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Abstract: This paper builds on a recently developed Markov Decision Process-based

(MDP) handicap system for tennis, which aims to make amateur matches more

competitive. The system gives points to the weaker player based on skill difference, which

is measured by the point-win probability. However, estimating point-win probabilities at

the amateur level is challenging since point-level data is generally only available at the

professional level. On the other hand, tennis rating systems are widely used and provide an

estimate of the difference in ability between players, but a rigorous determination of

handicap using rating systems is lacking. Therefore, our goal is to develop a mapping

between the Universal Tennis Rating (UTR) system and the MDP-based handicaps, so

that two amateur players can determine an appropriate handicap for their match based

only on their UTRs. We first develop and validate an approach to extract

server-independent point-win probabilities from match scores. Then, we show how to map

server-independent point-win probabilities to server-specific point-win probabilities.

Finally, we use the estimated probabilities to produce handicaps via the MDP model,

which are regressed against UTR differences between pairs of players. We conclude with

thoughts on how a handicap system could be implemented in practice.

Keywords: Tennis, Handicap, Rating systems, Bayesian models, Markov chain
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1 Introduction

Handicap systems are used to improve fairness in competitive matches between players

with different skill levels. Such systems are more commonly applied to amateur or social

competitions, rather than professional competitions, in order to generate balanced and

enjoyable matches. Handicapping also allows players to broaden their pool of potential

opponents, which is especially important in sports where even slight skill differences can

lead to unbalanced competitions. For example, in tennis, differences in skill are amplified

over the course of a match, such that even small differences lead to the slightly stronger

player enjoying a consistent and sustained advantage in terms of the match-win probability

(Fischer, 1980).

Recently, a Markov Decision Process-based (MDP) handicap system was developed for

tennis (Chan and Singal, 2016). This system gives the weaker player a budget of “credits”

that can be used to claim points throughout the match in a dynamic fashion. The MDP

model calculates the minimum number of credits required to generate a competitive match

(that is, both players have a match-win probability ≈ 0.5) along with the optimal policy for

when to dynamically use the credits throughout the match. To capture the skill difference

between the players, the MDP model uses the probabilities of the weaker player winning

a point on serve and return. Unfortunately, estimating point-win probabilities for amateur

players is challenging because match data is usually recorded at a higher level of aggregation,

unlike professional matches where point-level data is recorded. For instance, we were able

to find only two sources1 for match-level data on amateur tennis players and neither contain

point-level information. Not surprisingly, the only datasets2 we encountered that contain

point-level data correspond to professional players. On the other hand, tennis rating systems

are widely used by amateur players and provide an estimate of the difference in ability

between players, but a rigorous determination of handicap using rating systems is lacking in

1https://universaltennis.com and https://tennislink.usta.com/. Note that the new domain
name of https://universaltennis.com is https://myutr.com/.

2http://tennisabstract.com/ and https://github.com/JeffSackmann.
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the literature.

point-win probabilities

MDP

handicap

(a) MDP approach

ratings difference

regression

handicap

(b) Regression-based approach

Figure 1: High-level picture of the MDP approach and the proposed regression-based
approach. In the MDP approach, the input is point-win probabilites. In the regression
approach, the input is ratings difference. The output of both the approaches is handicap.

The purpose of this paper is to make the MDP-based handicaps (Figure 1a) more

accessible to a typical amateur tennis player. We do so by developing a data-driven,

regression-based approach that leverages the MDP framework, but requires much simpler

input to generate a handicap, namely player ratings (Figure 1b). In particular, we develop

a mapping between the increasingly popular Universal Tennis Rating (UTR) system (UTR,

2015) and the MDP-based handicaps, so that two amateur players can determine an

appropriate handicap for their match based only on their UTRs. As shown in Figure 1, our

method allows amateur players to calculate appropriate handicaps without needing to

estimate explicit point-win probabilities or knowledge of MDPs. Overall, such a

regression-based mapping may be applicable in other sports to improve general uptake and

use of handicapping methods that are based on complex mathematical models.

To develop a mapping between UTR differences and handicaps, we use a sequence of

models and a granular dataset of amateur matches. Our data consists of match records of

many amateur players (match scores and the UTRs of the corresponding players). For

example, a match score could be 6-4, 6-4 where the losing player had a UTR of 8.3 and the

winning player had a UTR of 8.8. First, we extract server-independent game-win
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probabilities from the match scores. Note that server-specific data is generally not available

at the amateur level. Second, we extract server-independent point-win probabilities from

server-independent game-win probabilities using the Markov chain model for a single game

of tennis (Kemeny and Snell, 1960). Third, we develop a mapping from server-independent

point-win probabilities to server-specific point-win probabilities using a Bayesian model

with a logistic link function. Fourth, we use the estimated server-specific point-win

probabilities3 to produce handicaps via the MDP model (Chan and Singal, 2016). These

handicaps are then regressed against UTR differences between pairs of players using

Bayesian linear regression. This final regression model allows us to summarize the mapping

between UTR difference and handicap with an easy-to-remember formula.

Our contributions are as follows. First, using the UTR system and real match data from

over 3,500 matches of amateur players played in 2015, we propose and validate a methodology

for mapping a tennis ratings difference to a handicap computed using the MDP model of

Chan and Singal (2016). Since point-win probabilities are difficult to obtain at the grassroots

level, rigorously mapping a ratings difference to handicap has the potential to facilitate

broader uptake of the handicap method. Second, we develop a novel technique to extract

point-win probabilities from match score data using the classical Markov chain model for a

single game of tennis. Given the lack of point-level data for amateurs, we believe estimation

of point-win probabilities from match score data is important. Our approach is validated

using data from over 4,000 professional matches played in 2015. Third, we show how to use

and extend the Markov chain model for a single tennis game to compute the game, set, or

match-win probability via the linear system of equations corresponding to the absorption

probabilities of the Markov chain. We use this model to efficiently compute the match-

win probability exactly given changing point-win probabilities. In addition, unlike other

approaches in the literature, this approach outputs the match-win probability from each

3One can propose to use the difference in the server-specific point-win probabilities of the two players
(“malus”) instead of the probabilities themselves. However, as shown in Chan and Singal (2016), malus
does not uniquely identify the MDP-based handicap and hence, such an approach would not yield exact
handicaps.
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match state. Fourth, we propose an original model to map server-independent point-win

probability to server-specific point-win probabilities. We train our model on server-specific

point-level data of over 2,500 professional matches played in 2015 and show that our model

fits well to the data.

The paper is organized as follows. In Section 2, we propose and validate our models

that transform match score data to server-specific point-win probabilities. In Section 3, we

present the proposed mapping (UTR difference to handicap) and present the corresponding

results. We provide a discussion of our results in Section 4 and some thoughts on potential

implementation of a handicapping system in practice in Section 5. We conclude in Section

6.

2 Extracting point-win probabilities

In this section, we propose and validate our models that transform the match score data to

server-specific point-win probabilities. Specifically, Section 2.1 discusses the mapping of

match score data to server-independent point-win probabilities and Section 2.2 discusses

the mapping of server-independent point-win probabilities to server-specific point-win

probabilities.

2.1 Server-independent point-win probabilities

First, we describe our model to map match score data to server-independent point-win

probabilities. Second, we validate it using data from 4,131 professional matches played in

2015.

Model To map the match score data to server-independent point-win probabilities

(denoted as p), we first compute the server-independent game-win probabilities (denoted as

q) using the match score data. For each match, we estimate q for a player as the ratio of

the number of games won by that player to the total number of games played in the match.

6



Then, using q, we extract p by using the Markov chain model for a single game of tennis in

reverse. We briefly review the Markov chain model next (Kemeny and Snell, 1960).

The state space S of the Markov chain consists of all possible game scores and two

absorbing states (game-win state W and game-lose state L). In total, there are 17 states.

Deuce is equivalent to 30-30. Advantage-in and advantage-out are equivalent to 40-30 and

30-40, respectively, assuming the player in question is serving; if the player is receiving, the

assignment is reversed. For any state s, let s+ and s− denote the scores that result when the

player wins or loses, respectively, the point at hand. We assume that the point outcomes are

independent and identically distributed (iid) (Klaassen and Magnus, 2001) and denote by p

the transition probability from state s to state s+ and by 1 − p the transition probability

from state s to state s−. By definition, the game-win probability q equals the absorption

probability to state W (starting from state 0-0). Figure 2 displays the Markov chain.

Using the system of equations for absorption probabilities in a Markov chain, one can

solve for q given p (Bertsekas and Tsitsiklis, 2008). Denote by ai the game-win probability

given that the current state is i. Then, as our Markov chain only has transient and absorbing

states, the system of equations is:

aW = 1

aL = 0

as = pas+ + (1− p)as− , ∀s ∈ S \ {W,L}.

After solving the above system of linear equations for as, one can get q (which equals a0−0)

as a function of p:

q = p4
(

15− 4p− 10p2

1− 2p(1− p)

)
. (1)

Figure 3 shows q as a function of p. Since we are interested in mapping q to p, we simply

invert the curve (numerically). Clearly, the mapping is one-to-one, which is desired.
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Figure 2: Markov chain for a single game of tennis with point-win probability p.
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Figure 3: Relation between server-independent game-win probability and server-
independent point-win probability using the Markov chain model for a single game of tennis.

Validation To validate our approach of mapping the match score data to p, we use

point-level data from 4,131 professional matches played in 2015. Throughout this paper,

data for professional men and women players corresponds to ATP and WTA matches data,

respectively, collected from http://www.tennisabstract.com and

https://github.com/JeffSackmann/. We use data from professional matches since

point-level data is typically not available for amateurs. For each match, the data contains

the number of points and the number of games won by both players. We estimate the

server-independent point-win (game-win) probability as the ratio of the number of points

(games) won by a player to the total number of points (games) played in that match.
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Then, using the Markov chain approach described above, we map the estimated

server-independent game-win probability to server-independent point-win probability.

Figure 4 displays the scatter plot with hexagonal binning between the point-win probability

computed using the Markov chain model and the point-win probability estimated from the

point-level data. The Pearson correlation coefficient is 0.97, and the best-fit line through

the origin has a slope of 1.00 (Eisenhauer, 2003), showing the effectiveness of our approach.

2.2 Server-specific point-win probabilities

Next, we describe our model to map server-independent point-win probabilities to server-

specific point-win probabilities. Then, we validate it using the point-level data of 2,565

professional women’s matches played in 2015.

Model Let ps and pr denote the point-win probability of the player when she is serving

and receiving, respectively. To map p to (ps, pr), we use a Bayesian model with a logistic

link function. First, we map p to ps using the Bayesian model and then, we extract pr by

calibrating it such that the match-win probability implied by (ps, pr) is the same as the one

implied by p. For now, we focus on the mapping from p to ps. Later, we will comment on

the calibration of pr.

Our Bayesian model with a logistic link function is as follows. For each match i, we

propose the data likelihood for pis to be a truncated normal (truncated between 0 and 1),

with mean equal to the logistic function eα+βp
i
/(1 + eα+βp

i
) and standard deviation equal to

σ, that is,

pis ∼ N[0,1]

(
eα+βp

i

1 + eα+βpi
, σ

)
, ∀i. (2)

Note that pi and pis denote the server-independent point-win probability and the point-win

probability when serving, respectively, of the weaker player in match i. (The player with

the lower server-independent point-win probability is the weaker player.) We only consider

the data for the weaker player since handicap is given to a weaker player, and hence, we
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Figure 4: Benchmarking server-independent point-win probability computed from the
Markov chain model against the server-independent point-win probability estimated from
the point-level data. Pearson correlation coefficient is 0.97 and regression through the origin
has a slope of 1.00.

only need the map for p < 0.5. The Bayesian parameters for which we want to obtain

the posteriors of are α, β, and σ. To facilitate posterior inference, we assume that pis is

conditionally independent from pjs for all i 6= j given the model parameters α, β, and σ,

and data pi. Since we have a reasonably large amount of data, we give non-informative

11



uniform priors4 to all three parameters and let the inference be data-driven. The truncation

is done to ensure that the output remains between 0 and 1 (since it is a probability). The

intuition behind the logisitc link function comes from classical logistic regression, in which

one models an outcome constrained between [0,1] using a logistic link function. Using the

posterior samples of the Bayesian parameters, one can sample pis. For each pi, we sample N

posterior samples of pis.

Before we discuss the calibration of pr, it will be useful to define two additional Markov

chains corresponding to a tennis match with server-independent point-win probability and

a tennis match with server-specific point-win probabilities, respectively. In the first Markov

chain (tennis match with server-independent point-win probability), the state space consists

of all possible scores (x, y, z), where x is the match score in sets, y is the set score in games,

and z is the game score in points, and two absorbing states (match-win state W and match-

lose state L). For any state s, let s+ and s− denote the scores that result when the player

wins or loses, respectively, the point at hand. The server-independent point-win probability

p is the transition probability from state s to state s+ and 1− p is the transition probability

from state s to state s−. The second Markov chain (tennis match with server-specific point-

win probabilities) is similar to the first Markov chain but the state is augmented to track

who is serving and the transition probabilities are made server-specific. By construction, the

absorption probability to state W equals the match-win probability in both these Markov

chains.

Now, we discuss the calibration of pr. For the n-th (n = 1, . . . , N) posterior sample pi,ns

of match i, we obtain the corresponding pi,nr as follows. First, using pi, we compute the

match-win probability for match i, denoted as ri (via the server-independent Markov chain

model for a best-of-three sets match). Then, we computationally solve for pi,nr such that the

match-win probability implied by (pi,ns , p
i,n
r ) (in the server-specific Markov chain model for a

best-of-three sets match) equals ri.

4In the Bayesian modeling package (Stan) we used to fit this model, this translates to
not specifying any prior in the code, as discussed at https://github.com/stan-dev/stan/wiki/

Prior-Choice-Recommendations.
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Table 1: Summary statistics of the posterior distributions of α, β, and σ.

mean sd 2.5% 50% 97.5%
α -1.87 0.05 -1.96 -1.87 -1.78
β 4.27 0.10 4.07 4.27 4.48
σ 0.05 0.00 0.05 0.05 0.05

Validation To validate our approach of mapping p to (ps, pr), we start with server-specific

point-level data of 2,565 professional women’s matches played in 2015. For each match,

the data contains the number of points won by each player conditioned on the server. We

estimate the server-specific and server-independent point-win probabilities simply by taking

the corresponding ratios (“true” values). Then, using our Bayesian model (for ps) and the

calibration approach (for pr) described above, we map the estimated server-independent

point-win probabilities to server-specific point-win probabilities. To fit the Bayesian model,

we use Stan (Carpenter et al., 2016). We obtain posterior samples from 4 chains, each

with 500 samples (we discard the first 250 samples for warm-up). The R̂ values of all the

parameters was less than 1.02, indicating convergence to the posterior (Gelman et al., 2014).

The calibration of pr is done computationally. First, we compute the best-of-three sets

match-win probability for all (ps, pr) ∈ {0.001, 0.002, . . . , 1} × {0.001, 0.002, . . . , 1}. Then,

for a given match-win probability and ps, we extract the corresponding pr. Figure 11 in

Appendix A displays the posterior distributions of the Bayesian parameters and Table 1

summarizes the posterior distributions. Figure 5 presents how well the model fits to the

data. The 95% posterior intervals cover almost all the data, indicating a good fit.

3 Mapping UTR difference to handicap

In this section, we map UTR difference (denoted by d) between a given pair of amateur

players to a handicap value (denoted by h) using a linear model of the form h = γd. We do

not include an intercept term in our linear model to enforce a handicap of zero for a ratings

difference of zero. Our model uses the mapping from match score data to server-specific
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Figure 5: Predictions for ps and pr against the “true” values. The lighter color denotes the
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point-win probabilities developed in Section 2. First, we describe our methodology (Section

3.1) and then, we present the corresponding results on a dataset consisting of 3,686 amateur

matches played in 2015 (Section 3.2). Finally, observing our mapping is noisy, we discuss a

denoising approach in Section 3.3.

3.1 Methodology

We start with the match records of the amateurs (match score and the UTR difference di for

each match i). By using the models and the posterior samples of the Bayesian parameters
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(α, β, and σ) from Section 2, we convert the match scores to server-specific point-win

probabilities (pis, p
i
r). To account for the uncertainty in the mapping from p to (ps, pr), we

use N = 100 posterior samples of (pis, p
i
r) for each i instead of using their point estimates (for

each posterior sample n, we use a different posterior sample of α, β, and σ). Using the MDP

model for a best-of-three sets match with a tie-break in all sets, we map each posterior sample

(pi,ns , p
i,n
r ) to the “true” linearly interpolated handicap value hi,n∗ . The linear interpolation

is done to ensure match-win probability given the handicap equals 0.5. Then, we perform a

Bayesian linear regression between hi,n∗ and di as follows. We propose the data likelihood to

be normally distributed, with mean equal to the linear function γdi and standard deviation

equal to τ , that is,

hi,n ∼ N
(
γdi, τ

)
, ∀i ∀n. (3)

The Bayesian parameters we want to obtain the posteriors of are γ and τ . To facilitate

Bayesian inference, we assume conditional independence between all hi,n given the model

parameters γ and τ , and the ratings difference data di. Since we have a reasonably large

amount of data, we give non-informative uniform priors priors to both the parameters and

let the inference be data-driven. The model is trained using the hi,n∗ and di data. Figure 6

summarizes the overall process we use to map a match score to a corresponding handicap.

3.2 Results

Before presenting our numerical results, we briefly discuss the data. We use match data

from 2015 for 250 amateur players (125 male, 125 female; 3,686 matches) with UTR ratings

between 7.00 and 9.00 (roughly 4.0 to 5.0 on the NTRP rating scale) and a ratings

reliability of 100%. The rating reliability is a proprietary measure of the UTR system that

quantifies a level of confidence of the rating. Data was gathered from

http://www.universaltennis.com5. In all 3,686 matches, both players are rated between

UTR 7.00 and 9.00. Moreover, the ratings are uniformly spread over the range [7.00, 9.00].

5Requires an account costing $4.95 per month to see player ratings to two decimal places
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match score

server-independent point-win probability p

server-specific point-win probabilities (ps, pr)

handicap h

Markov chain in reverse (Section 2.1)

Bayesian model with logistic link (Section 2.2)

MDP model of Chan and Singal (2016)

Figure 6: Mapping a match score to an appropriate handicap.

Finally, note that none of the matches were incomplete or a bagel (that is, 6-0, 6-0). We

discuss the results in two parts. First, we discuss the results for combined data (data for

both men and women) and then we discuss the results based on men’s and women’s data

separately.

Results for combined data As discussed in Section 3.1, for each match, we generate N =

100 posterior samples of server-specific point-win probabilities, and for each posterior sample,

we compute a handicap. Accordingly, for each of the 3,686 matches, we end up with 100

handicap values (expressing the uncertainty in the ratings difference to handicap mapping).

Figure 7 displays the scatter plot (with hexagonal binning) showing the relationship between

these 368,600 pairs of values. Expected handicap seems to increase linearly with the ratings

difference, supporting our choice of a linear function for the mean in Equation (3).

We fit the Bayesian linear regression model (Equation (3)) using Stan (4 chains with

1000 samples per chain; first 500 samples were discarded for warm-up). All the R̂ values

were less than 1.02, indicating convergence. The results of the fitted model are summarized

in Table 2 and Figure 12 (Appendix A). Table 2 summarizes the posterior distributions of

the Bayesian parameters γ and τ , and Figure 12 shows a visualization of their posterior
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Table 2: Summary statistics of the posterior distributions of γ and τ when fitted to the
data for both men and women (3686 matces).

mean sd 2.5% 50% 97.5%
γ 12.51 0.03 12.46 12.51 12.57
τ 11.59 0.01 11.56 11.59 11.62

distributions. The expected value of γ equals 12.51, suggesting a handicap of 12.51 to be

awarded to the weaker player for every one-point dfferential in UTR:

h = 12.51d. (4)

We acknowledge that the expected value of τ is high, which is due to the fact that proportion

of games won in a specific match is hard to predict and the ratings difference can only explain

so much variation. Consequently, in Section 3.3, we present a method to reduce the noise.

However, as seen in Figure 7, note that most of the data points lie close to the best-fit line.

Results for men’s and women’s data separately One of the purported benefits of the

UTR system is that it uses the same scale to rate men and women (UTR, 2015), which is why

we used both men’s and women’s matches together in the previous section. For comparison,

we repeated the above process using the men’s and women’s data separately. The results are

very similar to the results obtained for the combined data. The scatter plots with hexagonal

binning are displayed in Figure 8, and the posterior distributions of γ and τ are summarized

in Table 3. The expected value of γ for men (12.37) is close to that for women (12.61). This

aligns with the claim the UTR scale is sex-independent. For conciseness, we do not show

the posterior distributions of γ and τ but note they are unimodal and symmetric with low

standard deviation (similar to the posterior distributions for the combined data shown in

Figure 12).
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Figure 7: Scatter plot of handicap against ratings difference using hexagonal binning for
the combined data.

3.3 Reducing noise in the data

As mentioned in Section 3.2, the proportion of games won in a specific match is hard to

predict using UTR difference as the only predictor. In this section, we present an averaging

method to reduce the noise in the mapping from UTR difference to handicap, inspired

by the law of large numbers. Intuitively, predicting the proportion of games won in one
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Figure 8: Scatter plots of handicap against ratings difference using hexagonal binning for
the data corresponding to men and women, respectively.

Table 3: Summary statistics of the posterior distributions of γ and τ for men (subscript
m) and women (subscript w).

mean sd 2.5% 50% 97.5%
γm 12.37 0.04 12.29 12.37 12.44
τm 11.66 0.02 11.62 11.66 11.71
γw 12.61 0.03 12.54 12.61 12.67
τw 11.54 0.02 11.51 11.54 11.58

match is more challenging than predicting the same proportion over many matches played

by that player. More formally, consider the following idealized setup. Suppose a player

plays n matches and let qi be the random variable denoting the proportion of games won

by the player in match i for i = 1, . . . , n. Suppose qi is independent of qj (given the ratings

differences for matches i and j) for all i 6= j, and σ2
q < ∞ denotes the variance of qi for all

i. Then for q̄ := 1
n

∑n
i=1 qi,

Var(q̄) = Var

(
1

n

n∑
i=1

qi

)
=

1

n2

n∑
i=1

σ2
q =

σ2
q

n
.

19



Hence, the variance of q̄ is less than the variance of each individual qi by a factor of n,

suggesting that the average proportion of games won should be easier to predict.

Accordingly, for each of the 250 amateur players in our dataset, we calculate an average

server-independent game-win probability over all matches played by that player. The average

game-win probability is calculated as total games won divided by total games played across

all matches. We then map the average server-independent game-win probability to the

average server-specific point-win probabilities using the models in Section 2. Similar to

before, we use N = 100 posterior samples of average server-specific point-win probabilities,

which are mapped to handicap values via the MDP model. For each player, we also compute

an average opponent rating by taking the weighted average (weighted by total games played

in each match) of the opponents’ ratings. Thus, for each player, we have that player’s rating,

his/her average opponent rating, and 100 posterior samples of the corresponding handicap.

We use this data to train the Bayesian linear regression model (Equation (3)).

We fit the Bayesian model using Stan (4 chains with 1000 samples per chain; first 500

samples were discarded for warm-up). All the R̂ values were less than 1.02, indicating

convergence. Figures 9 and 10 show the ratings difference versus handicap for the players

considered and Tables 4 and 5 summarize the posterior distributions of γ and τ . Note that

we only included players who played at least five matches. We also removed one women’s

player who was an obvious outlier, for example, with ratings difference of approximately

0.32 but an average handicap close to −11 (she lost all her matches, with some being quite

lop-sided, and all were against lower ranked players). In total, we used 235 players.

The noise is visibly less in Figures 9 and 10 as compared to Figures 7 and 8. The mean

value of τ for averaged data is around 3 (Tables 4 and 5), compared to a value of over 11 for

non-averaged data (Tables 2 and 3), which aligns with our mathematical intuition presented

earlier.

For the combined data (Table 4), the expected value of γ equals 10.39, which is around

2 points lower than the value obtained in non-averaged data (Table 2). Similar to before,
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Figure 9: Scatter plot of handicap against ratings difference using hexagonal binning for
the combined averaged data.

the expected value of γ is slightly lower for men (10.13) as compared to the value for women

(10.67). The standard deviation parameter τ has most of its posterior mass below 3, implying

a coefficient of variation of less than 30%. Results for the sex-specific data are similar.
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Figure 10: Scatter plots of handicap against ratings difference using hexagonal binning for
the averaged data corresponding to men and women, respectively.

Table 4: Summary statistics of the posterior distributions of γ and τ when fitted to the
averaged data for both men and women (3686 matces).

mean sd 2.5% 50% 97.5%
γ 10.39 0.04 10.32 10.39 10.47
τ 2.95 0.01 2.92 2.95 2.98

4 Discussion

Equation (1) has been derived in the literature previously using different methods (Carter Jr

and Crews, 1974; Fischer, 1980; Liu, 2001). However, we believe our approach has several

advantages. First, our approach generalizes elegantly to the case where one wishes to map

p to the set-win probability or the match-win probability; all that is needed is to define

the corresponding Markov chain. In Section 2.2, we map p to the match-win probability

using this approach. Second, our approach is flexible enough to accommodate state-specific

point-win probabilities. That is, p can be replaced by ps, where ps denotes the point-win

probability in state s. With this approach, we can relax the iid assumption or incorporate

different point-win probabilities on serve and return when modeling the outcome of a set or
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Table 5: Summary statistics of the posterior distributions of γ and τ for men (subscript
m) and women (subscript w) when fitted to the averaged data.

mean sd 2.5% 50% 97.5%
γm 10.13 0.06 10.02 10.13 10.25
τm 3.24 0.02 3.20 3.24 3.28
γw 10.67 0.05 10.58 10.67 10.76
τw 2.65 0.02 2.61 2.65 2.68

a match. Indeed, in Section 2.2, we make the point-win probability server-specific and use

this approach to compute the match-win probability. Previous approaches to accommodate

non-constant point-win probabilities have relied on Monte Carlo simulation (Newton and

Aslam, 2009), whereas our approach is exact. Third, though we do not use this property in

the current paper, it is worth mentioning that solving the absorption probability equations

gives the exact match-win probability from each underlying state in the match. Note that

there have been attempts to do so in the literature (Klaassen and Magnus, 2003; O’Malley,

2008). Klaassen and Magnus (2003) do not disclose their methodology, whereas O’Malley

(2008) only compute match-win probabilities from a few states in the match. Our approach

makes it simple to compute match-win probabilities from all states in the match by solving

just one (sparse) system of linear equations.

Next, we discuss the reason we only use data from women’s matches in validating the

model presented in Section 2.2. In Section 3, we map the server-independent point-win

probabilities to server-specific point-win probabilities for amateurs using the posterior

samples of the Bayesian parameters (α, β, and σ) obtained from this validation. Since we

do not have point-level data for amateurs, we can only use the data from professional

matches for validation. In addition, we believe amateur players have lower point-win

probabilities when serving than professional men’s players do. As women professional

players have historically won a lower fraction of points when serving compared to men

(Klaassen and Magnus, 2001), we believe that data to be more representative. Moreover,

the UTR of the top 100 women was lower (and hence, closer to the UTR of amateurs) than

the UTR of the top 100 men.
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Note that all our analysis on amateurs was done for players rated between UTR 7 and

9. We suspect a linear relationship between handicap and ratings difference will hold within

a small range, but in general the handicap may depend on both the ratings difference as

well as the absolute values of the ratings. Of course, the handicap between two players with

a huge ratings difference is unlikely to be useful in practice because their skill difference

will be too large to enjoy a competitive match anyway. We also note that in principle the

handicap should be surface-specific, though at the amateur level we suspect most matches

are played on hard courts. Thus, at the amateur level, we believe our handicap-ratings

difference mapping is most applicable for hard courts. Finally, note that the player ratings

we used correspond to the date when we downloaded the data. Ideally, we would have the

ratings on the dates the matches were played, but this data was unavailable.

5 Implementation considerations

Before concluding, we briefly discuss ways in which a handicap system proposed by Chan

and Singal (2016) could be implemented in practice by a tennis club or larger governing

body. One way would be to track point-level data (or at least match scores) so that point-

win probabilities between players could be computed. Depending on whether the point-win

probabilities are server-specific, the appropriate MDP model could then be used to compute

handicaps. To improve accessibility, the MDP model could be packaged as a black box,

simply requiring parameters such as probabilities and length of match as input and then

generating handicaps as output. However, we acknowledge that there are practical issues

related to point-win probability estimation that need to be resolved before such an approach

can be implemented. For example, questions such as what data history to use, what to do

for players with few matches played, etc. need to be addressed. Such issues might make the

MDP approach hard to implement in practice.

An alternative, possibly simpler method would be for the organization to adopt a rating

system and use our regression approach presented in Section 3 to directly map ratings
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difference to handicap. This approach avoids the need to track point-level data but does

require adoption of a granular rating system, which could result in additional costs to the

organization or players. A potential benefit of such an approach is that decisions regarding

the match history used to determine the rating, for example, which influences the history

of data used to calculate point-win probabilities, become endogenized within the rating

system. Note that if a ratings system is used, then a question arises as to how to update

ratings (if at all) in matches where handicapping is used. In principle, if the handicapping

is perfect, then the ratings of players in a handicapped match should be updated based on

the outcome as if the match was between two equally competitive players.

A valid critique of implementing the proposed approach in practice is that it would yield

a handicap with a high amount of uncertainty for individual matches (as seen in Section

3.2). The underlying reason for this undesirably high level of uncertainty is that the ratings

difference can only explain a limited variation in the realized performance of the tennis

players on a given day. Consequently, one should view the parameter γ as the expected

increase in handicap per unit difference in ratings. On a given day, due to the variance in

the performance of the players (and the inability of the ratings difference to explain such

variance), the realized handicap might deviate from the expected handicap. However, on

average, the expected handicap is correct. Such a critique raises the following research

question: what factors does one need to account for to explain the variance in tennis match

outcomes to a good extent? If one can find such a set of factors, then one can estimate the

handicap as a function of these factors (using the methodology developed in this paper).

However, the more factors one adds to explain the variance, the more challenging it becomes

to keep the handicap equation “easy-to-remember”.

Adding more to the above point, we expect our one-factor model (the one factor being the

ratings difference) to be a rough guidance for individual players, who can adjust the exact

amounts given over time by actually playing with handicap and observing what happens.

Perhaps a player might need to give less / more to her opponent than our model suggests
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because of other factors we have not accounted for, e.g., handedness (right or left), surface

of play (clay or grass or hard), etc.

6 Conclusion

In this paper, we developed a Bayesian regression-based approach to map tennis ratings

differences to a handicap determined from a Markov Decision Process. We used data from

the Universal Tennis Rating system as the basis for the analysis. For a three-set match, we

found that a one point difference in UTR between two players translated to 10-12 handicap

points. Using a rating system instead of the point-win probabilities required by the MDP

model for computing handicaps allows amateur players to calculate handicaps easily. Our

overall framework, while rooted in tennis, may be applicable in other sports where

handicap calculations are based on complex models but handicaps themselves may be

directly estimated from a sport-specific ratings system.
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Figure 11: Posterior distributions of the Bayesian parameters α, β, and σ corresponding to
the Bayesian model (Equation (2)). Red area denotes the 80% posterior interval and black
curve denotes the 95% posterior interval. The distributions are unimodal and symmetric
with low standard deviations.
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Figure 12: Posterior distributions of the Bayesian parameters γ and τ corresponding
to the Bayesian linear regression model (Equation (3)) when fitted to the combined data
(3686 matces). Red area denotes the 80% posterior interval and black curve denotes the
95% posterior interval. The distributions are unimodal and symmetric with low standard
deviations.
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