handicap taken or given by the row player: positive/red indicates row player is
weaker (taken) and negative/green indicates row player is stronger (given). D = Djokovic,
F = Federer, M = Murray, N = Nadal.

We see that overall (Figure 8a), the closest rivalry involves Djokovic and Federer, with

Djokovic receiving one credit from Federer to balance competition, historically. Also, there is

a “triangle” relationship where Federer gives Djokovic credits, Djokovic gives Nadal credits,

and Nadal gives Federer credits. Murray, on the other hand, has generally been dominated

by the others, receiving credits from all three.

However, the handicap relations change when we examine each court surface separately.

For example, while Nadal gives 1.6 credits to Federer overall, Federer’s historical dominance

on grass shows up as 2.6 credits given to Nadal (Figure 8c). Nadal’s dominance on clay

is evident as all his opponents receive credits from him on that surface (Figure 8d). The

Djokovic-Murray rivalry is quite different based on surface, with Djokovic dominating on

hard courts (Figure 8b) and clay (Figure 8d), and Murray dominating on grass (Figure 8c).

In Figure 9, we illustrate how the handicap between Djokovic and the other three players

has changed from year to year on hard courts, the surface with the most match data between

these players. We see that Djokovic has generally enjoyed an advantage over Murray and

Nadal on hard courts, with the advantage being firmly in his favor since 2011. On the other

hand, he has experienced much more balanced competition against Federer over the last

decade. It may seem unintuitive to see Djokovic receiving a handicap against Federer in
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2014 and 2015 when Djokovic has enjoyed considerable success at the Grand Slams (winning

four of the eight, including both hard court Slams in 2015) often beating Federer in the

finals. However, when examining all hard court matches played between the two, Federer

has had an ever-so-slight advantage on (server-specific) point-win probabilities. Thus, the

incongruence between expectation and results in Figure 9 is largely explained by the fact

that Djokovic has been more dominant at the larger events and during critical junctures in

the match. For example, during the 2015 U.S. Open Final, Djokovic converted six of 13

break chances, while Federer only converted four of 23.

Lastly, we comment on the intuitive and concrete interpretability of our handicap metric

for a tennis follower. Our handicap metric quantifies the difference in performance between

the two players as a number of points won/lost – precisely, the minimum number of points

won/lost at the “right” times in the match – which is done by no other metric. In other

words, a handicap provides a unique quantification of how close the players are: winning a

few well-timed points is often the difference between winning and losing the match.

5 Conclusion

In this paper, we developed a novel credit-based, dynamic handicap system for tennis with

a Markov Decision Process at its core. Given a skill difference encoded by a point-win

probability that may be server-specific, the MDP model computes the smallest handicap

required by the weaker player to achieve at least a 0.5 probability of winning the match,

along with the optimal policy governing credit usage. We demonstrated that a few credits

can have a large impact on the match-win probability, unlike the naive handicap system

that simply gives the weaker player an initial lead in the match. We provided examples of

optimal policies, highlighting their conservatism towards credit usage.

To illustrate our method, we applied it to match data between the men’s Big Four:

Novak Djokovic, Roger Federer, Andy Murray, and Rafael Nadal. We quantified the lifetime

handicaps between the players over different surfaces and overall. As an example of handicap
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Figure 9: Evolution of handicap between Djokovic and rest of Big Four on hard court.

evolution, we also illustrated how Novak Djokovic’s handicap against the other three on hard

courts changed over the course of his career, in congruence with his overall career trajectory.

Our system and analysis can be extended to other hierarchical sports, since it is based

on a Markov Decision Process, which is a general framework for decision making under

uncertainty. Furthermore, the optimal policy associated with a particular handicap

provides an optimization-driven perspective on effort allocation and point importance.

Future research should consider mapping our handicap method to established player rating

systems used by social tennis players, to enable uptake without the need for specialized

math knowledge. The fractional part of an interpolated handicap can also be explored

further to equate its value with advantages like taking away an opponent’s second serve,
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based on similar analysis of its effect on the match-win probability.
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