
Comparing Expert and Metric-Based Assessments of
Association Rule Interestingness

Diego A. Luna Bazaldua
+1 (917) 543 7674

dal2159@tc.columbia.edu

Ryan S. Baker
+1 (412) 983-3619

baker2@exchange.tc.columbia.edu

Maria Ofelia Z. San Pedro
+1 (508) 330-0410

mzs2106@tc.columbia.edu

Department of Human Development, Teachers College, Columbia University
525 W. 120th Street, New York, NY 10027

ABSTRACT
In association rule mining, interestingness refers to metrics that
are applied to select association rules, beyond support and
confidence. For example, Merceron & Yacef (2008) recommend
that researchers use a combination of lift and cosine to select
association rules, after first filtering out rules with low support
and confidence. However, the empirical basis for considering
these specific metrics to be evidence of interestingness is rather
weak. In this study, we examine these metrics by distilling
association rules from real educational data relevant to established
research questions in the areas of affect and disengagenment. We
then ask three domain experts to rate the interestingness of the
resultant rules. We finally analyze the data to determine which
metric(s) best agree with expert judgments of interestingness. We
find that Merceron & Yacef (2008) were right. Lift and cosine are
good indicators of interestingness. In addition, the Phi
Coefficient, Convinction, and Jaccard also turn out to be good
indicators of interestingness.
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1. INTRODUCTION
In recent years, Association Rule Mining has become a central
method in the field of Educational Data Mining. It plays a
prominent role in reviews of the field, including reviews by
Romero & Ventura (2007, 2010), Baker & Yacef (2009), Scheuer
& McLaren (2012), and Baker & Siemens (in press), referred to
this method as a core type of relationship mining. In Association
Rule Mining, algorithms search for patterns where a set of values
of variables (the “if-clause”) predict another variable’s value (the
“then-clause”). (It is also possible for a then-clause to have
multiple variables, but less common).

In these reviews, it was noted that Association Rule Mining has
several potential applications. It is excellent for generating
hypotheses to study further, and for finding unexpected
connections within data.

Association Rule Mining has been applied to several applied
research problems within the educational data mining community
and related research communities. Some notable examples
include: Freyberger and colleagues have used association rules to
analyze interactions between students and intelligent tutoring
systems, in order to find models that predict student's success
(Freyberger, Heffernan & Ruiz, 2004); Lu (2004) used association
rules to match suitable learning materials based on each student
learning needs; Garcia, Romero, Ventura & De Castro (2009)
have used association rules to make recommendations to
instructors for how to improve the effectiveness of a web adaptive
course; in a similar example, association rules have been
implemented to provide information to teachers about students’
behavior in intelligent tutoring systems (Ben-Naim, Bain &
Marcus, 2009).

A subset of Association Rule Mining, Sequential Pattern Mining,
has also seen extensive use in the educational data mining
community, as well as being highlighted in reviews of the field
(e.g. Romero & Ventura, 2007; Baker & Yacef, 2009; Scheuer &
McLaren, 2012; Baker & Siemens, in press). Sequential Pattern
Mining consists of finding association rules where the contents of
the then-clause occur temporally after the contents of the if-clause
(Agrawal & Srikant, 1995). In the case of educational data
mining, Kinnebrew, Loretz, & Biswas (2012) have used
Sequential Pattern Mining to analyze how students engage in the
different activities within an intelligent tutoring system over time,
in particular studying the different sequences seen in high-
performing and low-performing students. In another example,
Perera et al. (2009) used Sequential Pattern Mining to analyze
how groups of students use online tools, studying the work
patterns of successful and unsuccessful groups, in order to provide
feedback to the groups about their work strategies. One more
example in education comes from the research done by Romero,
Ventura, Delgado & De Bra (2007), who integrated Sequential
Pattern Mining techniques in an algorithm within an educational
system in order to provide personalized recommendations to
students about possible links they should explore.

Association rules are typically initially selected on the basis of
rules’ confidence and support (Agrawal & Srikant, 1995). The
support of a rule corresponds to the percentage of data points that
contain both the if-clause and then-clause. The confidence of the
rule is expressed as the percentage of data points that contain both
the if-clause and also includes the then-clause, divided by the
number of data points that contain the if-clause (Garcia, Romero,
Ventura & Calders, 2007).



However, the combination of support and confidence is
insufficient to select good association rules. By definition, support
and confidence find variable values that are frequently seen
together. As such, these metrics often end up selecting
combinations of variable values that are trivially associated, such
as finding that students who take advanced biology probably took
introductory biology, or finding that students who fail a course’s
exams fail the course as well.

What is desirable is to instead find association rules that are
novel, that are surprising, that are unexpected. Frequently, after
rules are filtered by looking for all rules with a minimum support
and confidence, the next step is to use an alternate metric that can
give some indicator of novelty; that can determine if an
association rule is interesting.

To this end, researchers have tried to decide which metrics best
capture an association rule’s interestingness, both in general (Tan,
Kumar & Srivastava, 2004), and in the specific case of
educational data mining (Meceron & Yacef, 2008). Merceron and
Yacef (2008) recommend Lift/Added Value (Lift and Added
Value are mathematically equivalent) and Cosine as excellent
interestingness measures for educational data because their
meaning is easily understood even to people not expert in data
mining (e.g., teachers, school administrators, and so on); in
addition, Cosine does not depend on the data set size. In
particular, they recommend that researchers consider an
association rule to be interesting if it has a high value for either of
these measures.

Moreover, there are additional metrics identified that have the
potential to measure interestingness. Tan et al. (2004) review the
potential candidates for an interestingness measure, finding over
twenty in the published literature. Their list includes lift and
cosine, but also includes the Phi coefficient, Goodman-Kruskal’s,
the Odds ratio, Yule’s Q, Yule’s Y, Cohen’s Kappa, Mutual
information, the J-Measure, the Gini Index, Laplace, Conviction,
Piatetsky-Shapiro,  Certainty Factor, Added Value, Collective
strength, Jaccard, and Klosgen. Such variety of possible
interestingness measures has made it complicated to identify
which one is the most appropriate.

Further complicating the matter of choosing an appropriate
interestingness measure (or measures) is the fact that the research
on interestingness measures has thus far been mathematical or
intuitive: interestingness measures have been selected based on
their mathematical properties, and in some cases based on the
intuitive perceptions of expert data miners.

In this paper, we consider an alternate strategy for selecting
interestingness measures: using data mining to determine which
interestingness measure is best, based on expert judgments of
interestingness. In other words, instead of selecting a metric
formally or intuitively, we can actually collect data on which
association rules are seen as being the most interesting by domain
experts, the population that could best take advantage of new
hypotheses and unexpected findings in a domain. We then analyze
this data to determine which metrics, or combination of metrics,
best matches the domain experts’ perception of specific rules’
interestingness.

In the following sections, we take real data from online learning.
We then distill association rules for that data relevant to
established research questions in the field. We then ask three
domain experts to rate the interestingness of the resultant rules.

We finally analyze the data to determine which metric(s) best
agree with expert judgments of interestingness. In doing so, we
will explicitly compare our findings to claims in Merceron &
Yacef (2008) as to which metrics best represent interestingness.

2. Method
2.1 Data
In order to study domain experts’ assessments of which
association rules are interesting, we generated association rules
from real student data, relevant to established research questions
in the field. We use domain experts, under the hypothesis that
what experts consider interesting may be different than what
novices consider interesting (and we believe that finding rules that
are interesting for an expert is a more valuable use of association
rule mining, though opinions could differ). We use genuine data
to create these rules rather than simulated data, due to the concern
that the metrics that predict the interestingness of genuine data
may not be the same as the metrics that predict interestingness in
simulated data. This would be a particular concern if the
simulated data were to produce association rules that were
actually false; and using generic operators would eliminate the
potential to leverage domain expertise.

To this end, we used models that assess student affect and
disengaged behaviors within a widely-used online learning
environment, to examine association rules about the relationships
between student´s affect and disengaged behaviors. The study of
student disengagement and affect has been a research topic of
considerable interest to researchers in EDM and related fields.
Sabourin, Rowe, Mott, & Lester (2011) have analyzed the relation
between engaged and disengaged behaviors with positive and
negative affective states in students while interacting with a
learning system, finding that different patterns of affect correlate
to engaged and disengaged behaviors. Hershkovitz, Baker,
Gobert, & Nakama (2012) have found evidence that boredom
mediates between the student´s tendency to avoid novelty and off-
task behavior. Baker, D’Mello, Rodrigo & Graesser (2010) find
that gaming the system is often preceded and followed by
boredom. Chauncey & Azevedo (2010) show a relationship
between induced affect and cognitive engagement/meta-cognition,
leading to differences in performance.

These rules were generated from data from the ASSISTments
system (Razzaq, Heffernan, Feng & Pardos, 2007). ASSISTments
is an educational web-based system that provides students with
intelligent tutor-based online problem solving activities, while
providing teachers with dynamic formative assessment of the
students’ mathematical abilities. The system has been found to be
effective at enhancing student learning. (Razzaq et al., 2007), and
is used by over 50,000 students a year. Figure 1 shows a screen
shot of the ASSISTment system.

Data was obtained from the logs of 724 middle school students
from the Northeastern United States, who answered different
problems that measure 70 different mathematics skills. Within this
data set, there were a total of 107,382 problems solved by
students within the ASSISTment software. Student actions in this
data set were classified in terms of affective states and disengaged
behaviors from machine-learned affect and behavior detectors.
The detectors inferred if the student:

 was detected as being bored or not,
 was detected as being concentrated or not,
 was detected as being frustrated or not,



 was detected as being confused or not,
 was detected as being on task or off task,
 was detected as being gaming the system or not,

The following  additional features were also included in the data
set:

 the student providing a correct answer
 the student providing an incorrect answer
 the student asking for a hint.

Figure 1. Example of an ASSISTment item

The detection of these binary categories of affective
states/behaviors was done using the detectors presented in Pardos
et al (2013). These detectors were developed by distilling features
of the students´ interactions with the software, and synchronizing
those features with field observations collected by two trained
coders during the students’ interactions with ASSISTments. The
log data entry and the field observations were synchronized and
segmented in 20 second windows to develop the detectors.

Detector performance was evaluated using student-level cross-
validation (5-fold). All detectors performed substantially better
than chance, being able to distinguish each affective
state/behavior between 63%-82% of the time (the A’ statistic),
performance that was 23%-51% better than chance (the Kappa
statistic). The detectors provide confidence values of the
probability that an affective state or behavior occurred. To support
the association rule mining analyses discussed below, we convert
these probabilities into binary predictions, using a 50%
probability threshold (the Kappa values listed above represent the
model goodness when this transformation is used). Pardos et al.
(2013) and San Pedro et al. (2013) provide a detailed description
of the detectors and their use in multiple discovery with models
analyses. Table 1 summarizes the frequency and proportion of
each of these behaviors/affective states. Regarding table 1, it
shows some of the average confidences are higher than what
should be expected. Here we point out that, as it is indicated in

San Pedro et al. (2013), some detectors used in the current
research presented some systematic error in prediction, which
impacted in a higher or lower average confidence of the resultant
models compared to the proportion of the affective states in the
original data set. This type of bias does not affect correlation to
other variables since relative order of predictions is unaffected,
neither affects A’ or Kappa, but it can reduce model
interpretability. We did not rescaled the detectors, as it is
proposed in Pardos et al. (2013) since we are considering final
binary predictions from the detectors, where Kappa is the relevant
goodness statistic, we use non-rescaled confidences in this paper.

The association rules were created in way that each rule described
how a set of the affective states/ behaviors seen in the first attempt
at a problem was associated with a single affective state or
behavior in the student’s first action on the next problem. In this
analysis, simple association rules were created that predicted
affect or behavior from a combination of the elements at the
previous action.

2.2 Generation of Association Rules
Association rules were created using the arules package (Hahsler,
Gruen, & Hornik, 2005; Hahsler et al., 2009) in R version 2.15.2
(R Development Core Team, 2012). In specific, the apriori
algorithm implemented within the arules package was used to
discover the association rules (Agrawal et al., 1994). This process
in R resulted in a list of 431,768 rules, for which support,
confidence, and lift were automatically computed. A total of 120
different association rules were selected from the 431,768
measures obtained; these 120 rules were selected to be the rules
with the highest support and confidence that were representative
of different numbers of elements in the if-clauses and were
representative of all variables in the then-clauses of the rules. All
rules selected had a support over 0.05 and confidence over 0.1;
most were considerably higher.

Table 1. Frequency and average confidence for each affective
/behavioral state in the data

Frequency Percentage
Rescaled
Average

Confidence
Bored 52080 48.49 0.2469
Engaged
concentration

47854 44.56 0.5160

Frustrated 10929 10.17 0.0988

Confused 20308 18.91 0.1372

Off-Task 18135 16.88 0.0406
Gaming the
system

9805 9.13 0.0182

Used Hints 16216 0.15
Answer was
Correct

45116 0.42

2.3 Expert Rating of Association Rules
Once the rules had been created, they were rated for their
interestingness by domain experts. In specific, four scientific
researchers with scientific expertise in the areas of affect and
disengagement in online learning. They rated the extent to which
each of the 120 association rules was “scientifically interesting”.
A Likert scale was used in rating, ranging from 1 to 5, where 1
was “Not at all interesting” and 5 was “Extremely interesting”.
Based on these expert ratings, the average inter-rater



interestingness value was calculated for each rule, giving an
indicator of how interesting the experts found each rule. In
addition, measures of the degree of agreement between the experts
were calculated, and are discussed in Section 3.1.

2.4   Computing Association Rule Metrics
After the expert coders rated the 120 selected association rules,
additional interestingness measures from Tan et al. (2004) were
computed in Microsoft Excel. The following metrics were
computed for each rule:

 Phi Coefficient
 Cosine
 Piatetsky-Shapiro
 Jaccard, Laplace
 Certainty Factor
 Added Value
 Klosgen

 Odds Ratio
 Cohen’s Kappa
 Gini Index
 Conviction
 J Measure
 Collective Strength

In addition, non-standard metrics were created, under the
hypothesis that these metrics might also capture some key aspects
of expert perception of interestingness in this domain, where an
expert might be looking for evidence of successful students or
unsuccessful students:

 The number of elements in a rule with values equal to
Yes, Correct, and/or On task behavior.

 The number of elements in a rule with values equal to
No, Incorrect, and/or Off task behavior.

3. Results
The findings of the research are presented in this section. First,
examples of some association rules rated as very interesting, not
interesting, and with mixed rating, are presented. Then, results
about the inter-rater agreement are included. Finally, correlations
between the experts´ ratings and the association metrics are
described, and regression models are presented that make
combined predictions of expert ratings from a combination of
association metrics.

3.1 The Most and Least Interesting Rules
As discussed in the previous section, each rule was rated for
perceived interestingness by each of the four expert coders.
Below, we present some of the most interesting and least
interesting rules, in their perception. Note that each rule
represents a transition from time t1 (left side of rule) and time t2

(right side of rule). Note also that rules are presented with the
exact same operators as generated by the algorithm, which means
that some redundancy is present.

The most interesting rules according to the experts (e.g. the rules
with the highest average interestingness) were:

{Got incorrect answer, not frustrated} {Gaming the system}

{Gaming the system, bored, not in engaged concentration, got the
incorrect answer and did not request a hint}} {Confused}

{Off-task, confused, not bored, got the correct answer, and did not request
a hint}  { Off-task}

The following rules were rated as least interesting by the experts
(in terms of average rating).

{In engaged concentration, did not request a hint, not bored or frustrated
or confused or off-task or gaming the system} {Off-task}

{In engaged concentration, got correct answer, did not request a hint, not
frustrated or confused or off-task or gaming }  {Not gaming the
system}

{In engaged concentration, got correct answer, did not request a hint, not
bored or frustrated or confused or off-task or gaming the system} {Not
frustrated}

However, some rules obtained a high rating from two experts but
low rating from the other two:

{Got incorrect answer, did not request a hint, not in engaged
concentration or frustrated or off-task or gaming} {Confused}

{Got incorrect answer, did not request a hint, bored, not concentrated or
frustrated or confused or gaming} {Not being frustrated}

The first of these rules was rated as not interesting by two
members of the same research group (experts 2 and 3 below) but
rated as very interesting by two members of other research groups.
The second rule, however, was rated highly by experts 1 and 2,
who belong to different research groups, and it was rated as less
interesting by experts 3 and 4.

3.2 Agreement among raters
Though there was generally good agreement between experts,
some rules led to disagreement between the coders in terms of
interestingness, as shown above. To see the degree of agreement
(and to evaluate whether it was feasible to use these expert codes
as a basis for studying which metrics best evaluate
interestingness), we checked to make sure there was consistency
among the four domain experts, using multiple metrics. The
estimated Cronbach´s Alpha coefficient for the consistency in
rating among the four experts was 0.845, which indicates there is
a high covariation among experts in their ratings of
interestingness of different rules. The general Intraclass
Correlation for the agreement among the four raters was 0.487,
which indicates a moderate agreement among the experts (Bartko,
1966). It is worth noting that while Cronbach’s Alpha expresses a
measure of covariation in the ratings among experts, Intraclass
Correlation estimates reliability as the magnitude of
disagreement/agreement among the experts (Hallgren, 2012).
Hence, the difference among both measures reflects a discrepancy
of what each statistic estimates. In the context of our results, these
statistics mean that while the experts showed consistency in the
way they rated each rule, only a moderate agreement among
experts was achieved.

Additionally, Spearman correlation coefficients were calculated to
determine the degree of agreement between each pair of experts
based on their rating of interestingness to the 120 association
rules. Results of the Spearman correlation coefficients are
included in the table 2, which indicate there was a significant
degree of consistency among the four experts. As this table shows,
all four experts had a reasonable degree of consistency, but
experts 1 and 2 showed higher agreement with each other, while
experts 3 and 4 had higher agreement with each other. Overall,
there was moderate to high agreement among the experts in their
rating of interestingness of different association rules.

Table 2. Spearman correlation coefficients among experts.

Expert 1 Expert 2 Expert 3 Expert 4

Expert 1 1

Expert 2 .744 1

Expert 3 .548 .590 1

Expert 4 .580 .516 .674 1



3.3 Correlation between expert judgments
and association metrics
Though there was some structure in terms of agreement (e.g.
coders 1 and 2 agreed more, and coders 3 and 4 agreed more), the
overall agreement between coders was sufficient to create a single
metric representing the interestingness of each rule. This metric
was created by taking the average of the four coders’ ratings for
each rule.

Next, Spearman correlation coefficients were calculated to
analyze the degree of association between the expert ratings of
interestingness and the metrics of interestingness computed in R
(R Development Core Team, 2012; Gamer et al., 2012; Fletcher,
2010) and Excel. The resultant correlation coefficients are
presented in Table 3. This table shows that the experts’ ratings of
interestingness were highly correlated with some association rule
measures. 7 of the 24 metrics were more highly correlated with
the expert ratings of interestingness than the experts’ ratings of
interestingness correlated with one another, on average. The most
highly correlated metrics were Jaccard (r= -0.838), Cosine (r= -
0.835), and Support (r = -0.82). As shown in Table 3, the metrics
that agreed least well with expert ratings of interestingness were
Added Value (r= -0.014) and Kappa (r=-0.029). Merceron &
Yacef’s (2008) recommendation to use Cosine agrees with our
findings here; their recommendation to use Lift does not, at least
initially. But they recommend using these metrics in concert, not
individually. In the next section, we consider what mixture of
metrics best predicts human judgments of interestingness.

Table 3. Spearman correlation among inter-rater average and
association rules metrics.

Correlation to
Inter-Judge

Average
p-value

Jaccard -0.838 <0.001

Cosine -0.835 <0.001

Support -0.82 <0.001

Certainty Factor 0.775 <0.001

Confidence -0.747 <0.001

Laplace rule -0.647 <0.001

Count var. of 1´s -0.609 <0.001

Conviction -0.432 <0.001

Count var. of 0´s -0.368 <0.001

Klosgen -0.327 <0.001

Gini Index -0.32 <0.001

Odds Ratio -0.31 0.001

Yule's Q -0.31 0.001

Yule's Y -0.31 0.001

Piatetsky-Shapiro -0.303 0.001

J Measure -0.303 0.001

Collective Strength -0.298 0.001

Phi Coefficient -0.29 0.001

Lift 0.202 0.027

Kappa -0.029 0.754

Added Value -0.014 0.876

3.4 Predicting Expert Perception of
Interestingness from a Combination of Metrics

After looking at the predictive power of each metric, taken
individually, we built a model that predicted expert judgments
using a combination of metrics. Doing so may allow us to create a
meta-metric that could be a better representation of interestingness
than any single metric by itself.

A linear regression model was created to predict the average
expert judgment of interestingness. For this full model, no
variable selection was conducted – e.g. all metrics listed above
were incorporated into this model. Although the model had
statistically significant fit statistics (r= 0.938, r2 = 0.879, Cross-
validated r2 =0.73, AIC = 123.2702, BIC = 181.8075; F(19, 100)
= 38.24, p-value = 0.001), it also had a high degree of
multicollinearity among the predictors, measured by the Variance
Inflation Factor (VIF). Multicollinearity can lead to over-fitting,
as well as making it very difficult to interpret the estimated values
for the regression coefficients and their standard errors. This
model is reported in table 4.

Table 4. Regression model with all association rules metrics
and counting variables as predictors

Predictor Coeff S.E. T P-val VIF

Intercept 106.44 33.13 3.21 0.001

Count var. of 1´s -0.042 0.097 -0.43 0.664 4.2

Count var. of 0´s -0.01 0.081 -0.13 0.896 13.3

Support 44.085 19.83 2.22 0.028 2375.2

Confidence 0.899 1.617 0.55 0.579 230.6

Lift -28.56 13.46 -2.12 0.036 2117.1

Phi Coefficient 47.673 26.51 1.79 0.075 1422.1

Cosine 34.443 47.58 0.72 0.470 24213.7

Piatetsky Shapiro -80.69 509.0 -0.15 0.874 18302.8

Jaccard -108.6 57.81 -1.87 0.063 16274.3

Laplace -10.62 9.39 -1.13 0.260 3832.8

Certainty Factor -17.37 8.473 -2.05 0.042 347.8

Added Value 49.036 36.95 1.32 0.187 2257.6

Klosgen -78.83 187.3 -0.42 0.674 6543.2

Odds Ratio -0.235 4.097 -0.05 0.954 10700.1

Kappa 172.97 70.26 2.462 0.015 6245.3

Gini Index -437.2 283.4 -1.54 0.126 712.7

Conviction -2.369 5.516 -0.42 0.668 7758.5

J Measure 1038.7 502.4 2.068 0.041 1851.9

Collective Strength -68.02 36.70 -1.85 0.066 8265.7

A second linear regression model was tested including just
statistically significant association metrics as predictors with small
multicollinearity among them. The predictors excluded from this
analysis were: Support, Confidence, Piatesky Shapiro, Jaccard,
Laplace, Certainty Factor, Added Value, Klosgen, Odds Ratio,
Kappa, Gini Index, J Measure, and Collective Strength. Those
omitted predictors presented moderate to high correlations with
one or more association metrics included in the model
summarized in table 5. The criteria for exclusion were high
correlations among the predictors that, consequently, resulted in
VIF values higher than 10 for a given model.



Results of this second regression model showed that two
association rule metrics –Lift and Conviction– had a positive
prediction coefficient, while other two metrics – the Phi
Coefficient and Cosine– had a negative coefficient. The model fit
statistics were statistically significant and explained almost as
much of the variance as the full model, which achieved a
substantially higher cross-validated correlation (r= 0.902, r2 =
0.814, Cross-validated r2 =0.791, AIC = 144.4186, BIC =
161.1436; F = 126.4, df1 = 4, df2 = 115, p-value = 0.001). Table 5
summarizes the second regression model. The lower values of
BIC in the second model confirm it is a better and more simple
model compared with the former one.

Table 5. Regression model with association rules metrics with
restriction for multicollinearity

Predictor Coeff S.E. T P-val VIF

Intercept 0.404 1.023 0.395 0.6937

Lift 3.848 0.790 4.870 <0.001 5.477

Phi Coef. -11.179 2.220 -5.034 <0.001 7.491

Cosine -5.783 0.585 -9.880 <0.001 2.752

Conviction 0.469 0.116 4.013 <0.001 2.616

Although Jaccard presented the highest correlation with the inter-
rater average score, it also presented a very high correlation with
many other metrics, including Cosine (r = 0.96). Thus, many
models that included Jaccard also presented a high degree of
multicollinearity among the predictors; as a consequence, Jaccard
was excluded in the combined model presented in table 5. Table 6
demonstrates a model similar to the model in table 5 but replacing
Cosine with Jaccard. The model in this case was not better in
terms of multicollinearity and was only slightly better in terms of
goodness-of-fit (r = 0.908, r2 = 0.825, Cross-validated r2 =0.81,
AIC = 137.5014, BIC = 164.2263; F(4, 115) = 135.6, p-value =
<0.001).

Table 6. Regression model including Jaccard instead of Cosine
Predictor Coeff S.E. T P-val VIF

Intercept 0.547 0.986 0.556 0.579

Lift 3.502 0.778 4.496 <0.001 5.638

Phi Coef. -7.528 2.370 -3.177 0.002 9.038

Jaccard -8.896 0.847 -10.49 <0.001 2.780

Conviction 0.207 0.121 1.721 0.088 2.945

Regression models were also computed for each individual metric
used in the combined models. The results, which are summarized
in table 7, show that single-feature models presented less
desirable fit statistics (i.e., r2, AIC, and BIC) than the combined
model. The model including just Jaccard as predictor has the best
fit statistics among the single-variable models (with Cosine close
behind), but the combined model is still superior.

.

Table 7. Regression models with single predictors

Predictor
Coeff – Intercepet

(S.E.)
p Fit Stats.

Lift
2.81*Lift – 0.80

(0.729)
<0.001

R2 = 0.112
CV-R2= 0.074
AIC = 326.43
BIC = 334.79

Phi
Coefficient

-6.744*Phi + 2.78
(1.754)

<0.001

R2 = 0.111
CV-R2= 0.098
AIC = 326.56
BIC = 334.93

Cosine
-7.72*Cosine + 5.39

(0.387)
<0.001

R2 = 0.771
CV-R2= 0.754
AIC = 163.71
BIC = 172.07

Conviction
-0.69*Conviction + 3.2

(0.152)
<0.001

R2 = 0.149
CV-R2= 0.119
AIC = 321.24
BIC = 329.61

Jaccard
-11.56*Jaccard + 4.84

(0.552)
<0.001

R2 = 0.787
CV-R2= 0.779
AIC = 154. 84
BIC = 163.21

4. Discussion and Conclusions
As seen in this paper, several standard association rule metrics can
predict human expert ratings of interestingness of an association
rule. Most commonly used interestingness metrics showed
statistically significant correlations with the experts’ ratings of
interestingness, but not all of them were included in the final
combined model given the high common variation among them.
The best metrics – Jaccard, Cosine, and Support – achieved an
absolute correlation higher than 0.80 with the average expert
human judgment, which is higher than the average correlation of
the ratings between experts. Hence, we see that these association
metrics are a good substitute for human ratings of interestingness

In particular, our findings agree with Merceron and Yacef (2008)
that Cosine and Lift are useful, as they were successful predictors
in the final combined model in this data set. Taken individually,
Cosine was good predictor, while Lift explained considerably less
variance. The association metric Cosine consistently had a high
negative correlation with the raters’ scores of interestingness and
significantly predicted expert ratings of interestingness, both in a
single-predictor model and in combination with other association
metrics. The association metric Lift had a positive correlation and
significantly predicted the average score of interestingness among
the experts in combination with other metrics and in a single-
predictor model; however, Lift was relatively weak compared to
other metrics when taken by itself.

However, one surprise is that Cosine, while important in both our
findings and in Merceron & Yacef, was correlated to
interestingness in the negative direction in our findings (i.e. low,
while Merceron & Yacef recommend looking for high Cosine).
This finding is surprising, and merits further study. One
possibility is that once support and confidence are accounted for,
then interestingness links in some ways to rarity. Perhaps that is
not surprising –facts that are already known are not particularly
interesting– but it does show that the association rule mining
conception of interestingness may not quite match intuitive
notions of this construct. In our view, this finding is itself
impressive. In general, this result suggests that Cosine is indeed



important, but may reflect interestingness in a different way than
previously understood.

In addition, other association rule metrics – the Phi Coefficient,
Conviction and Jaccard – that have not been widely used in
educational data mining also explained a significant proportion of
the variance in the combined model and a in single-predictor
models. Therefore, it might be useful to also consider these
metrics in future research using association rule mining in
educational data sets.

On the whole, results in this study show that the recommended
metrics of interestingness proposed by Merceron and Yacef
(2008) are useful, as well as other metrics not considered by those
authors.

It is worth considering some limitations of this study. First, only
linear correlations and linear regression models were considered.
Although these approaches achieved good fit to the data, and
explained much of the variance, it could be useful to consider
models with non-linear relations among the association rules
metrics and the expert ratings. Second, given the high correlation
among different association rules metrics, other measures could be
considered as alternative predictors of the inter-rater score of
interestingness instead of the four measures chosen in the final
regression model reported. Third, this paper represents a single
analysis in a single educational research domain. Results might
vary in a different educational research domain, or indeed outside
of education. However, the fact that Cosine and Lift were
prominent both in our models and in the recommendations in
Merceron & Yacef (2008) is a positive sign, given that their work
involved a very different area of educational research.

Overall, the use of association mining to understand complex and
interesting relations among different variables is a method with a
lot of potential in educational data mining research. Association
rules can be understood at an intuitive level, and can provide
useful information for a variety of stakeholders who are not
experts in EDM, including students, teachers, administrators, and
policy makers. However, given the huge numbers of association
rules that can be generated, it is important to try to filter not just
by support and confidence, but by interestingness as well. By
using the metric or combination of metrics that matches an
intuitive conception of interestingness, we can provide the most
interesting information to users of association rules first,
improving the efficiency of this method.
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