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Abstract:   Suppose a legislature votes on many issues, one dimension at a time, deciding 

each on its merits as a one-shot decision.     The result is a dimension-by-dimension 

median voter outcome.   This paper shows that after policy is decided on a large number 

of dimensions in this manner (where the number of dimensions equals the number of 

voters, or sometimes even less), the net result is Pareto inferior.  That is, after voting the 

preference of each issue’s median voter’s over many issues,  there exist other policy 

combinations that every legislator would have preferred to the median-by-median 

decision.   The implications are discussed.    
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1. Introduction 

What accounts for the organizational structure of legislatures?  By  the “distributive” 

model, legislator organize their institutions to enhance “legislative exchange,”  whereby 

legislators trade votes and otherwise bargain, explicitly and implicitly,  across issues.  See  

Shepsle and Weingast (1995) for the classic statement.   Others, notably  Gilligan and 

Krehbiel (1995), argue against the feasibility of the distributive model, largely because  

bargains can readily be thwarted by the majority acting in its short-term interest.
1
  This 

paper addresses the question of the desirability of organizing legislators for redistributive 

purposes.  It asks a seemingly naïve question:  assuming that legislatures can enact 

safeguards to protect their bargains, does legislative exchange enhance the legislature’s 

collective welfare?
2
 

I set the stage as follow.  In the absence of legislative exchange, legislators vote 

on each issue as it arrives in the legislative hopper for a one-shot decision in isolation 

from those made earlier and those expected to come later.  Assuming that each issue 

represents a single dimension, the default outcome is the preference of each issue’s 

median legislator.
3
  With different legislators at the median on different issues, the net 

result is a multi-dimensional intersection of medians, which we can label the “median 

vector.”  Given this setup, the question is whether legislators have an incentive to 

coordinate in order to improve upon the median vector as the legislative outcome.   

                                                 
1
 For instance, the floor median can overrule the committee median. 

  
2
 In recent years, the term “legislative bargaining” is often associated with the  rich literature spawned by  

Baron and Ferejohn’s (1989)  divide-the-dollar game.  The present paper bears no direct relationship to that 

rich literature.    

 
3
 On each issue, the median voter position is the decisive Condorcet-winner of the tournament of choices, 

defeating all other alternatives in a straight pair-wise vote  (Black, 1948).     
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 Voting separately on each dimension presents a policy solution that, at least at 

first glance, is not only stable but also attractive.   Voting one dimension at a time 

guarantees a predictable solution as the median on each dimension—a structurally 

induced equilibrium (Shepsle, 1978).   In addition to being stable, the intersection of 

medians is attractive in the sense that it must lie in the vicinity of the center of the policy 

space defined by the distribution of preferences.     

    However, the prediction of median-by-median outcomes when voting one 

dimension at a time is dependent on the assumption that each dimension is voted upon in 

isolation—that the legislators are unwilling or unable to coordinate on issues that arrive 

on the agenda at differing times.  Suppose instead that legislators are capable of making 

binding agreements over issues decided at different times.  Then, they no longer have the 

incentive to vote sincerely on individual dimensions.  Instead, they can exchange favors 

on different issues in a series of over-time transactions.     For instance, a minority with 

intense preferences on a current issue can maneuver the outcome away from the median 

voter’s position by offering others the promise of future legislative favors in return for 

going along.    One could imagine flurries of IOUs offered and later paid off, with the 

participants gaining from the net exchange.    

 In extreme, legislative exchange is modeled as a full-blown political market, with 

complex transactions of current  payoffs in exchange for future favors (Coleman, 1966; 

Koford, 1993; see also Philipson and Snyder, 1996; Groseclose and Snyder, 1996).    

Other models posit institutional equivalents of markets while avoiding many of the 

complications that an actual political market would involve (Weingast and Marshall, 

1988).  One mechanism is a committee system where legislators self-select onto 
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committees with jurisdiction over the issues one which they have the strongest interest 

(Shepsle and Weingast, 1987).  In other models, party leaders broker complicated deals 

among members of the dominant party (Mayhew, 1966; Koford, 1992; Cox and 

McCubbins, 1993, 2005). 

 While the parties to a political exchange presumably benefit, we can ask whether 

the legislature in the aggregate also benefits.    When in the economic rather than the 

political marketplace, trade is “good” in the sense that all traders gain from the exchange, 

while (presumably) nobody is hurt.   But with political exchange, the trade’s beneficiaries 

gain at the expense of non-traders, who in turn are motivated to respond with their own 

counter-proposals.    This problem of “negative externalities” contributes to the inherent 

unpredictability and instability in the modeling of political trades.   It also presents a 

normative ambiguity regarding whether vote trading is, on balance, good.   When trading 

involves negative externalities, helping some but hurting others, it becomes an empty 

debate whether such exchanges produce a net increase in aggregate welfare.  There can 

be no convincing verdict because one cannot make interpersonal comparison of utilities.   

 One way out of this dilemma is to focus attention on legislative trades that offer 

“Pareto improvements”—where some gain and none lose from the transaction.   By the 

rules of evaluating social welfare, “Pareto improvement” provides a decisive criterion.  If 

all voters prefer a to b (or are at least indifferent), “society” prefers a to b.  For “society” 

to select b over a would be irrational (Arrow, 1951).  By extension, for a legislature to 

resist a trade that is universally preferred to the outcome without trading would be 

irrational.   Put positively,  Pareto optimal trades unambiguously expand legislative (and 

presumably societal) welfare.  They are good.     
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 We started with the potential policy outcome of the median position on each 

dimension—the “median vector.”   The median vector is the policy outcome when each 

policy issue is one-dimensional with no bargaining across dimensions.   Could it be  

possible for the legislature to engage in a complex political exchange that leads to 

everybody being better off than with the intersection of medians?   The median vector 

now serves as our reversion point.   We can ask, under what conditions could legislative 

exchange result in a “Pareto improvement” over the median vector?  That is, under what 

conditions would alternatives exist in policy space that would “Pareto dominate’’—be 

universally preferred to—the median vector?  Put still differently, under what conditions 

is the median vector part of the “Pareto set”—that is, cannot be changed without making 

some actors worse off?      

The difficulty with Pareto improvement as a criterion is that finding policies that 

make none worse off would seem to be a daunting challenge, especially in a legislative 

setting.  The search is for instances when no voters would prefer the median vector to the 

proposed alternative.   Under what circumstances would there be one or more 

multidimensional outcomes that all voters would prefer to the median voter position on 

each dimension? 

This paper argues that under very general conditions, the median vector is Pareto 

inferior.  That is, under very general conditions, there exists a set of policy alternatives 

that all legislators would find preferable to the median vector that would arise from 

dimension-by dimension decision-making.   It follows that if legislatures could enforce 

institutional rules to create stable outcomes that are Pareto-superior to the median vector, 

they have a universal incentive to do so.   
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What are these very general conditions under which the median vector is Pareto-

inferior?   Whenever the number of issue dimensions (K) exceeds the number of 

legislative voters (N), the median vector is (except for rare knife-edge conditions) Pareto-

inferior.  There are even circumstances where the median vector is Pareto inferior even 

when N>K.  And the result is not an artifice of the convenient assumption that isolated 

legislative decisions are single-dimensional.  As we will see, if single issues are 

sufficiently complicated to involve multiple dimensions, the resultant collection of one-

shot decisions will become Pareto-inferior even before the number of issues equals the 

number of voters. 

 With sufficient multi-dimensional complexity when policies are summed across 

issues, there exist locations in policy space that all voters in the legislature would prefer 

to the intersection of medians.  After voting separately on many separate issue 

dimensions, the legislators would look back with universal regret at their collective 

choice.   If they are able to anticipate this result, their unanimous choice at the outset 

would be a coordinated move from the median vector to a unanimously preferable 

alternative location in issue space.     

 The result that median-by-median outcomes over multiple dimensions are Pareto 

inferior may appear to be counterintuitive.   Yet voting with “many” dimensions has 

received little attention compared to models of legislative voting in one or two 

dimensions.   Several explanations can be offered for the general avoidance of models 

with more than two dimensions.   First, it is widely thought that such an extension is of 

little value—that the key distinction is between the order of one dimension and the chaos 

of many (2 or more).   Second, models in three or more dimensions do not allow the easy 
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geometric depiction that models in one or two dimensions allow.  Third, students of 

congressional voting find that one or two dimensions is a sufficient number to describe 

the general structure of roll call voting (Poole and Rosenthal, 1997, 2007; Groseclose, 

Levitt, and Snyder, 1999).
4
      

 

2. The Model 

 
 In the model, the legislature decides a series of one-dimensional issues, one at a 

time.     Each issue represents a unique dimension in the sense that the array of ideal 

points differs (even if slightly) from one issue to another.
5
   After policy is decided on an 

issue, the decision cannot be reviewed; instead, the legislature decides on the next issue 

brought forth for decision.   The sequence of issues follows an agenda determined by 

nature.  The legislators can observe this sequence and deduce expectations of future 

sequences accordingly, but they cannot anticipate the menu of future issues with 

certainty.      

  From the usual assumption of weighted Euclidean preferences over separable
6
 

policy dimensions, utility is defined in terms of quadratic loss:   

                                                 
4
 I am aware of only one previous discussion of the Pareto efficiency as the number of dimensions expands.   

In his interesting chapter on “pencil exercises,” Tullock (1967) shows by example a curious pattern 

regarding dimensionality and the Pareto set:  As the dimensionality of the space increases, the Pareto set  

grows at a slower rate than the potential issue space.  The result is that the Pareto set shrinks as a proportion 

of the total space.     As Tullock shows, this shrinkage is fastest at the point when the number of dimensions 

expands to equal the number of voters.    The implications for deciding policy on the dimensions separately 

versus collectively, however, is not explored.   

 
5
 This definition implies no expectation of orthogonality or statistical independence of preferences on 

different dimensions as is common in the factor analysis literature.     

 
6
 With separable preferences, the median on each dimension is the equilibrium outcome with voting one 

dimension at a time.  Uncomplicatedly, the equilibrium is achieved by sincere voting.   With the 

combination of non-separable preferences plus weighted Euclidean distance,   dimension-by-dimension 

voting becomes sophisticated, requiring anticipation of future votes which condition the current choice..  

For an informative literature review, see Krehbiel, 1988.    
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(Equation 1)      2
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where Ui =  voter i’s utility from policy outcomes on K dimensions,  Zik = voter i’s 

position on dimension k and Qk = the policy outcome on dimension k, and wik = voter i’s 

intra-personal salience weight to dimension k.    To aid the presentation, the zero-point on 

each dimension is set to the dimension’s median.    In other words, the zero origin in 

issue space is set to the median vector.    

 The salience weights capture the idea that legislators differ in the intensity of their 

preferences across different issues.    In vote trading models, intensity is typically part of 

the discussion, with voters conceding on some issues to gain on issues they care more 

about.    Although gains-from-trade are enhanced when legislators vary in how they 

weight specific issues,  the mapping of when median outcomes are Pareto-optimal does 

not depend on differential salience weights (although the severity of the possible 

distortion does).  Thus, for most of the presentation below,  the simplifying assumption is 

invoked that the  wik salience weights are constant for all k for all N voters.
7
   

 As issues are  decided one dimension at a time, they cumulate to form a multi-

dimensional verdict.    At  any moment, the N-member legislature has voted on  K 

separate issue dimensions, yielding as the cumulative result a K-dimensional policy 

outcome, QK.    With the single (one-dimensional) issues voted upon one at a time as a 

series of one-shot decisions,  the multi-dimensional outcome is in equilibrium at the 

median vector MK, the intersection of K median voter positions (M1, M2…MK) on K  

dimensions.   

                                                 
7
 Thus, for example, the assumption is that in two dimensions all indifference curves are circular. 
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 To summarize, the model has legislators repeatedly casting votes and deciding 

one new single-dimensional issue after another, always moving to the next issue without 

revisiting those that have gone before.   Each dimension is different from its predecessors 

by the modest requirement of some novelty (perhaps minor) in the relative positions of 

the legislative bliss points.  Issue space is Euclidean (quadratic loss) with uniform 

salience weights across issue dimensions.   The dimensions are scaled so that the median 

vector, the outcome of interest, is at the origin.  

 The assumptions of one-dimensional issues and uniform salience weights may 

appear to be confining.  However, these restrictions facilitate the discussion which 

follows.   They are relaxed later in the paper, as the model generalizes in interesting ways 

to multi-dimensional issues and is enhanced rather than hindered by the introduction of 

variable salience weights. 
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Figure 1.  Seven voters, two dimensions. 
 

.   

 

3.  The Setup: Voting in Two Dimensions 
 

 The typical graphic presentation of spatial models of legislative voting depicts 

some small odd number of voters’ ideal points in two dimensions with circular 

indifference curves..    Figure 1 presents such a graph, with seven arbitrary ideal points 

for seven voters.  The polygon connecting the outer ideal points comprises the convex 
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hull which defines the Pareto set.
8
  For any point g outside the Pareto set, the seven voters 

can find a set of points within the Pareto set that they all prefer to g.   The intersection of 

the two medians (M) represents one point well toward the center of the Pareto set. 
9
  

 One might think that this depiction in Figure 1 must generalize to all multi-

dimensional arrays of ideal points.   The Pareto set contains so vast a space that one 

might think it to be implausible that the median vector could lie outside the Pareto set.  

But that surmise is incorrect.     To set up an illustration, we start with a new example—in 

two dimensions but with only 3 voters.  

 

M

A

B

C

x

y

P a re to  S e t

 

Figure 2.  Three voters,  two dimensions. 

 

Figure 2 presents an arbitrary 3-voter issue space in two dimensions, where M = 

the intersection of medians on the x and y axes.  The convex hull defining the Pareto set  

 is simply the triangle connecting the ideal points of the three voters, A, B, and C.  As 

before the intersection of medians is within the confines of the Pareto set.
10

  

                                                 
8
 On the Pareto set being bound by the convex hull, see (for instance), Schofield (1995).  The convex hull is 

the smallest boundary that can encompass all the data (ideal points).  See also the discussion below.  
9
 And, although vulnerable to defeat like any other position in two-dimensional space, the median vector is 

reasonably close to the center of the electorate.  This would also be true for alternative versions of the 

median vector produced by rotating the axes.  In short, with a few voters distributed reasonably in two-

dimensional space, the intersection of medians is not only within the Pareto set but also a reasonably 

centrist outcome.   
10

 Note, however, that with three voters, if the same voter is the median on both dimensions, then the  

median  vector is at a corner of the Pareto set.   
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 Figure 2 portrays a  familiar story about the intersection of the medians.   

Following voting that takes place one dimension at a time, the median vector is the 

equilibrium outcome.    We cannot claim that the median vector would necessarily be the 

policy choice if voters were to vote on both dimensions at once.   But it would be a 

plausible choice, and passes the minimal standard that it lies within the Pareto space—

there exists no place in policy space that all three voters would agree is preferable.  But 

the three voters of Figure 2 decide only two issues.   When they also vote on a third 

dimension, everything changes.        

 

4.  Three voters and three dimensions 

 
 Next we introduce a third dimension.   Figure 3 presents a 3-dimensional variation 

on the 2-dimensional structure of Figure 2.   In addition to the horizontal (x) and vertical 

(y) dimensions, we add a third (z) dimension going inward from (or behind) and outward 

from (or forward of) the xy plane.   The triangle ABC replicates the Pareto set of Figure 2 

in the x and y dimensions.    We assign voter positions on the third dimension  and 

observe what happens.  Since voter A is the median on the vertical  y  dimension and 

voter B is the median voter on the horizontal  x dimension, let us make voter C the 

median on the in-out dimension.  This is visualized in the graph by moving voter A 

inward away from  the viewer (to A’) and voter B outward toward the viewer (to B’), 

while leaving voter C on the original plane, as the median voter on dimension z.   As this 

example is constructed, the location of the median vector M is unchanged from Figure 

2—the intersection of the three medians is identical to the original intersection of 

medians in two dimensions.   
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Figure 3.  Three voters, three dimensions. 

 

 The new Pareto set  is the convex hull connecting the three revised ideal points 

now at locations  A’, B’, and original C.   The space defined by the convex hull again is a 

two dimensional plane, but now one that cuts across the three original dimensions.  As 

the Pareto set is transformed from the triangle ABC to the triangle A’B’C, the median 

vector M  no longer is  part of the Pareto set.    

 To get a fix on the 3-dimensional argument as depicted in the limited 2-

dimensional medium of Figure 3, note the line CD, where the triangles ABC (on the plane   
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of the page) and A’B’C  (passing through) intersect.  For the portion of ABC within the 

triangle ACD,  triangle A’B’C passes underneath (i.e., lower z);  for the portion of ABC 

within the triangle BCD, triangle A’B’C passes overhead (i.e., higher z).    Since the 

median vector M is within BCD,  there is an area of A’B’C that is overhead of  the median 

vector M.     This is the neighborhood of the Pareto set A’B’C  that all three voters prefer 

to the median vector.    

 Figures 4 and 5 depict the same example from different perspectives.  Figure 4 

presents triangle A’B’C on the two dimensional plane of the paper, as the original x, y, 

and z axes are rotated to two new axes x’ and y’.    The median vector M is underneath the 

page, not shown, on dimension  z’ outside the Pareto set.   The point L on the plane is the 

end-point of a line connecting M to the Pareto set that is perpendicular to the Pareto set.  

(M is directly underneath   L.)  Passing through M,  each voter has a circular indifference 

sphere.   These three spheres overlap.   The indifference sphere of the three voters 

overlap not only in pairs  (indicative that M is not a Condorcet winner) but also overlap 

as a group of three, consistent with  M  being outside the Pareto set.    Although Figure 4 

does not show the median vector M and its three indifference spheres, it does display the 

three indifference curves traced  by the three indifference spheres which touch M as they 

cross the Pareto set plane.   For each voter, the radius of the circular indifference curve is 

the square root of the sum of the squared distance from the voter’s preference  to L  plus 

the square of the distance between L and M.    Figure 5 shows the geometry from a 

different perspective, with the z’ axis up down and the x’y’ plane as a cross-section for 

one voter,  voter C.    Like voters A and B, C is closer to L than to M, the median vector. 
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Figure 4.  The Pareto Set A’B’C (from Figure 3). 

 

 In Figure 4, the interior bounded by the three indifference curves comprise a  

“unanimity set.”   All three voters would prefer to be anywhere within this set than at the  

intersection of the three medians, below the triangle on the page..   Figure 4 also shows a 

wider win-set (the unanimity  set plus the three areas between two indifferent curves) 
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where a majority would prefer to M as the policy location.
11

   Much  (but not all) of the 

Pareto set is within the win-set.   

  

    

C

M

L

x'y' plane
xy plane

 
 

Figure 5.  A cross-section (from Figure 3). 

 

Below, we will see that the example of Figure 3 generalizes.  For three voters and 

three dimensions, the median vector almost always lies outside the Pareto set.   For 

intuition, consider whether the  illustration in Figure 3 could be a mere contrivance in 

choosing the coordinates on the third (z) axis.    Start with the original coordinates for 

A,B, and C on the x and y axes and then fix coordinates on the z axis for two voters, 

perhaps keeping C at zero and arbitrarily moving B to B’ as shown.  Now, select a 

hypothetical location on z for voter A.   It should be obvious that of all the possible 

coordinates on the z axis,  only one would allow the ABC and A’B’C planes to intersect 

                                                 
11

 The unanimity set and the win set each encompass a larger three-dimensional volume than the portions 

shown in the two-dimensional Pareto set. 
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through the two-dimensional median vector, thereby placing the three-dimensional 

median vector precisely on the A’B’C’ Pareto set.    We discuss the mathematics of this 

below. 

5.  The General Case: When is the Median Vector Outside the Pareto Set?  

 This section discusses the conditions under which the median vector is within the 

Pareto set.  The presentation here covers the simple case without salience weights (i.e. 

when all intrapersonal salience weights equal 1.0).  A more formal proof, covering the 

general case with interpersonal salience weights, is presented in the appendix.  

 Consider the following mental experiment.  A researcher is given a “gold mine” 

of data, consisting of the actual ideal points of Congress members on each of  K single-

peaked issue dimensions.  Our researcher’s natural inclination might be to first conduct 

some sort of factor analysis on the data.  Most likely, the researcher would identify two 

major factors, akin to Poole and Rosenthal’s two dimensions, that define the data along 

with a member-specific error term.   Suppose, however, that for some reason  the 

researcher were to continue the extraction of factors until all error disappears and the data 

were entirely “explained.”  The researcher would find an absolute ceiling at N-1 factors.  

This is because mathematically,  the number of factors (or explanatory dimensions) 

cannot be as large as the number of observations (legislators).    

 This is the same limit that applies to the Pareto set.  The number of dimensions 

comprising the Pareto set (J) cannot be greater than N-1.  This is no problem if the 

number of issue dimensions (K) is less than the number of voters (N).  But when K equals 

N or greater, the medians on the K dimensions are in a larger K-space than the J-space of 

the Pareto set.  Thus, with N or more dimensions, the J-space describing the Pareto set is 
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slimmer than the K-space where the median vector resides, with the consequence that the 

median vector defined in K dimensions is unlikely to be within the Pareto set.   

 A more formal argument follows.  In the general model,  N legislators vote on K 

one-dimensional issues, where the distribution of ideal points on each dimension is 

unique and not a scalar product of the ideal points on another issue.
12

  On each of  K 

dimensions, voters decide policy positions (Q1,Q2…QK), which form the column vector  

QK as the grand policy decision  over K dimensions.  The feasible set where voters could 

choose QK is anywhere in K-dimensional space; i.e., QK
K

ℜ∈ .  When voting takes 

place one issue at a time as a series of one-shot games, the predicted net outcome is the 

median vector, QK=MK.   An important assumption is that we rule out the trivial case 

where one voter is at the median on all K dimensions, .so that the median vector will not 

equal any one voter’s composite  K-dimensional ideal point.
13

    

 The Pareto set  is bound by  the convex hull of the ideal points—the minimum 

boundary needed to cover the ideal points—as if with K-dimensional Saran Wrap.  The 

convex hull (Pareto set) includes all the outcomes definable as a weighted sum of the N 

multi-dimensional ideal points, for all possible combinations of weights for the N voters, 

where each voter is assigned a πi weight. 

                                                 
12

 Allowance must be made for repeated appearance of issues with the identical one dimension.   Repeated 

issues can be treated as one.  For instance, consider  ideal points on issue b as a linear function of ideal 

points on issue a:  b=ca where c= a scalar constant, scaled so c>0.    Scores on the combined issue 

dimension k take the form Zk=a(1+c)
1/2

     
13

 From the previous footnote,  one-dimensional distributions of preferences that repeat themselves are 

treated as single dimensions.   Treating such instances as one single policy dimension involves the implicit 

assumption that every iteration of the same preferences on the dimension  reproduces the identical  policy 

outcome, whether the median or some other position.     In other words, the feasible set of outcomes is 

assumed to be constant for each repetition.   As a purely technical matter, we could instead treat each 

repetition as a separate dimension. This would widen the number of dimensions required to define the 

feasible set while complicating the algebra. 
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for all Qk in QK.  If  a policy  outcome is not definable as a weighted sum of ideal points, 

it  is not within the Pareto set.
14

   The appendix  presents the circumstances when the 

median vector can and cannot be definable as a π-weighted average of preferences, and 

thus part of the Pareto set.   Here, we offer a simpler discussion. 

  When N=K.  When N=K, the ideal points on any one k dimension are linear 

dependent on the ideal points on every other dimension.  With this redundancy,  the 

number of analytical (Pareto set) dimensions (J) must always be one less than the number 

of voting dimensions (K).   It takes only N-1 dimensions to fully describe the coordinates 

of N data points.   

 To illustrate, refer again to Figure 3, where with K=N=3, J=2.  Even though 

Figure 3 depicts three voting dimensions, the Pareto set connecting the observations is a 

two-dimensional plane.  In general, with K dimensions and N observations, it takes K 

dimensions to connect the observations, but only up to a maximum of N-1.   

 For the three-dimensional world of Figure 3, two dimensions are sufficient to 

describe the three data points because the coordinates in any one dimension (e.g., the z 

axis) are linearly dependent on  the coordinates in the other two (e.g., the x and y axes).   

To see this, let us first define the three coordinates (Zik) describing the three-dimensional 

ideal points as xi, yi, and zi, where each axis is calibrated so that the origin is at the 

median.  

                                                 
14

 For this mathematical definition of the convex hull, see (for example), Sydsaeter, Strom, and Berck 

(2000), p. 79. 
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(Equation 2)                        0 1 2i i iz x yλ λ λ= + +   

 

 With three observations, a “regression” of  z on x and y must yield perfect 

prediction.   More generally, with N ≤ K observations, regressing ideal points on one 

dimension upon the scores on the other dimensions must yield an “R squared” of 1.0, no 

matter what their values.  (There are no remaining degrees of freedom.)  But the median 

vector has no such restriction.   While the Pareto set is restricted to an N-1 dimensional 

surface,  the median vector is free to locate in K-dimensional space.   Under these 

circumstances, the chance is remote that the median vector would intersect the Pareto set. 

 A remote chance of course is not an impossible chance.  We should inquire, what 

are the conditions that produce the unlikely outcome where the median vector can be 

within the Pareto set even when N=K?   As we will see,  when issue-space is calibrated 

with the median vector at the origin, with N=K the linear equation defining one 

dimension in terms of the others must have an intercept (constant term) equal to zero.   

 In the 3-voter, 3-dimension case, the 2-dimensional J-space describing the Pareto 

set  is a special rotation of the 3-dimensional axes of K-space.   Consider again equation 

2.  The axes of x and y can be rotated so that the coordinates of the three ideal points 

become identified in terms of  only two dimensions, x’ and y’, where  '

11i ix xλ= + , 

'

21i iy yλ= + .  This is the plane defining the Pareto set. Ideal points are now constant on 

the third dimension,  as '

iz =λ0.   We  immediately see the rare condition for the median 
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vector to be within the Pareto set:  with the zero point on each dimension set to its 

median, the  only way that '

iz  can be on the plane of the Pareto set is when λ0=0.
15

    

 Thus, the requirement for the median vector M3 to lie within the Pareto set is that 

the “intercept” of the regression of z on y and x must take the specific value of  λ0=0.   

The results readily generalize to more than three issue dimensions.    For the general case 

where K=N,  equation 2 becomes: 

 

(Equation 3)                   
1

0

1

N

iK iN k ik

k

Z Z Zλ λ

−

=

= = +∑  

 

where the ideal points on the Kth (Nth) dimension are linear dependent on the ideal points 

on dimensions 1 through K-1.  The Pareto set includes the convex hull defined by the 

coordinates 
1

2

1

 where 1
K

' '

ik ik k ik

k

Z Z Zλ

−

=

= +∑  and 0λ is constant for all voters.   Only if λ0=0 

will the median vector MK be in the Pareto set.   

          When K>N. As we have just seen, when the Nth issue dimension is reached 

(K=N),  the chance of a median vector within the Pareto set becomes remote.   As still 

additional issue dimension are incorporated  (K=N+1, N+2, etc.) the possibility becomes 

even more remote.   With each new issue, the equation for  Zi,N+m  takes the form of 

Equation 3, above:  

                                                 
15

 The methodology of this section involves  nothing more than applying the Pythagorean theorem to 

standard problems of solid geometry.   
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(Equation set 4)        
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where the λ’s are subscripted twice, for past issues 1 through N-1 and  for the sequence of 

the new  issue, N+1 through N+m.   For the median vector to be within the Pareto set, the 

data must run the gauntlet whereby the intercept λ0k must be zero for each issue from N to  

N+m.
16

  Then for issue N+m+1 and each one thereafter, the requirement occurs again.   

While it is theoretically possible for the median vector to in the Pareto set, the likelihood 

is extremely negligible—roughly  the same as the miniscule  likelihood that the next set 

of multi-dimensional set of ideal points will have the core solution of a median in all 

directions.
17

    

 Moreover, with each new issue, the evolving median vector outcome moves 

farther and farther from the Pareto set.   We have seen that for N dimensions, the shortest 

Euclidean distance from MN   to the Pareto set is λ0N  (using the notation of equation set 

4).  For N+m decisions, the difference expands to 2 2 2 2

0 0 1 0 2 0 +. . . ,N ,N ,N ,N mλ λ λ λ
+ + +

+ + .
 

                                                 
16

 For this exercise, the order of issues is arbitrary.  One could scramble the order from the first to the 

N+mth issues and the equations predicting the final N+m issues from the first N-1 must all have zero 

intercepts.   
17

 The challenge can be appreciated the following way.  With K=N ,  finding the median vector within the 

Pareto set is equivalent to a 2-dimensional plane cutting through 3-dimensional space and hitting a 

particular point in this space head on.  With K=N+1, the equivalence is for a 1 dimensional line cutting 

through 3-dimensional space hitting a particular point head on.  
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 When N > K but J<K.   An objection to this analysis might be that while 

legislatures vote on many issues, the various issue-specific dimensions can be 

decomposed into only a small set of analytical dimensions.  For instance, suppose that 

legislative ideal points could be fully explained with no error by only two Poole-

Rosenthal type dimensions.  How would this affect our theoretical result?  The answer is 

that when the data can be explained with fewer than N-1 dimensions (but of course more 

than one), the median vector lies outside the Pareto set even when K<N; that is, even 

when there are fewer issue dimensions than voters. 

 The median vector is likely to lie outset the Pareto set when K>J+1.  Normally 

J=N-1 because that the data (ideal points) can be fully explained by N-1 dimensions.  

Conceivably, however, J could be less than N-1 as in our hypothetical example where 

two Poole-Rosenthal type-dimensions predict perfectly. However, if all ideal points can 

be “explained” by a mere J dimensions where J is less than N>K but J<K, then the 

median would depart from the Pareto set after only J+1 dimensions.  The result could be 

that that the median is unlikely to be part of the Pareto set even when a large legislature 

votes on only three issues! 

   To see this, first consider the following data generating process.  Suppose that 

ideal preferences on each of  K dimensions are determined as: 

 

(Equation 5)      1 1 2 2ik k i k i ikZ F F uλ λ= + +  

 

where (in terms of deviations from the mean rather than median vector) F1 and F2 are two 

common ideological factors and uik is a normally distributed  disturbance.   Here, 

preferences on the single issue dimension k derive as linear functions of the two factors 

F1 and F2  (with the linear weights varying from issue to issue)  plus idiosyncratic 
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individual variation    Defined as the coordinates of Zi over K issue dimensions,  the K 

dimensions will be non-redundant as long as K<(N-1).   But now suppose that preferences 

are drawn as various linear functions of F1 and F2 as above, but without error.  That is, 

preferences vary across issues as a function of the relative weighting of F1 and F2, but 

that is all: 

(Equation 6)        1 1 2 2ik k i k iZ F Fλ λ= +  

If equation 6 is true,  preferences on any two k dimensions  would completely predict the 

preferences on each of the remaining K-2 dimensions.   Thus, two dimensions would be 

sufficient to describe the distribution of ideal points (the J-space).  Yet, with N=3 or 

greater, they would generally be insufficient to describe the coordinates of the median 

vector (in K-space).       

 Two visualize this, consider a simple three-issue example, where ideal points for a 

large legislature are identified as positions on x, y, and z where z=λ+x+y.  Ideal points on 

z equal the sum of x and y in terms of deviations from the mean., Calibrated with the 

median vector at the origin, z has a λ component to account for the fact that the median is 

not necessarily the mean.   The  Pareto set would be a plane parallel to the x,y plane but 

with a deviation of λ up or down.
18

  With the ideal points clearly defined in two 

dimensions, one might think that the median on the x and y dimensions would comprise 

an attractive solution.  Yet, there would be certain positions above or below the x,y 

median vector that all members would prefer to the median vector. 

                                                 
18

 Picture the example in three dimensions, x, y, and z, where z is constrained to be λ+x+y. All observations 

are on the plane where x’=2x and y’=2y, where the perpendicular distance to the origin (the median vector) 

is. λ.  
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 Of course the gap between the mean and median can be trivial.  The point, 

however, is the existence of the paradox that when the issues dimensions are fully 

described by a small number of underlying analytical dimensions or “factors” (but more 

than 1),  as soon as the number of issues exceed the number of factors  (J), the median 

vector will probably lie outside the Pareto set.    Thus, the more orderly the data, the 

sooner the median vector fails as a plausible outcome.    

    

6.  Intensity of Preferences 

 
So far our analysis has been restricted to examples where the N voters all weigh the K 

dimensions the same, in effect giving each dimension a weight of 1.0.     This  restriction 

has kept the examples simple.  The requirement of concave loss functions is sufficient to 

drive the result.
19

    In the lore of politics, however, it is  varying intensities of preference  

rather than concave loss functions that motivates discussions of vote trading, logrolling, 

horse trading, and the like.   The standard imagery is of  legislators trading their votes on 

issues upon which they care little for better outcomes  on issues about which they care a 

lot.   The net result is a majority coalition of indefinite size voting into law a net policy 

reflecting the preferred positions of intense minorities on each issue.    

 Differential intra-personal weighting of issue dimensions  affects the Pareto set.    

Instead of a J-dimensional hyper-plane, the Pareto set  is a curved J-dimensional hyper- 

surface.   For three voting dimensions and J=2, the shape is a bowl-like curved surface 

rather than a flat plane.   The curvature of this bowl depends on the distribution of issue 

                                                 
19

 As an alternative to quadratic utility loss,  one can consider utility loss as the sum across dimensions of 

the absolute distance from one’s ideal point.  In two dimensions, this is the city-block or taxi-cab model.  
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salience relative to ideal points.
20

  If voters’ ideal points  tend toward the median on their 

most salient dimensions, the crown of the curved surface of the Pareto set is pulled from 

the plane of the convex hull in the direction of the median vector, shrinking the distance 

between the median vector and the Pareto set.  But if voters’ ideal points tend to be more 

extreme on their most salient dimensions, the crown of the curved surface is pulled from 

the plane of the convex hull in the direction further away from the median vector, thus 

accentuating the distance between the median and the Pareto set.
21

     

 Thus, when legislators care the most about issues upon which they hold relatively 

extreme positions,  the cost of a median vector outcome increases beyond  the cost when 

legislators weigh all issues equally.    Put positively, caring most about extreme positions 

enhances the value of gains from trade over and above the reversion point of the median 

vector.   

 

7.  A variation: Multi-dimensional decisions, one at a time  

So far, we have enforced the assumption that  issues  arrive  well-behaved, with single-

peaked preferences along one dimension, a contrivance that induces  the median as the 

one-shot equilibrium outcome.   In this section we consider what happens if issues arrive 

instead in multi-dimensional form as m-dimensional decisions where 1<m.     With more 

than one dimension, the intersection of medians has no special cache as a focal point for 

the decision.   According to the rules of social choice, a  one-shot decision in m 

                                                                                                                                                 
With utility loss as the sum of absolute distances, for the median vector to lie outside the Pareto set requires 

a sufficient degree of differential weighting of the different issue dimensions.        
20

 Keep in mind that the Pareto-set is the surface of the “bowl” and not its interior.  
21

.  With two dimensions and three or more voters with variation in intrapersonal weighting of the 

dimensions, the Pareto set is a set of curves rather than straight lines connecting the points of the convex 

hull. . 
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dimensions is inherently  indeterminate; the one  prediction would be an outcome within 

the local Pareto set for the m dimensions voted on at the time.   The legislature would 

choose some set of coordinates Q1, Q2…Qm to represent policy on each set of  m 

dimensions, which would not necessarily represent the median vector.         

 With multiple dimensions per decision, the relevant question is whether solutions 

within the local m-dimensional Pareto sets are still Pareto optimal when cumulated over 

multiple issues.   We have seen that when voting one dimension at a time,  the 

intersection of medians is in the Pareto set only as long as J>K.   Similarly, the 

combination of any set of multi-dimensional outcomes will be Pareto optimal only as 

long as J>K.   This can be seen by simply rescaling the zero points on the K dimensions 

to whatever outcomes are chosen on the individual dimensions, Q1, Q2…QK.  instead of 

the medians.    With this rescaling, the arguments follow directly in the same way as 

when the policies chosen are the dimension medians.   See also, the appendix.    

 It can now be seen that a series of one-shot resolutions of multidimensional issues 

is likely to result in a net outcome outside the Pareto set whenever the number of 

dimensions K reaches the number of voters N.   This is precisely the resolution of one-

shot one-dimensional decisions, but with the following exception: with multidimensional 

decisions it takes fewer decisions  (adding to K dimensions) before the limit is reached 

where K=N.    If decisions are bundled as multi-dimensional choices,  N voters vote on  N 

dimensions  with fewer than N votes.
22

    

  Thus the implications extend beyond merely the efficiency of the median voter 

position as a decision rule.   Whenever the outcomes of multiple one-shot decisions (each 

                                                 
22

 A disadvantage of modeling cumulative decisions in multiple dimensions, however, is the loss of the 

median as the one-shot equilibrium and therefore as a reversion point for legislative bargaining. 
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involving one or more dimensions)  are cumulated so that K, the number of dimensions 

exceeds the number of voters N (or more generally, when J<K), the cumulative net 

outcome QK will not necessarily be within the Pareto set.  Suppose, then, our legislature 

has the capacity to “solve” its inefficiency problem by postponing issue resolution until 

the cumulation of disagreements over N+m dimensions.  It can then achieve its short-term 

solution by passing an omnibus bill over K=N+m dimensions with an outcome that is 

within the Pareto set (and  if it chooses, in the unanimity set where outcomes for all 

voters are preferred to the median vector).     

 But then,  the inefficiency problem arises once again when the legislature must 

vote on issues still further in the future.   Say the legislature votes into policy a Pareto 

optimal decision over dimensions 1 through N+m and then again a separate Pareto 

optimal decision over dimensions m+1 through m+h.   The pooled outcome, while 

possibly in the unanimity set,  will probably not be within the Pareto set for dimensions 1 

through N+m+h.   That is, after N+m+h  dimensions, there are other net outcomes that 

all voters would prefer to the combination of the two omnibus decision.     This is 

because with K>N,  the outcome cannot be in the Pareto set unless the net decision is a 

weighted mean of a  set of interpersonal π-weights that is constant for every dimension.   

(See the appendix.)
23

   The practical implication is that it is difficult for a legislature to 

approximate Pareto-efficiency over time unless it is able to make decisions that 

incorporate information about the future. 

                                                 
23

 One “solution” for restoring Pareto optimality would be to keep adding voters when K approaches N.   

Consider the case where K=N so that the median vector is likely to be out of the Pareto set.   Suppose this  

legislature had been expanded by adding two new voters, who always paired so that they were on opposite 

sides of the median.   The net policy would be unchanged at the median vector , but this policy would now 

be in the Pareto set!   However, this is a hollow victory because what changed is the loss of the potential for 

Pareto improvement.  
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8.  Discussion 

 This paper has modeled legislative decisions as choices on a series of one-

dimensional policy issues.   If each issue is considered as a one-shot collective decision, 

the policy result is the median voter’s preference on each issue dimension—the median 

vector.  After many issues are decided however,  the median vector is an inefficient 

outcome—no longer within the Pareto set.   The implication is the existence of alternative 

outcomes  that every  legislator would prefer to the median vector outcome generated 

from voting one dimension at a time.     The severity of the inefficiency of the median 

vector solution becomes magnified when legislators typically weigh most heavily the  

dimension upon which they hold extreme positions.   

 If the model presented here approximates legislative reality, what should one 

conclude?    The most obvious implication is the advantage of  combining issues over 

many dimensions in such a way that everybody gains and nobody loses.     A universal 

gain in utility from bundling decisions over many dimensions trumps the certainty of 

median voter equilibria from voting one dimension at a time.   Crucially, bundling over 

many issues presents a special challenge when agenda items arrive on the legislative 

doorstep one dimension—or perhaps a few dimensions—at a time.   The challenge is how 

to achieve efficient outcomes when taking into account the choices that await in a future 

that is at least partially unknown.   

 A pessimistic conclusion would be that politics must indeed be a dismal business, 

with   democratic voting invariably leading only to undesirable policies.    Whereas 

legislators  might recognize the value of moving from the median vector toward the 
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Pareto set, they would have no way to get there.  For example, any attempted system 

whereby current concessions are bartered for future favors would face the risk of defeat 

in an atmosphere of distrust, deception, ignorance, and short-sightedness.   Without 

mechanisms for enforcing bargains across time, the legislators are trapped in a series of 

suboptimal one-shot games with outcomes governed by the short-term preferences of the 

median voter of the moment.  

 A more optimistic view is that the need for bargaining across time simply defines 

the legislators’ collective action problem.     Furthermore, we can posit that legislators 

possess certain political capabilities that help them reach a solution.    For example, 

legislators’ preferences can be assumed to be transparent so that as issues arise, 

legislators recognize each others’ interests without posturing or deception.  Second, 

legislators can be assumed to be capable of learning—able to infer future issue 

alignments from the patterns of preferences arising in the past.   More specifically, 

legislators can be assumed capable of holding rational expectations about future issue 

alignments.  Although they can know the future only up to a limit, with inevitable error or 

uncertainty; what they know they know without bias.   

 The findings of this paper reinforce the importance of designing legislative 

institutions.  Based on the logic of this paper, legislative majorities have the incentive to 

thwart rather than facilitate the median voter of the moment.
24

  Of course just because 

                                                 
24

One institutional example is a strong committee system where enforced norms allow outlier committees 

to substitute the committee mediansfor the floor medians.  This arrangement  could push policy toward the 

Pareto set while imposing the stability of a structurally induced equilibrium (Schepsle, 1979)..  The benefit 

would depend on the differential intensity of preferences across issues.  Consider a toy version of this 

model where a legislature divides into three equal groups, with each in control of the committee deciding 

its preferred issue..  Say each had a preference of 1 for its preferred policy, -1 for the preferred policy of 

other groups, and zero for the status quo.  Each group weighs its preferred dimension as w relative to 1.0 

for the otheres. Thus, each group member derives utility of –w(1-P)
2
 for policy on its most salient issue but 

-P
2
 on the other two issues.  As long as w is 2 or greater, the members are better off from the arrangement, 
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there exist potential policy outcomes that all legislators would prefer to the median vector 

position, it does not follow that the institutional arrangement must be the result of a 

universal bargain.  When the median vector is Pareto inferior, any majority coalition 

could find a net outcome that its members prefer to the median vector.  Anticipating this 

result and the uncertainty it entails, legislators would be attracted to a universalistic  

bargain among a coalition of all members. Following the logic of Weingast 1979),  a 

universalist coalition is preferable to the expectation when one does not know the 

membership of the winning coalition.   

Suppose, however, that a small majority coalition commits to a strategy favoring 

its members.    For instance, a specific majority could commit as a political party to set 

the agenda in its interests.  If so, the interests of the party would be not only to improve 

on the “floor” median vector but also the median vector within the party.  That is, the 

majority party could search for multi-dimensional outcomes that its members prefer to 

the collection of median preferences of the legislature but also to the median preferences 

of its own members.
25

 

9. Conclusion 
 

Discussions of the dimensionality of voting issues typically contrast the equilibrium of 

the median voter solution given only one dimension with the disequilibrium and potential 

chaos of many dimensions.   Channeling policy-making into a series of one-dimensional 

policy decisions leads to predictable outcomes as the median on each dimension.   The 

                                                                                                                                                 
as they Pareto-improve over the median of no action.  The legislature would be best off with norms 

allowing some concession to the floor median, however. Weighting each legislator’s utility equally in the 

toy example, the Pareto set would be reached when policy on each dimension equals the weighted mean, 

w/(w+2) on the 0-1 continuum.. 
25

 When a coalition of majority party members determines  policy outcomes within the Pareto set for the 

legislative subset who are party members, the outcomes are also within the Pareto set for the legislature as a 
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presumption usually is that predictable equilibria are in the interests of the actors.       

This paper takes the reverse approach.  It starts with  unidimensional decisions and asks 

whether, disregarding the inherent unpredictability of the outcome, it is in the actors 

interests to bundle issues over many dimensions.   The general answer, we have seen is 

yes:  with many dimensions, the intersection of medians is Pareto inferior.    The 

legislature is better off moving to an outcome in the Pareto set uniformly preferred to the 

intersection of medians.   The challenge is figuring out both how to get there and stay 

there.     

 

Appendix: The Proof 
 

 The argument is that under very general conditions, the intersection of medians M 

is outside the Pareto set.   For the proof we make use of the fact that the Pareto set 

represents the interpersonally weighted average of the voters’ intrapersonally weighted 

positions on the K dimensions.  The K-dimensional outcome QK represents the 

intersection of Qk  decisions  on dimensions 1 through K: 

 

 

 

 

 

Qk will be in the Pareto set if and only if it the K Qk components can all be described as a 

weighed average of voter preferences,  

 

                                                                                                                                                 
whole.  Outcomes within the Pareto set are a weighted average of preferences of all members. With a 

dominant majority party coalition,  the weights for minority party members might approach zero. 
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where  the  πi weights assigned to the individual voters (πis)  take on positive values.  For 

the median vector M to be within the Pareto set, there must be at least one set of πis that 

include M within the Pareto set.     

 We represent the Pareto set by a series of equations describing the weighted mean 

over a number of dimensions up to and beyond K=N dimensions.   Our question is under 

what conditions will find an outcome that is both in the Pareto set and the median vector.  

For convenience, we apply two normalizing conventions: 

 (1)  voter ideal points are normalized by setting the median on each dimension to   

       equal zero. 

            (2) the individual πis are  normalized by setting the weight of voter N (πN) to   

       equal 1.     

The Pareto set includes all weighted averages of the voters’ ideal points.   Thus, if 

the median vector is within the Pareto set, it must be possible to represent it as a weighted 

average of ideal points.  With the zero point set to equal the median on each dimension, a 

dimension’s weighted mean will equal the dimension’s median only when the weighted 

mean also equals zero.  Thus, we set both the weighted mean and the median at zero and 

look for contradictions.  

 If the median vector is part of the Pareto set when  K=N, there must be a set of 

weights 1 1...... Nπ π
−

where 1.0Nπ =  so that the following  conditions are satisfied: 
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(Equation Set A1) 

1 11 11 2 21 21 3 31 31 4 41 41 1 1
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where each equation represents the sum of the N voters’ weighted preferences on the kth 

issue dimension and   

 's ideal point on dimension ,

 =  's intra-personal relative weight of dimension  in  's quadratic loss function,

and

the weight for   that potentially maps the grand
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Z Voter i k
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Voter iπ

=

=  median  onto the Pareto set.

and  1 and the median on each dimension =0.N

M

kπ =

 The ikw salience weights are included to incorporate the general case where voters 

weight the dimensions differently..  Where each voter weighs all dimensions equally 

(e.g., circular indifference curves), all ikw can be set to 1.0 and ignored. 

 Let us begin with a system of  the first N-m  equations where the dimensionality 

K=N-m  is at least two less than N, the total number of voters.   With K<N-1, there are 

more unknowns (the π’s) than equations.   Under these circumstances, the intersection of 

medians can coincide with many different sets of π   weighting schemes, and therefore 

lies within the Pareto set.  The two-dimensions seven voter illustration of Figure 1 is an 

example.  The median vector is within the Pareto set and without requiring one specific 

weighting of preferences to get this result.    

 Next consider the case where the number of dimensions is one less than the 

number of voter, so that the number of equations (K) precisely equals N-1.  If we try to 

solve for the π’s using only  the equations from k=1 through k=K=N-1,  we find exactly 

the same number of equations as unknowns, so that  (assuming no multicolinearity 

among the N-1 dimensions—see below) the  median vector is exactly identified.  Under 
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these circumstances, the median vector outcome is within the Pareto set and implies one 

specific set of π’s.   For instance, in Figure 2 with two dimensions and three voters, only 

one set of π’s can translate the median vector into the intersection of weighted means.  

 Next, consider the case where the number of dimensions and equations equals the 

number of voters (K=N).  With the number of equations equaling the number of voters, 

the voters’ w-weighted preferences on dimension k=K=N must be an exact linear function 

of their w-weighted preferences on dimensions 1 through N-1.  The question is, how 

likely is it that the π-weighted mean on dimension N would be at zero, the median.   

Since the π weights are exactly determined  via equations 1 through N-1, a mean of zero 

for equation N is possible only as an unlikely  knife-edge result.    In general, the left-

hand side of the equation for dimension N would not equal zero, and the median 

preference on dimension N will be outside the Pareto set.    Thus, with at least N voting 

dimensions, the median vector is almost certainly outside the Pareto set.   With still 

additional voting dimensions (N+1, N+2, etc.), the unlikelihood of preferences falling 

within the Pareto set only compounds. 

 We can describe further the unique circumstances for which the median vector 

will be part of the Pareto set when N=K.  With N=K,  the ith voter’s (salience-weighted) 

preferences on dimension N must be an exact linear function of the ith voter’s (salience-

weighted) preferences on the first N-1 dimensions: 

1

0

1

N

iN iN k ik ik

k

w Z w Zλ λ

−

=

= +∑     

where λ0 …λN-1 are the parameters of the linear equation.  Aggregating across voters, the 

equation for k=N in equation set (A1) can be re-stated as:  

 

(Equation A2)    
1
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Rearranging again, 

 

(Equation A3)    
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We look for conditions under which  equation (A3) can be true when equations (k=1)  

through (k=N-1) of equation set (A1) are true.   Note that the second component on the  

left-hand side of equation (A3) must  equal zero.  This is  because it equals the sum of  

equations (k=1) through (k=N-1)  where each equation  is multiplied by λk.   With the  

second left-hand component and the right hand component both equaling zero, the first  

left-hand component must equal zero also.   This requires that λ0, the intercept of the 

 equation predicting  the positions on one dimension from the position on all others must 

 equal zero.  

 We are left with the following:  Equation (A3) can be true only if λ0=0.   Thus  we  

learn  that  when K=N, the median vector can be within the Pareto set only if the intercept  

is zero for the equation predicting the (salience-weighted) preferences on dimension N  

from the salience weighted dimensions 1 through N-1.  

 The knife-edged nature of the necessary conditions for the N-dimensional grand  

median to lie within the Pareto set can be illustrated with a simple 3-voter 3-dimension  

example.   Following is the three-dimensional version where all the w’s equal 1 and the  

medians are identified by their zero values.  (Each voter is the median voter on one of the  

three dimensions.)  In this example, the requirement that the intersection of three medians  

is in the Pareto set becomes:  

(Equation set A4) 

 

1 11 2 21

1 12 32

2 23 33   

( 1)            0    =  0

( 2)           +    0    +    =  0

( 3)              0    +  0

k Z Z

k Z Z

k Z Z

π π

π

π

= + +

=

= + =

  

 For three voters and two dimension (1 and 2 only), we can solve for the 'sπ by 

using the k=1 and k=2  equations  while ignoring the k=3 equation.   We obtain  

 

32
1

12

32 11
2

12 21

and

Z

Z

Z Z

Z Z

π

π

= −

=

 



 36 

Substituting 2π into the k=3 equation, we find the condition required for the intersection 

of medians to lie within the Pareto set.   The ratio of the two non-median ideal points on 

the third dimension must satisfy the following equation: 

 

33 32 11

23 12 21

Z Z Z

Z Z Z
= −  

 

Only if this equation is satisfied, will the intersection of medians be within the Pareto set. 

(By a bit of tedious algebra, this equation can be shown to be equivalent to the 

requirement of a zero intercept when Zi3 is defined as a linear function of Zi1  and  Zi2.) 

 

When N>K: 

 Having a number of independent issue dimensions equal to the number of voters 

is a  necessary condition for it to be improbable that the median intersection would be 

within the Pareto set. However it is not sufficient.  The median vector lying outside the 

Pareto set  is also improbable with fewer dimensions than voters, if some of the equations 

are redundant.  Consider three dimensions with N>3 voters, where the third dimension is 

redundant, identifiable an exact function of the other two: 

(Equation Set A5) 

1 11 11 2 21 21 1 1

1 12 12 2 22 22

(  1)                                                           ......                            0

(  2)                                                     

N Nk w Z w Z w Z

k w Z w Z

π π

π π

= + + =

= + 2 2

1 13 0 1 11 2 12 2 23 0 1 21 2 22 3 0 1 1 2 2

      ......                           0

(  3)     ( ) ( ) ......   ( ) 0

N N

N N N

w Z

k w Z Z w Z Z w Z Zπ λ λ λ π λ λ λ λ λ λ

+ =

= + + + + + + + + =

 

where, as usual, the median ideal point on each dimension is set to zero, and we start by 

assuming that the median  is also the weighted mean, the condition that allows the 

median vector to be within the Pareto set.  We will see that given the k=1 and k=2 

equations, the k=3 equation  is unlikely.  The left-hand side will not sum to zero except 

under knife-edge conditions.   

 Here, there is no scarcity of the number of π’s to identify relative to the number of 

equations.    There is a surplus of π’s and degrees of freedom—N-1 π’s for 3 equations.   

Still, the Zι3s of the equation for k=3 are redundant with the Zi1s and Zi2s of equations k=1 
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and k=2 in a manner analogous to when the number of issues (equations) equals the 

number of voters.   We can rewrite equation for k=3 of equation set (A5) as: 

 

(Equation A6)        0 1 1 1 2 2 2

1 1 1

0
N N N

i i i i i i i

i i i

w Z w Zλ π λ π λ π
= = =

+ + =∑ ∑ ∑  

The component  1 1 1 2 2 2

1 1

N N

i i i i i i

i i

w Z w Zλ π λ π
= =

+∑ ∑ equals the sum of the equations for k=1 and 

k=2, multiplied by  λ1 and λ2 respectively.   They must therefore sum to zero.  This  

means that for the left hand side of equation (A6) to sum to zero, the intercept  λ0  must 

equal zero.   

 

When voting decisions are multidimensional: 

 When voting decisions are made on two or more dimensions at a time, there is no 

reason to expect the legislature to select the median on the various dimensions to be the 

outcome.  Consider a set of m-dimensional one-shot decisions where  1<m<K.  For any 

m-dimensional one-shot decision, the only expectation is that the legislature will choose a 

policy outcome that is within the Pareto set for the m dimensions.   That is, each m-

dimensional outcome can be interpreted as the π-weighted average on the m dimensions, 

where each πi is constant for all m dimensions    

 The m-dimensional decisions cumulate to a grand outcome QK,  the intersection of 

the policy decisions   (Qk) on each of K dimensions.   At this point it is helpful to rescale 

the ideal points so that the origin is now the generic grand outcome QK rather than the 

median vector MK.   (That is, each ideal point  Zik is rescaled as a deviation from Qk=0.).  

Then, assuming m<N, the analysis can proceed directly as for Equation set A1.  The first 

N-1 equations define the unique values of the π weights that comprise the Pareto set for 

N-1 dimensions.   The  equations for K=N, K=N+1, K=N+2 etc. will not be in the Pareto 

set except under the unique conditions where the decisions on these dimensions can be 

described as the π-weighted mean using the same π weights used for equations 1 through 

N-1.   
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Summary  

In summary, the intersection of medians (the median vector) is certain to be in the Pareto 

set only when voter positions on the issue dimensions are independent of each other in 

the sense that none are an exact function of others.  This set of circumstances normally 

arises when the number of voters exceeds the number of issue dimensions.  If the number 

of independent issue dimensions equals or exceeds the number of voters, positions on one 

or more issue dimension must be a linear function of positions on other dimensions. As a 

consequence, the median vector almost certainly lies outside the Pareto set.  The median 

vector lies outside the Pareto set whenever positions on some dimensions are an exact 

function of positions on others—as when a set of “factor scores” perfectly define 

positions on seemingly separate issue dimensions that are voted on separately.    Thus, for 

the number of voters to exceed the number of dimensions is a necessary but not sufficient 

condition for the median vector to lie within the Pareto set. 
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