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Abstract. Modeling students’ knowledge is a fundamental part of intelligent tutoring systems.
One of the most popular methods for estimating students’ knowledge is Corbett and Anderson’s
[6] Bayesian Knowledge Tracing model. The model uses four parameters per skill, fit using
student performance data, to relate performance to learning. Beck [1] showed that existing
methods for determining these parameters are prone to the Identifiability Problem: the same
performance data can be fit equally well by different parameters, with different implications on
system behavior. Beck offered a solution based on Dirichlet Priors [1], but, we show this solu-
tion is vulnerable to a different problem, Model Degeneracy, where parameter values violate
the model’s conceptual meaning (such as a student being more likely to get a correct answer if
he/she does not know a skill than if he/she does). We offer a new method for instantiating
Bayesian Knowledge Tracing, using machine learning to make contextual estimations of the
probability that a student has guessed or slipped. This method is no more prone to problems
with Identifiability than Beck’s solution, has less Model Degeneracy than competing approach-
es, and fits student performance data better than prior methods. Thus, it allows for more accu-
rate and reliable student modeling in ITSs that use knowledge tracing.

1 Introduction

Modeling students’ knowledge is a fundamental part of intelligent tutoring systems.
Key aspects of modern intelligent tutoring systems, such as deciding which problems
to give students [cf. 6], are reliant upon accurately estimating each student’s know-
ledge state at any given time. Giving students appropriate amounts of practice on each
skill promotes complete and efficient learning [4]; both over-practice and under-
practice can be avoided through having student knowledge models that are as accurate
and dependable as possible.

In recent years, Corbett & Anderson’s Bayesian Knowledge Tracing model [6]
has been used to model student knowledge in a variety of systems, including tutors for
mathematics [9], computer programming [6], and reading skill [2], and is statistically
equivalent to the two-node dynamic Bayesian network used in many other learning
environments [10]. Bayesian Knowledge Tracing keeps a running assessment of the
probability that a student currently knows each skill, continually updating that esti-
mate based on student behavior. Cognitive Mastery Learning built on top of Bayesian
Knowledge Tracing has been shown to significantly improve student learning [6].

However, a recent paper by Beck and Chang [2] gives evidence that current me-
thods for developing Bayesian Knowledge Tracing models for specific skills are vul-
nerable to a statistical problem, the identifiability problem, where models with equal-



ly good statistical fit to performance data may make very different predictions about a
student’s knowledge state, and correspondingly may assign very different numbers of
problems to a student. To address this problem, Beck and Chang [2] proposed con-
straining model parameters by finding a prior probability across all skills. However,
as we will show in this paper, Beck and Chang’s solution is vulnerable to a different
statistical problem, which we term model degeneracy, where it is possible to obtain
model parameters which lead to paradoxical behavior, such as the probability the
student knows a skill dropping after three correct answers in a row. In this paper, we
propose both theoretical and empirical definitions of this problem.

These two problems, at their core, arise from how these models handle uncertain-
ty — in particular, how these models address the possibility of a student slipping
(knowing a skill, but giving a wrong answer) or guessing (giving a correct answer,
despite not knowing the skill). Within this paper, we propose a new way to assess
uncertainty within knowledge tracing, using machine learning to make contextual
estimations of the probability that a student has guessed or slipped. We show that this
method leads to a significantly closer fit between models and student performance
than prior methods, has lower model degeneracy than these approaches, and that there
is reason to believe that this method will not suffer from the identifiability problem.

1.1 Bayesian Knowledge Tracing

Corbett and Anderson’s Bayesian Knowledge Tracing model [6] computes the proba-
bility that a student knows a given skill at a given time, combining data on the stu-
dent’s performance up to that point with four model parameters. In the model’s ca-
nonical form, each problem step in the tutor is associated with a single cognitive skill.
The model assumes that at any given opportunity to demonstrate a skill, a student
either knows the skill or does not know the skill, and may either give a correct or
incorrect response (help requests are treated as incorrect by the model). A student
who does not know a skill generally will give an incorrect response, but there is a
certain probability (called G, the Guess parameter) that the student will give a correct
response. Correspondingly, a student who does know a skill generally will give a
correct response, but there is a certain probability (called S, the Slip parameter) that
the student will give an incorrect response. At the beginning of using the tutor, each
student has an initial probability (Lo) of knowing each skill, and at each opportunity
to practice a skill the student does not know, the student has a certain probability (T)
of learning the skill, regardless of whether their answer is correct.

The system’s estimate that a student knows a skill is continually updated, every
time the student gives a first response (correct, incorrect, or a help request) to a prob-
lem step. First, the system re-calculates the probability that the student knew the skill
before the response, using the evidence from the response (help requests are treated as
evidence that the student does not know the skill), using the first two equations of
Figure 1. Then, the system accounts for the possibility that the student learned the
skill during the problem step, using the third equation of Figure 1. Within the Cogni-
tive Mastery algorithm used in most Cognitive Tutors [6], the student is assigned
additional problems on skills that the system does not yet believe that the student has
learned (e.g. skills that the student has less than 95% probability of knowing).



P(Ly_1) * (1= P(S))
P(Lyp-1) * (1= P(S)) + (1 — P(Lp-1)) * (P(G))

P(L,_4|Correct,) =

P(Ln_4) * P(S)
P(Lp-1) * P(S) + (1 = P(Lp-1)) * (1 = P(G))

P(L,,_4|Incorrect,) =

P(LylAction,) = P(L,_;|Action,) + ((1 — P(Ln_y)Action,)) * P(T))

Figure 1. The equations used to predict student knowledge from behavior in Bayesian
Knowledge Tracing.

The four parameters in Bayesian Knowledge Tracing are fit, for each skill, using
data from students using that skill within an intelligent tutor. The goal during parame-
ter fitting is to figure out which combination of parameters best predicts the pattern of
correct and incorrect responses in the existing data, and then to use that model to
make predictions about new students’ knowledge as they use the tutor.

Challenges in Estimating Parameters for Bayesian Knowledge Tracing Models

Recently, Beck and Chang [2] showed that common methods of fitting Bayesian
Knowledge Tracing models suffer from the identifiability problem; different combi-
nations of the four parameters can fit the same data equivalently well, but yield very
different estimates of the probability that the student knows the skill at any given
time. This is of practical importance, as different model parameters may require very
different amounts of practice before inferring that the student has reached mastery.

A second challenge for fitting models in Bayesian Knowledge Tracing approach
is what we term model degeneracy. The conceptual idea behind using Bayesian
Knowledge Tracing to model student knowledge in intelligent tutors is that knowing a
skill generally leads to correct performance, and that correct performance implies that
a student knows the relevant skill; hence, by looking at whether a student’s perfor-
mance is correct, we can infer whether they know the skill. A model deviates from
this theoretical conception, and thus is theoretically degenerate, when its guess (G)
parameter or slip (S) parameter is greater than 0.5. A slip parameter over 0.5 signifies
that a student who knows a skill is more likely to get a wrong answer than a correct
answer; similarly, a guess parameter over 0.5 implies that a student who does not
know a skill is more likely to get a correct answer than a wrong answer.

It is also possible to conceive of empirical tests that show that a model violates
the linkage between knowledge and performance; we term a model that fails such a
test empirically degenerate. We propose two tests for empirical degeneracy. First, if a
student’s first N actions in the tutor are correct, the model’s estimated probability that
the student knows the skill should be higher than before these N actions. Second, if
the student makes a large number M of correct responses in a row, the model should
assess that the student has mastered the skill. The exact values of N and M are arbi-
trary — within this paper, we choose N=3 and M=10 as reasonable cut-off points for
the two tests. In other words, if a student’s first three actions in the tutor are all cor-
rect, but the model’s estimated probability that the student knows the skill is lower
than before these three actions, we say that the model failed the first test of empirical



degeneracy. If a student gets a skill correct ten times in a row without reaching skill
mastery, we say that the model failed the second test of empirical degeneracy.

Three Prior Approaches to Model Fitting in Bayesian Knowledge Tracing

The simplest baseline approach to fitting a Bayesian Knowledge Tracing model is to
allow each of the four parameters to take on any value between 0 and 1. We fit para-
meters for this approach using Bayes Net Toolkit-Student Modeling (BNT-SM) [1].

An alternate approach is to bound the guess and slip parameters (the bounded
guess and slip approach). Generally, in existing tutors, the guess parameter is
bounded to be between 0 and 0.3, and the slip parameter is bounded to be between 0
and 0.1, based on the most common number of candidate actions, and pragmatically,
in order to err in the direction of requiring less practice for mastery. Though this ap-
proach was not explicitly designed to prevent model degeneracy, it makes theoretical
degeneracy impossible. We fit parameters for this approach using Microsoft Excel.

A third way to fit a Bayesian Knowledge Tracing model is the Dirichlet Priors
approach proposed in [1, 2]. A Gaussian probability distribution is found for how
often different values of each parameter are seen across skills, and then the parame-
ters of all skills are constrained by these prior probabilities. This approach biases all
skills towards parameters that fit the whole data set well, with skills that have less
data biased more strongly than skills that have large amounts of data. The prior prob-
abilities lead to a single model always being the best-fitting model among the space of
potential models, for each skill. We fit parameters for this approach using BNT-SM.

2 Analyzing Degeneracy in Previous Approaches

Prior work has already shown that the baseline and the bounded guess-and-slip ap-
proaches are vulnerable to the identifiability problem; the Dirichlet priors approach
gives a single prediction, offering a response to the identifiability problem [1, 2]. In
this section, we use data from the Middle School Tutor [9], an intelligent tutor which
covers a wide span of mathematical topics covered by 6™-8" grade students (approx-
imately 12-14 years old), to analyze whether these three model-fitting approaches are
prone to problems with model degeneracy, and examine their accuracy. 232 students
used the Middle School Tutor during the course of the 2002-2003 school year, mak-
ing 581,785 transactions (either entering an answer or requesting a hint) on 171,987
problem steps covering 253 skills in 37 tutor lessons/units. 290,698 additional trans-
actions were not included in either these totals or in our analyses, because they were
not labeled with skills, information needed to apply Bayesian Knowledge Tracing.
Table 1 shows the level of theoretical and empirical model degeneracy for each
of the three approaches. 76% of skills in the Dirichlet priors model and 75% of skills
in the baseline model were theoretically degenerate; as a direct consequence of
bounding guess and slip, 0% of skills in the bounded guess and slip model were theo-
retically degenerate. The difference between the bounded guess and slip model and
each of the other two models was statistically significant, using the test of the signi-
ficance of the difference between correlated proportions with McNemar’s standard



Table 1. The number (proportion) of degenerate skills in each model.

Modeling Theoretically Skills where a student who Skills where a student cannot
Approach Degenerate gets first three actions correct | reach mastery with 10 correct
Skills has lower P(L) afterwards answers in a row (Empirical
(Empirical degeneracy test 1) degeneracy test 2)
Baseline 189 (75%) 4 (2%) 57 (23%)
Bounded 0 (0%) 0 (0%) 12 (5%)
Guess and Slip
Dirichlet 192 (76%) 4 (2%) 57 (23%)
Priors

error estimate [7], Z=13.86, Z=13.75, two-tailed p<0.0001. The Dirichlet priors and
baseline model were not significantly different from one another, Z=0.83, two-tailed
p=0.41. Across models, failures of the first test of empirical degeneracy were rare;
only 2% of the skills in the Dirichlet priors and baseline models failed this test, and
0% of skills in the bounded guess and slip model failed. However, 23% of the skills in
the Dirichlet priors and baseline models failed the second test of empirical degenera-
cy. Fewer (5%) of the skills in the bounded guess and slip model failed the second test
of empirical degeneracy, in both cases Z=5.58, two-tailed p<0.0001.

3 Contextual Estimation of Guess and Slip

In this section, we will discuss a new approach to Bayesian Knowledge tracing, which
removes one of the framework’s assumptions, to address these modeling issues. In all
three prior approaches, each of the four parameters is held constant across contexts,
for any given skill. (One other prior approach changed parameter values depending on
whether help was used or not [5], and anticipates our approach, although that ap-
proach’s contextualization was far simpler than what is proposed here).

In the new approach we propose, we contextually estimate whether each individ-
ual student response is a guess or a slip, rather than using fixed guess and slip proba-
bility estimates across all situations. In this section, we describe our method for pre-
dicting whether individual actions are guesses or slips. We will then discuss how
these predictions are integrated into a new approach to Bayesian Knowledge Tracing.
Our method is as follows:

e We take a set of correct responses in the log files. For each correct student
response, we apply a Bayesian analysis to estimate the probability the stu-
dent knew the applicable rule or guessed, based on the student’s performance
on successive opportunities to apply the rule. A similar procedure is used to
assess whether each non-correct response stemmed from the student not
knowing the skill, or from knowing the skill but slipping.

e We use machine learning to identify features of an action that characterize
whether that action was a guess or a slip. These features do not use any in-
formation from subsequent actions; hence, they can be used to predict
whether an action is a guess or a slip immediately after it occurs.



¢ In modeling student problem-solving, we use the machine learned models to
dynamically estimate the probability that a response is a guess or a slip. We
employ these dynamic performance estimates in the Bayesian Knowledge
Tracing algorithm to update the probability that the student knows the skill.

The first step is to label a set of existing student actions with the probability that
these actions involve guessing or slipping, to serve as inputs to a machine learning
algorithm. The set of student actions to be labeled is drawn from the set of first ac-
tions on the 64 skills for which the Dirichlet Priors model is not theoretically degene-
rate. We chose to use skills that are not theoretical degenerate to avoid training our
models to include model degeneracy, and used Dirichlet Priors in order to avoid creat-
ing an equivalence class of potential models (i.e. the identifiability problem). We then
use estimates from this model in order to create the contextual guess and slip models.

We label student actions (N) with the probability that they represented a guess or
slip, using information about the two actions afterwards (N+1, N+2). Using informa-
tion about future actions gives considerable information about the true probability that
a student’s action at time N was due to knowing the skill — if actions N, N+1, and
N+2 are all correct, it is relatively unlikely that N’s correctness was due to guessing.

The probability that the student guessed or slipped at time N (i.e., the action at
time N, which we term A,)) is directly obtainable from the probability that the student
knew the skill at time N, given knowledge about the action’s correctness:

P(An is guess [ An is correct) = 1- P(Ln) P(Anis slip [ An is incorrect) = P(Ln)

We can calculate the probability that the student knew the skill at time N, given
information about the actions at time N+1 and N+2 (which we term A.1.,). We do so
by using Bayes’ Rule to combine 1) the probability of the actions at time N+1 and
N+2 (A.1+2), given the probability that the student knew the skill at time N (L,); 2) the
prior probability that the student knew the skill at time N (L,); and 3) the initial prob-
ability of the actions at time N+1 and N+2 (A.1.2).

In equation form, this gives: P(L,| Ai142) = w
The probability of the actions at time N+1 and N+2 is computed as
P(Ay142) = P(Ly) * P(As142l L) + (1= P(Lp)) * P(Ay142l ~Ly)

The probability of the actions at time N+1 and N+2, in the case that the student
knew the skill at time N (L), is a function of the probability that the student guessed
or slipped at each opportunity to practice the skill. C denotes a correct action; ~C
denotes an incorrect action (an error or help request).

P(A+1+2 =C,C| Ln) = P(~5)2 P(A+1+2 =C,~C| Ln) = P(S)P(“'S)
P(A4142 = ~C,Cl Ly) = P(S)P(~S) P(At142 = ~C,~C| Ly) = P(S)?

The probability of the actions at time N+1 and N+2, in the case that the student
did not know the skill at time N (L), is a function of the probability that the student



learned the skill between actions N and N+1, the probability that the student learned
the skill between actions N+1 and N+2, and the probability of a guess or slip.

P(At142 = C,C| ~Ly) = P(T)P(~S)? + P(~T)P(T)P(G)P(~S) + P(~T)?P(G)?
P(Ay142 = C,~C| ~Ly) = P(T)P(~S)P(S) + P(~T)P(T)P(G)(P(S)) + P(~T)?P(G)P(~G)
P(At142 = ~C,C| ~Ly) = P(T)P(S)P(~S) + P(~T)P(T)P(~G)P(~S) + P(~T)?P(~G)P(G))
P(Ay145 = ~C,~C| ~Ly) = P(T)P(S)? + P(~T)P(T)P(~G)P(S) + P(~T)?P(~G)?

Once the actions are labeled with estimates of whether they were guesses or slips,
we use these labels to create machine-learned models that can accurately predict at
run-time whether a given action is a guess or slip. The original labels were developed
using future knowledge, but the machine-learned models predict guessing and slip-
ping using only data about the action itself (no future data).

For each action, we distilled a set of 23 features describing that action; the fea-
tures used in the final models are shown in Table 2. We then used Linear Regression,
within Weka [11], to create 2 models predicting the probability of guessing or slip-
ping. Linear Regression gave slightly better performance under 10-fold cross-
validation than a Support Vector Machine or Multilayer Perceptron — r=0.44 within
the guess model, and r=0.38 within the slip model.

Then, when we have models that can predict the probability that any action was a
guess or a slip, we can label the first action of each opportunity to use a skill with
predictions as to how likely it is to be a guess and slip. Then, parameter values can be
fit for P(T) and P(L,), for each skill, using curve-fitting. At this point, we have a
model that makes predictions about student knowledge each time they attempt to use
a skill for the first time on a given problem step. This model also involves considera-
bly fewer parameters than previous models — whereas all three prior models had ex-
actly 4 parameters per skill, this model has 2 parameters fit per skill, and 27 parame-
ters fit across all skills, for an average of 2.11 parameters per skill.

Table 2. The machine learned models of guessing (left) and slipping (right). In the unusual case
where output values fall outside the range {0,1}, they are bounded to 0 or 1.

Feature P(G)= P(S)=
Action is a help request + 0.066
Percent of past opportunities where student has requested help on this skill -0.047
Percent of past opportunities where student has made errors on this skill - 0.004
Response is a string +0.049 | -0.02
Time taken +0.002 | -0.0002
Time taken (SD faster (-) or slower (+) than average across all students) -0.024 +0.01
Time taken in last 5 actions (calculated in SD off average across students) | - 0.003 +0.002
Total number of times student has gotten this skill wrong on the first try -0.002 +0.0002
Total time taken on this skill so far (across all problems) +0.001 | -0.001
Number of last 5 actions which involved same interface element +0.014 | -0.026
Number of last 8 actions which involved help request +0.042 | -0.019
Number of last 5 actions which were wrong +0.036 | -0.033
At least 3 of last 5 actions involved same interface element & were wrong | +0.067 | +0.013
Number of opportunities student has already had to use current skill +0.003 | -0.001
Constant term +0.066 | +0.442




4 Evaluating the Contextual Guess and Slip Model

Are models created by the contextual guess and slip method identifiable? The initial
skill models used to create the labels for the linear regression process were generated
by the Dirichlet priors method, and thus represent an optimal and unique parameter
set for that method [2]. Linear Regression itself has a single optimal solution [3].
Finally, with only two parameters to fit, the contextual guess and slip model of each
skill has a unique best solution for each pair of parameters P(T) and P(L,). Hence,
since each step in the model fitting process has a single optimal solution, the contex-
tual guess and slip method is as identifiable as the Dirichlet Priors method.

What about model degeneracy? We can test for the two types of empirical model
degeneracy using the student log data. A model fails the first test of empirical model
degeneracy when a student gets the first three actions correct on a specific skill but
then has lower P(L) afterwards. There were 2558 cases in the data where a student got
the first three actions correct on a specific skill; in only 1 of the 2558 cases did the
student have a lower P(L) afterwards — and, in that case, the student got the skill in-
correct on the next 7 opportunities. The proportion of failure of the first test (1/2558 =
0.0004%) is significantly lower than the proportion of failure of this test in the base-
line or Dirichlet Priors models, in each case t(251)= -2.00, two-tailed p=0.05, for a
paired t-test (comparing model performance within each skill), but is not significantly
higher than the proportion of failure of the first test for the bounded model, t(251)=
1.00, two-tailed p=0.32.

A model fails the second test of empirical degeneracy if a student gets ten actions
correct in a row but does not reach mastery. There were 758 cases in the data where a
student got the first ten actions correct on a specific skill; in 13 of the 758 cases the
student afterwards had a P(L) below mastery (0.95). This proportion (1.7%) is signifi-
cantly lower than the baseline, Dirichlet Priors, and bounded models, respectively,
t(251)=-8.42, t(251)= -8.42, t(251) = -3.37, in all three cases two-tailed p<0.001.

Hence, there is evidence for limited degeneracy in the Contextual Guess and Slip
model, but this model is substantially less degenerate than the baseline or Dirichlet
Priors models, and appears to be less degenerate than the bounded model as well.

There are two ways to measure the accuracy of the four knowledge tracing mod-
els. The first is to compare actions at time N to the models” predictions of the proba-
bility that actions at time N will be correct — P(L,)*P(~S)+ P(~L,)*P(G). This me-
thod accurately represents exactly what each model predicts; however, this method
biases in favor of the Contextual Guess and Slip model, since that model uses infor-
mation associated with the answer being predicted to estimate the probability of
guessing and slipping. An alternate measure which is appropriate for all four models

Table 3. Each model’s accuracy across the 171,989 first actions. Comparisons use model pre-
diction of knowledge state after previous attempt at skill. Standard errors given in parentheses.

Modeling Approach A' r
Baseline 0.66 (0.001) 0.29
Bounded Guess and Slip (Corbett’s method) 0.61 (0.001) 0.25
Dirichlet Priors (Beck’s method) 0.65 (0.001) 0.26
Contextual Guess and Slip 0.75 (0.001) 0.43




is to compare actions at time N to the models’ predictions of the probability that the
student knew the skill at time N, before the student answered. This method under-
estimates accuracy for all models (since it does not include the probability of guessing
and slipping when answering), but is preferable because it does not favor any model.
We use A' (the probability that the model can distinguish a correct response from an
incorrect response [8]) and correlation as the measures of model accuracy.

The full pattern of results is shown in Table 3. The Contextual Guess and Slip
method achieves the highest value of A', 0.75. The second-best model is the Baseline
model, with A’ of 0.66. The Contextual Guess and Slip model’s A" achieves 27% of
the possible improvement over the Baseline model, a statistically significant differ-
ence in fit, Z=2.86, two-tailed p<0.01 (an adjusted standard error is used for A' to
control for type Il error stemming from non-independence). The Contextual Guess
and Slip method also achieves the highest correlation, 0.43, 48% higher than the
second-best model, again the Baseline model (r=0.29), t(171984)=69.12, two tailed
p<0.0001. (This test is under-conservative, as it assumes independence; if we collapse
across students, an overly conservative test, the result remains significant,
t(231)=7.95, two tailed p<0.0001). Hence, for both measures of model accuracy,
Contextual Guess and Slip performs substantially better than prior knowledge tracing
methods.

5 Conclusions

In this paper, we have proposed a new way to contextually estimate the probability
that a student obtained a correct answer by guessing, or an incorrect answer by slip-
ping, within Bayesian Knowledge Tracing. The method we propose is less vulnerable
to model degeneracy than previous methods of student knowledge modeling, and is as
good as the best of previous approaches at dealing with challenges to identifiability.
In addition, our method leads to substantially higher accuracy than prior methods —
improving A' by 27% of potential gain, and improving correlation by 48%. Plus, the
method seems quite generalizable; the machine-learned models of guess and slip was
trained on only 64 skills, but functioned effectively within all 253 skills it was tested
on. An interesting area for future research will be studying how widely the guess and
slip models can be transferred with no re-training at all, and still function effectively.
Similarly, it will be important to replicate this result in data from another Cognitive
Tutor, and in other intelligent tutors [cf. 5].

Though the contextual estimation of guess and slip has proven more successful
than earlier student knowledge modeling, we see this paper as just the beginning of a
new, more contextually sensitive approach to student modeling. First of all, it is prob-
ably possible to increase the accuracy of the contextual estimates of slip even further,
by incorporating data about second and subsequent attempts within a given opportuni-
ty to practice a skill (an error followed very rapidly by the correct answer is probably
much more likely to be a slip than an error followed by three more slow errors and a
help request). Second, it is possible to combine overall estimation of the probability of
guesses and slips (as used here) with information about individual skills, potentially
raising accuracy further still. Third, it is possible to estimate the probability of learn-



ing a skill P(T) at any given time in the same contextual fashion as used here. We
look forward to new possibilities for substantially more sensitive and accurate estima-
tion of student knowledge. And, in the long term, more sensitive and accurate estima-
tion of student knowledge will have considerable pay-offs: it will enable more accu-
rate assignment of learning materials to students, optimize the amount of practice on
each skill [cf. 4], and may even enable different types of remediation for different
types of errors (such as giving specific remediation for slips).
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