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Abstract: 

 

Many hypotheses in state politics research are multi-level—they posit that variables 

observed at the state level affect individual behavior. When standard OLS is used to test 

hypotheses about state-level effects using individual-level observations, it yields 

overconfident standard errors and may lead researchers to falsely reject null hypotheses. 

Primo, Jacobsmeier, and Milyo (2007) explore this problem in their reanalysis of 

Wolfinger, Highton, and Mullin's (2005) data on the effects of voter registration laws on 

voter turnout.  They advocate the  use of clustered standard errors to solve the problem of 

overconfidence.  In this paper, we offer an alternative approach.  We reanalyze the same 

Wolfinger and Highton data using a randomization test.  The randomization test proceeds 

in three steps.  First, we randomly reassign registration laws from one state to another 

state, scrambling the key independent variables to ensure that there is no systematic 

relationship between laws and turnout.  Second, we  rerun the usual regression to estimate 

the coefficients on the law variables.  We repeat this randomization technique many times 

in order to generate a distribution of simulated spurious effects.  Finally, using this 

distribution, we can judge how likely it is that we observe the registration-law effects 

when indeed no real effects exist.  In other words, we use this distribution in place of a 

standard t-test to assess the likelihood of falsely rejecting the null hypothesis. 
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Do various state-level reforms induce greater turnout at the polls in the US?  

While some literature on this topic is time-serial in design, much of the reported evidence 

is cross-sectional in nature.   A decided limitation for cross-sectional analysis would seem 

to be the limiting N of 50 cases when the states are the units of analysis.    Cross-sectional 

analysis seemingly undergoes a great improvement when the unit of analysis shifts to the 

individual voter.  Beginning with Wolfinger and Rosenstone (1980), many studies exploit 

the US Census’s biennial post-election surveys of voter participation with its multiple 

thousands of respondents.   With 40,000 cases or more rather than a mere 50, the 

advantage of using CPS survey data would seem would seem to be considerable. The 

gain is not only in the number of cases but also in estimating effects at the state level 

while controlling for effects at the individual level that would otherwise add noise to the 

model.    

As a recent example, we discuss the analysis by Wolfinger, Highton and Mullin  

(2007)—hereafter WHM—of the effects of laws concerning post-registration aspects of 

the costs of voting on the probability that a registered voter will turn out to vote.  

According to this analysis, reforms such as early voting hours, late polling hours, and 

many more innovations serve to boost turnout.  As we will see, however, the claim is in 

dispute. The challenge is the multi-level nature of the problem.  The independent 

variables of interest or treatments are administered at the state level.  The responses are 

by individual potential voters. 

A troublesome aspect of this multi-level modeling is the accurate portrayal of the 

standard errors of the law effects.  When they are estimated via OLS, the standard errors 

are deflated (and the significance inflated) in that the effective N for the state effects is 
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still 50 rather than the number of individual cases. The classic statement is by Moulton 

(1986, 1990).  See also Donald and Lang (2007) and Arceneaux and Nickerson (2007), 

who present the general argument regarding how this problem applies to multi-level data.  

Primo, Jacobsmeier, and Milyo (2007)—hereafter PJM—offer a useful illustration when 

applied to Wolfinger, et al.’s analysis of state laws affecting voting among registrants.   

As PJM show, when the standard errors for the state laws are correctly estimated, the 

coefficients for the various state laws are mainly outside the range of statistical 

significance.  Thus it would seem that the evidence is actually rather unsettled whether 

reform legislation actually boosts turnout among the registered. 

The present study offers a further insight into this problem by applying a 

“randomization” test.    By our randomization test, the codes for the fifty states are 

shuffled randomly to provide randomly generated identifications for the fifty states.  

(This is as if the state labels were dropped on the floor and then reinserted randomly. 

Each state would have a state code; however it has only a one in 50 chance of being the 

correct one. Arizona respondents, for instance, might be assigned Pennsylvania’s laws.)  

The random shuffle is repeated a total of 1000 times.   

The data from this exercise provide an approximation of what to expect if the null 

hypotheses of no state effects were true.  For each coefficient, we obtain an empirically 

observed standard error from the standard deviation of the 1,000 fake observations, 

centered (theoretically) around a value of zero.  By this experiment, we randomize 

knowing the “correct” answer (no state effects)  and see whether the actual real-world 

results are within the .05 bounds of significance from our empirically derived standard 

error. 
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This test is particularly useful where the theoretical standard error is not easily 

derived.  While PJM estimate the appropriate clustered standard errors for the state-level 

additive effects, it is not clear that the clustering option helps when it comes to interaction 

effects between state-level (law) and individual level (e.g., education, age) variables.  

With PJM’s clustering, these interactions remain “significant” and far more significant 

than  their state-level components.  This is clearly wrong.  But the theoretical remedy is 

not clear.  The randomization test however supplies a solution.  Rather than a theoretical 

derivation based on assumptions, it is empirically derived. 

The Research Question 

WHM (2005) use individual-level data from the 2000 Voter Supplement of the 

Current Population Survey to test the effects of state postregistration laws on the 

likelihood of turnout among individuals who are registered to vote.  While turnout among 

registered individuals is already relatively high, averaging 86 percent in their sample, 

WHM hypothesize that certain state laws further decrease the cost of voting, even for 

those who are already registered.  Extended voting hours in the morning and evening, 

time off from work on election day for public and private employees, and receipt of 

sample ballots and polling place information in the mail give potential voters more time 

and information.  These laws, then, should be associated with higher turnout.   

WHM also hypothesize that the effects of certain postregistration laws should 

vary across different subgroups.  For example, time off work for public employees should 

primarily affect the likelihood that public employees will vote, as opposed to private 

employees or the unemployed.  Receiving sample ballots in the mail should primarily 

affect the voting likelihood of individuals who do not already have the information, like 



 4 

young and less educated people.  To accommodate these potential across-group 

differences, WHM set up a model with several interaction effects between individual 

characteristics and state laws.  Their specification is shown in Table 1.
1
   

We do not object to the theory behind WHM’s hypotheses about the effects of 

state postregistration laws on individual turnout.  However, like PJM, we have concerns 

about the precision with which those effects can be estimated given the multi-level 

structure of the data.  As PJM argue, the WHM data is generated by a process that 

includes a compound error term.  One part of the error is at the individual level, and one 

part is at the state level.  The state-level component induces clustering among 

respondents in the same state.  Standard regression techniques, like that employed by 

WHM, ignore the state-level error component, and so they overstate the confidence with 

which they estimate the effects of state-level variables.     

  There are several ways to deal with this compound error term.  Strategies include 

using clustered standard errors, modeling state random effects, employing a full 

hierarchical linear model, and using OLS on data aggregated to the state level.  

Arceneaux and Nickerson (2007) show that under the “ideal conditions” of random 

treatment assignment and normally-distributed cluster-level and individual-level 

disturbances, each of these techniques perform equally well.  However, in the case of 

observational data on turnout, they caution the choice is not so clear-cut.  Estimated 

standard errors and, in some cases, point estimates vary across models and are sensitive 

to the assumptions imposed by each technique.  For the WHM data, PJM advocate the 

                                                
1
 Because our focus is on the modeling of state-level characteristics and their interactions 

with individual-level characteristics, we omit the individual characteristics in the WHM 

model from our table.  They include measures of employment status, education, age, 

income, race, and residential stability. 
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use of clustered standard errors over hierarchical linear modeling because, theoretically, 

clustering makes fewer assumptions, and, practically, clustering is easier to implement 

with available software.   

 We argue that a randomization test might be useful in assessing multi-level 

hypotheses like those in WHM, particularly those with multi-level interaction effects, 

because, unlike the other methods, they do not rely on any distributional assumptions 

about the disturbances in the model.    

The randomization design 

 Randomization or permutation tests are a non-parametric way to derive standard 

errors and significance tests for the effect of a variable on an outcome.  They are used 

widely in biology (e.g. Manly 1997) and increasingly in economics and business 

applications (e.g. Kennedy and Cade 1996). 

Typically we want to know how likely it is that an estimated coefficient is 

different from the null hypothesis, usually zero.  Standard parametric methods use some 

function of the coefficient and the estimated standard errors to calculate a test statistic 

that is theoretically distributed in some way and compare that test statistic to its reference 

distribution.  If that test statistic is relatively rare, then we can be confident that the 

estimated coefficient is different from the null hypothesis.  For example, in the simple 

case of OLS, we estimate standard errors with the assumption that disturbances are 

distributed i.i.d. N(0, !
2
).  We derive a t-test statistic by taking the ratio of the estimated 

coefficient and the estimated standard error and compare that statistic to a student’s t 

distribution.  If it is larger than the critical value 1.96 or smaller than -1.96 (for sample 
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sizes 1000 or larger), we reject the null hypothesis of no effect with 95 percent 

confidence. 

Randomization tests proceed in an analogous way but without relying on 

theoretical distributions.  First, we estimate the coefficient on a variable of interest and its 

associated test statistic using our preferred model specification.  Then, we randomly 

reshuffle the data in such a way that we know there is no systematic relationship between 

the variable and the observed outcome.  Then, we re-run our preferred model on the 

shuffled data and get a new estimate of the coefficient and test statistic.  We reshuffle and 

re-estimate a total of 1000 times.  This process gives us a distribution of 1000 estimated 

coefficients and 1000 test statistics centered, theoretically, at zero.  This is the reference 

distribution for the randomization test. By locating the observed effect (the estimated test 

statistic) on this distribution we are able to assess the probability that effect could have 

occurred by “chance.” 

 There are several ways to reshuffle data to break the relationship between a 

variable of interest X1 and an outcome Y for a multivariate model with many covariates.  

Kennedy (1995) reviews the most common methods in the literature.  These include 

simply shuffling X1 or shuffling Y.  More complicated methods include “residualizing 

Y”—residualizing Y with respect to the other covariates, shuffling the residualized Y, 

and regressing it on X1—and “shuffling residuals”—regressing Y on the other covariates, 

shuffling the residuals from this regression, adding them to the predicted Y from this 

regression, and regressing the new Y vector on the other covariates and X1.   

The results from Monte Carlo analyses in Kennedy and Cade (1996) suggest that 

the simple method of shuffling X1 is sufficient in the multivariate context so long as 
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inferences are based on the distribution of test statistics and not on the distribution of 

coefficients.
2
 

  Randomization tests were originally developed by Fisher (1935) to test the effect 

of a treatment in a randomized experiment.  Because experiments typically have smaller 

sample sizes, it is possible to shuffle the data to represent all of the possible permutations 

of treatment to subject.  Then, the randomization test will be exact.  However, in many 

observational contexts, obtaining an exact randomization test is practically infeasible.  

Sampling many times from the set of possible permutations gives an approximate 

randomization test.  Manly (1997) argues that, for 95 percent confidence levels, 

randomization tests using 1000 draws should be powerful enough to detect an effect.   

 Unlike parametric significance tests, randomization tests make no assumptions 

about the distribution of disturbances in a model and do not require the distribution of the 

test statistics to be known.  Thus, randomization tests are particularly useful in models 

with complicated error structures for which theoretical standard errors are hard to derive.   

However, randomization tests do make one important assumption about the 

disturbances—that they are exchangeable.  Exchangeability means that if the null 

hypothesis is true, if the variable of interest indeed has no effect, then observed outcomes 

across individuals would be similar (conditional on confounding covariates) no matter 

                                                
2
 The logic behind this recommendation is as follows.  Shuffling X1 does not hold 

constant the collinearity between X1 and the other covariates.  Say, for example, that X1 

and some other covariate X2 are highly collinear.  Then, we would expect that the 

standard errors on the coefficients of these variables to be large.  Because shuffling X1 

destroys the collinearity between X1 and X2, the coefficients obtained from the 

randomization method may not vary as much as they would in actual repeated sampling.  

Thus inferences from the distribution of randomized coefficients would be too confident.  

Because test statistics are adjusted for variance magnitude, they are unaffected by 

changing the collinearity in the data.  
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what the level of the variable of interest.  In other words, if exchangeability holds, then 

under the null hypothesis, the variable of interest is merely a label that can be applied to 

any observation without changing the expected outcome.  This justifies the shuffling 

procedure.   

Findings 

 To reassess the findings in WHM (2005), we performed a randomization test to 

estimate empirically derived standard errors and test statistics for the coefficients in their 

original model.  First, we detached the state-level variables from the individual-level 

observations.  Then, we randomly reassigned state level-variables to state populations.  

This particular randomization procedure preserves the menu of state laws and the 

association of individuals within a state.  For example, all of the residents of Georgia may 

be randomly assigned all of the post-registration laws from Washington.  It is possible 

that the residents of Georgia may be randomly assigned the laws of Georgia and even that 

we may recreate the actual dataset through random assignment.  This is justified because, 

under the null hypothesis, the actual data is considered to be equally likely as any other 

permutation.   

After shuffling the state laws, we recalculate the interaction terms between state-

level and individual-level effects.  Finally, we rerun the WHM model and collect the 

coefficients and z-values from standard significance tests.  We repeat this process a total 

of 1,000 times. 

Table 1 replicates the multivariate logit model of turnout in WHM, with 

unadjusted and clustered standard errors, and shows the estimated standard errors from 

our randomization method.  The randomized standard errors are more similar in size to 
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the clustered standard errors than to the unadjusted standard errors, though they are larger 

than both.  The only state law effect that retains significance is the incorrectly-signed 

time off work for private employees.  The interaction effects between mailed polling 

place information and education, mailed sample ballots and education, and mailed sample 

ballots and young living without parents are significant using clustered standard errors 

but lose their significance with randomized standard errors. 

 In Figure 1 (on pages 20-27), we display the results from our randomization test 

in greater detail.  We take the case of the possible effect of early voting hours as our 

example for discussion. The relevant graphs for early voting hours are presented in the 

top row.  The first graph shows the density of the 1000 estimated coefficients on the early 

voting hours indicator estimated using 1000 datasets in which we know there is no 

systematic relationship between early voting hours and turnout.  The distribution is, as 

expected, centered around zero.  The dark gray shaded area represents the 5 percent most 

extreme coefficients, and the entire shaded area covers the 10 percent most extreme 

coefficients.  The dotted line indicates the magnitude of the coefficient estimated using 

the actual observed data, the coefficient in Table 1.  From this graph, we can see that the 

estimated early voting hours effect is not rare by conventional statistical standards.  It 

does not fall among the 10 percent most extreme coefficients.  Therefore, we cannot rule 

out the possibility that the effect of early voting hours in the WHM model is just random 

noise.  We cannot reject the null hypothesis that the early voting hours effect on turnout 

is zero.  Again, the only state law effect that falls among the 10 percent most extreme in 

its randomized distribution is the incorrectly signed time off work for private employees.  
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 The second early voting hours graph in Figure 1 shows the density of the 1000 z-

values calculated using the conventional test of significance in a multivariate logit model 

on the early voting hours effect.  As in the coefficient graph, we see that the test statistic 

derived from the actual data is not among the 10 percent most extreme.  For all of the 

state laws and interaction effects, the inferences drawn from the distribution of z values is 

the same as that drawn from the distribution of coefficients.
3
  

 The third graph across the top of  Figure 1 shows the distribution of 1000 p-values 

associated with the 1000 coefficients, calculated using the conventional significance test.  

The shaded area covers p-values that are 0.1 or smaller, small enough to justify rejecting 

the null hypothesis that early voting hours have no effect on turnout.  Even though these 

p-values were calculated using data in which we know there is no systematic relationship 

between laws and turnout, 66 percent of the p-values were less than or equal to 0.1.  This 

means that using standard significance tests with this data would cause one to falsely 

infer that early voting hours have an effect on turnout 66 percent of the time, instead of 

10 percent of the time, as we would expect at the 90 percent confidence level.  Standard 

tests on almost all of the post-registration laws exhibit higher than expected type I errors.  

This underscores the importance of accounting for the clustered nature of the data.  

Additive Models 

As an alternative to the complexity of the model with interaction effects involving 

respondents and states, we can estimate strictly additive models for subgroups who might 

be particularly sensitive to the stimuli of reforms designed to induce voting among the 

registered.  Table 2 shows the results for 2 additive equations.  The top equation is for all 

                                                
3
 This is probably because we shuffle the menu of state laws, instead of each laws 

individually, which preserves the collinearity among the laws. 
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respondents. It mimics Table 1 except that the interaction terms are omitted.  With 

unadjusted standard errors, early voting and late hours appear to be highly significant. 

But they are not significant with clustered standard errors.  Time off for private 

employees is the one significant reform variable with clustered standard errors and its 

coefficient embarrassingly has the wrong sign.  When we do our thousand simulations 

using the randomization technique, none of the reform coefficients show up as 

significant. 

But maybe we could find reform effects among youth, a group that may be most 

receptive to efforts to improve turnout among the registered.  Here we see early voting 

and mailed sample ballots as significant with the unadjusted standard errors.  The mailed 

sample ballot survives as significant both with the clustered standard errors and our 

randomization test with the usual 1,000 simulations.   Evidently youth do respond to the 

receipt of a sample ballot.   

Why No Significant Effects? 

How could it be that our estimates of the effects of state reforms are largely not 

significant?  Let us use the additive model aggregated to our 42 states. Then we go step 

by step to observe the gains and limitations of statistical leverage as we go from a simple 

aggregate (42 state model) to the contextual model.   

Start with the model where the units are the 42 states and the independent 

variables are the six reform variables.    This yields Equation 1 shown in Table 3.  

Equation 2 incorporate controls for South, Battleground, and Concurrent Senatorial or 

Gubernatorial Contest. In each case, the results are disappointing for the reform 

hypothesis.  Only one variable is significant in each equation, and that is the wrongly 
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signed coefficient for time off for private employees.   Extended evening hours is barely 

significant, but only without the added controls.   Collectively, the six reforms have a 

significance level of only .07 (.08 with the controls), short of the usual .05 benchmark. 

The lesson from this barebones model is that we should want to control for 

individual effects.  Suppose we do so by adding a summary measure of the state-

aggregated individual effects from the individual-level equation.  For this variable, we 

take the prediction equation from the individual-level analysis and subtract out the 

estimated effects of the state-level variables.  Then we take the state means of this 

individual-level equation and enter them into the state-level equation.  The results are 

shown in Equation 3. 

We now have a summary control for the contribution of individual-level effects to 

state turnout.  Adding this variable allows us to explain half (but only half) of the 

variance in state turnout.  The important point is that with these controls the reform 

coefficients are no more impressive than before.  The control for state-level individual 

effects generates some churning of the estimates, but they are decidedly not very 

significant.  Only time off for public employees passes the .05 threshold, but is almost 

offset by the wrongly signed negative coefficient for time off for private employees.   

With the added controls, the net effects of the six reforms become even less significant.  

Controlling for state characteristics plus the individual-level characteristics of the state 

samples, the six reforms are significant only at the .11 level. 

While this exercise is informative, it is best to estimate the effects of the specific 

reforms from the individual-level equation.  From the individual-level equation we can 

aggregate up to the state level in terms of the individual-specific characteristics, the state 
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characteristics, and the state reforms.   For this exercise, we divide the individual-level 

prediction equation into three components—the individual-level characteristics, the state-

level traits (South, Battleground, Sengov), and the important component based on the six 

reforms.  The results are shown in Table 4.   

Here we see that all three sets of predictors are significant when aggregated to the 

42 states.  Of special interest is that the six predictors are collectively significant at the 

.05 level.  This may be the best we can do in terms of arguing for the collective 

significance of the reforms on voting rates among registrants using the 2000 CPS data.  

So, again, why cannot we do better at finding evidence that reforms boost 

turnout?  One’s intuition might be that once we know a state citizenry’s individual 

characteristics and some state characteristics in terms of whether or not the state is 

southern, a battleground state, or has a senatorial or gubernatorial contest that we can 

explain most of the factors affecting a state’s turnout.  It would seem then that with little 

further residual variation to control for, we can readily estimate the effects of reforms on 

turnout.  But our surmise is incorrect.  Combining individual characteristics (as 

measured), state characteristics, plus our reforms, we can do no more than explain half 

the variance of turnout among registrants in the 42 states.  With turnout reforms leading 

to modest effects at best, it is no wonder that the reform coefficients are rarely significant 

Conclusions 

We have used the nonparametric technique known as the randomization design to 

show that the reported effects of reforms designed to encourage turnout among registered 

voters are not statistically significant.  Specifically, we conducted multiple simulations 
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where the state labels were scrambled so that the distributions of the clusters of laws were 

assigned randomly.  Alabama might get Minnesota’s laws, etc.    

We applied this methodology both to the WHM interactive model and to the 

additive version. We also applied the additive version to a youth sample.  Based on the 

simulations, the observed coefficients for state laws from the WHM analysis of turnout 

effects are essentially not statistically significant.   The WHM model is of individual 

voters, with state-level variables as contextual variables.  Two alternatives are to employ 

multilevel modeling (with random effects) and to employ fixed effects where state 

dummy variable coefficients from the individual analysis are modeled in terms of state 

characteristics.   We anticipate that randomization tests for these models would also 

suggest reform effects outside the .usual bounds of significance. 

The data for this study is from a cross-section of registered voters in 2000.  As a 

cross-sectional study, the analysis is limited by endogeneity concerns.  Reforms are not 

distributed randomly in the states.  We might expect that states with high turnout levels 

are most prone to pass legislation that expedites the voting process. Alternatively, it 

might be that state legislatures are more likely to pass legislation as a response to a 

sluggish voting record.  These possibilities are reason why the best design for inferring 

the effects of reform legislation would be some sort of a time series design.  

Despite the “negative” nature of our findings, we do not argue that legislation 

designed to encourage turnout among registered voters is ineffectual.  The various acts 

such as early voting and late hours may well have their intended intent.  There is nothing 

in our findings that would deny that reforms influence turnout by at least a few 

percentage points. But if their effects are to push turnout up by only a few percentage 



 15 

points, the effects are not easy to estimate at the state level.  There is sufficient noise in 

the form of unobserved sources of state turnout to prevent the estimated effects to pass 

the usual thresholds of statistical significance.  
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Table 1:  Comparison of Standard Errors in Full Turnout 

Model      

        

Full Model  

 Coefficient 

Unadjusted 

Standard 

Errors 

Clustered 

Standard 

Errors 

Randomized 

Standard Errors 

Early voting 0.14 0.03 *** 0.10  0.12  

Late voting 0.08 0.04 ** 0.08  0.11  

Mailed polling place information 0.24 0.12 ** 0.22  0.25  

Mailed polling place information x 

education -0.08 0.04 ** 0.04 * 0.07  

Mailed sample ballots 0.29 0.12 ** 0.18  0.27  

Mailed sample ballots x education -0.09 0.04 ** 0.04 ** 0.08  

Mailed sample ballots x age 18--24 and 

live with parents 0.01 0.12  0.28  0.24  

Mailed sample ballots x age 18--24 and 

live without parents 0.33 0.13 ** 0.16 ** 0.19  

Time off work for state employees 0.06 0.05  0.10  0.15  

Time off work for state employees x state 

employee -0.02 0.19  0.16  0.17  

Time off work for private employees -0.19 0.05 *** 0.07 *** 0.12 * 

Time off work for private employees x 

private employee 0.03 0.06  0.05  0.06  

Southern state -0.19 0.04 *** 0.08 ** 0.13  

Battleground state 0.08 0.03 ** 0.07  0.11  

Concurent senatorial or gubernatorial 

contest -0.09 0.04 ** 0.08  0.13  

        

N=44,859        

*p<.10; **p<.05; ***p<.01; N=44,859        
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Table 2.  Additive Models for All Respondents and for Youth, 18-24 only 

Additive Model, All 

Respondents Coefficient 

Unadjusted 

Standard 

Errors  

Clustered 

Standard 

Errors  

Randomization 

Standard 

Errors 

Early voting 0.14 0.03 *** 0.10  0.11  

Late voting 0.08 0.04 ** 0.08  0.11  

Mailed polling place 

information 0.04 0.06  0.14  0.16  

Mailed sample ballots 0.09 0.05  0.12  0.16  

Time off work for state 

employees 0.06 0.05  0.10  0.15  

Time off work for private 

employees -0.18 0.04 *** 0.06 *** 0.13  

Southern state -0.19 0.04 *** 0.08 ** 0.12  

Battleground state 0.08 0.03 * 0.07  0.11  

Concurrent senatorial or 

gubernatorial contest -0.09 0.04 * 0.08  0.13  

        

N=44,859      

*p<.10; **p<.05; ***p<.01      

Additive model, 18-24 only  

 Coefficient 

Unadjusted 

Standard 

Errors 

Clustered Standard 

Errors 

Randomization 

Standard 

Errors 

Early voting 0.20 0.09 ** 0.13  0.16  

Late voting 0.12 0.09  0.12  0.15  

Mailed polling place 

information -0.15 0.15  0.19  0.21  

Mailed sample ballots 0.49 0.13 *** 0.20 ** 0.22 * 

Time off work for state 

employees -0.16 0.12  0.15  0.21  

Time off work for private 

employees 0.06 0.10  0.13  0.18  

Southern state -0.06 0.10  0.10  0.18  

Battleground state -0.01 0.09  0.11  0.15  

Concurrent senatorial or 

gubernatorial contest -0.30 0.10 *** 0.10 *** 0.18 * 

        

N=3,697        

*p<.10; **p<.05; ***p<.01;  

 

Individual-level variables are omitted.. 
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Table 3.  Aggregate Analyses Using States as Units 

 Equation 1 Equation 2 Equation 3 

 Coefficient 

Standard 

Errors 

 

Coefficient 

Standard 

Errors 

 

Coefficient 

Standard 

Errors 

 

Early voting 0.17 0.08 * 0.06 0.09  0.00 0.09  

Late voting 0.04 0.13  0.13 0.09  0.10 0.09  

Mailed polling place 

information 0.01 0.04  -0.03 0.13  0.00 0.13  

Mailed sample ballots 0.19 0.12  0.03 0.04  -0.02 0.04  

Time off work for 

state employees -0.23 0.10 * 0.15 0.12  0.22 0.12 * 

Time off work for 

private employees 0.17 0.08 * -0.27 0.10 * -0.16 0.10  

Southern state    -0.22 0.10 * 0.56 0.18 ** 

Battleground state    -0.03 0.09  0.06 0.07  

Concurrent senatorial 

or gubernatorial 

contest   

 

-0.03 0.10  0.26 0.10 * 

Mean individual 

predicting from 

respondent 

characteristics   

 

   1.74 0.36 *** 

Adjusted R squared 0.14   0.19   0.52   

Probability the 6 

reforms are 

collectively significant .07  

 

.08   

.11   

N=42          

*p<.05; **p<.01; ***p<.001         
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Table 4  Predicting State Level Turnout from Three Components 

 Coefficient Standard 

Error 

 

Individual Level Predictions 1.20 0.29 *** 

State Characteristics 1.50 0.68 * 

State Level Reforms 0.63 0.31 * 

N=42 

Adjusted R squared = 0.49 

*p<.05; **p<.01; ***p<.001 
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